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Abstract. Let 4 be a noetherian connected graded ring with a balanced dua-
lizing complex R. If 4 has cohomological dimension and Krull dimension 2, then

(1) Ris Auslander;

(2) Cdim M = Kdim M for all noetherian graded 4-modules M.

In particular, if 4 is AS-Gorenstein of injective and Krull dimension 2, then

(3) A is Auslander-Gorenstein;

(4) A is 2-pure with a self-injective artinian quotient ring;

(5) A has a residue complex.

(1,3,4) generalize a result of Levasseur [7, 5.13] and (5) generalizes a result of
Ajitabh [1, 3.12].

1991 Mathematics Subject Classification. 16E10, 16W50.

0. Introduction. Auslander property is closely related to other properties such
as catenarity, localizability, and existence of nice dimension function (see [16]). The
Auslander property is proved for some classes of rings such as AS-regular rings of
global dimension no more than 3 [2, 3, 7] and the Sklyanin algebras [11, 12]. It is an
open question whether or not every noctherian AS-Gorenstein ring is Auslander-
Gorenstein. Levasseur [7, 5.13] proved that a noetherian AS-Gorenstein ring 4 of
injective dimension 2 is Auslander-Gorenstein if 4 has Gelfand-Kirillov dimension 2
and A4 is 2-homogeneous (i.e., 2-pure) with a self-injective artinian quotient ring. The
main object of this note is to generalize Levasseur’s result. The following is proved
in Section 3.

THEOREM 0.1. Let A be a noetherian connected graded ring with a balanced dua-
lizing complex R. Suppose A has cohomological dimension 2. Then the following are
equivalent:

(1) R is Auslander.

(2) Kdim 4 = 2 where Kdim denotes the Krull dimension.

(3) there is a graded dimension function 9 such that 04 < 3.

(4) for any chain of graded primes P'C P C A, Kdim A/P < 1.

(5) the canonical dimension Cdim is a graded dimension function.

(6) Cdim is exact.

(7) Cdim M = Kdim M for all noetherian graded A-modules M.

The definitions of the Auslander property and Gorenstein property are given
next.
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DEerFINITION 0.2. A balanced dualizing complex R over A is Auslander if for
every noetherian graded A-module M and for every graded A-submodule
N C Ext/(M, R), ExtY(N, R) =0 for all j < i.

DEFINITION 0.3. (1) A noetherian connected graded ring 4 is called AS-Goren-
stein (where AS stands for Artin and Schelter) if 4 has injective dimension d < oo
and Ext'(k, A) = 0 for i # d and Ext’(k, A) = k(e) for some e € Z, where k is viewed
as either left or right trivial 4-module.

(2) A noetherian (graded) ring A is called (graded) Auslander-Gorenstein if A
has finite injective dimension and for every noetherian (graded) A-module M and for
every (graded) 4-submodule N C Ext(M, A), Ext/(N, A) = 0 for all j < i.

We refer to [13, 14, 15, 16] for other definitions and notations.

By [7, 6.3] every connected graded Auslander-Gorenstein ring is AS-Gorenstein.
By [5, 0.1], a noctherian graded ring is Auslander-Gorenstein if and only if it is
graded Auslander-Gorenstein. By [14, 4.14], AS-Gorenstein rings have balanced
dualizing complexes and in this case the injective dimension of 4 is its cohomologi-
cal dimension. By [15, Section 0], a connected graded ring is Auslander-Gorenstein if
and only if it is AS-Gorenstein and its balanced dualizing complex is Auslander.

In addition to Theorem 0.1, we prove the following for AS-Gorenstein rings in
Section 4.

THEOREM 0.4. Let A be a noetherian AS-Gorenstein ring of injective dimension 2.
Then the following are equivalent (and equivalent to the conditions in Theorem 0.1):

(1) A is Auslander-Gorenstein.

(2) A has a self-injective artinian quotient ring.

(3) A has an artinian quotient ring.

(4) for every minimal prime ideal P C A, Kdim A/P = 2.

(5) A has a residue complex.

(6) A is 2-pure, i.e., for every nonzero left (right) ideal I C A, Kdim I = 2.

We are unable to show that every noetherian connected graded ring of coho-
mological dimension 2 has Krull dimension 2. The following partial result is proved
in Section 2.

PROPOSITION 0.5. Let A be a noetherian connected graded ring with a balanced
dualizing complex. If A has cohomological dimension 2, then

(1) Kdim 44 <2, where A° = A Q A,

(2) there are only finitely many graded prime ideals P with Kdim A/P > 2.

1. Balanced dualizing complexes. Let k be a base field and 4 a connected graded
ring over k, i.e., A=k ® 4, ® A, & - --. Unless otherwise stated we are working on
connected graded rings over k and their graded modules. If 4 is left (or right) noe-
therian, then each 4; is finite dimensional over k. Let m denote the maximal graded
ideal 4>, of A. The m-torsion submodule of M, denoted by I',(M), is the union of
all finite dimensional submodules of M. The left (right) cohomological dimension of
A is defined to be the cohomological dimension of I'y, applying to the left (right)
graded A-modules.
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Our main tool is the balanced dualizing complex introduced by Yekutieli [14]. A
theorem of Van den Bergh [13, 6.3] states as follows: A noetherian connected graded
ring 4 has a balanced dualizing complex if and only if A satisfies left and right x-
condition and has finite left and right cohomological dimension. Both x-condition
and having finite cohomological dimension are checked for a large class of noether-
ian graded rings [4, 16].

From now on 4 is a noetherian connected graded ring with a balanced dualizing
complex R. It follows from [13, 4.8] that the left cohomological dimension of A4 is
equal to the right cohomological dimension of 4, which is denoted by cdA4.

Let M be a graded A-module. The graded vector space dual of M is
M = @®,Homy(M_,, k). The local duality theorem states the following: for any
X € D(Gr A),

RI,(X) = RHomy(X, R) (E1.1)

(see [14, 4.18] and [13, 5.1]).
A dualizing complex R induces a convergent spectral sequence: for any noe-
therian module M

E29 = Ext’(Ext!(M, R), Ry=>H""9(M) (E1.2)

where H”~/(M) = 0 if p # ¢ and H'(M) = M [16, 1.7].
Suppose 4 has cohomological dimension d with a balanced dualizing complex
R. It follows from the local duality theorem (E1.1) that, for all i > 0 and i < —d,

Ext'(M,R) =0

for all left (or right) 4-modules 4. Hence we may choose R to be a complex in
D;g(Gr A°) of the form

R=--0>RY> ... R'"SR 50
where each RY is injective as left and as right 4-module.

LeEmMA 1.3. Let M be a noetherian graded A-module.

(1) EX'[O(M, R) =Tw(M).

(2) If dim M < oo, then Ext/(M, R) = 0 for all ¢ # 0 and Ext®(M, R) = M’.
(3) If dim M = oo, then dim Ext?!(M, R) = oo for some g < 0.

Proof. (1,2) Follow from the local duality (E1.1).

(3) Suppose that Ext?(M, R) is finite dimensional for all ¢ <0. By (1)
Ext’(M, R) is finite dimensional. Hence, by (2), Ext’(Ext?(M, R), R) is finite dimen-
sional for all p, q. It follows from the spectral sequence (E1.2) that M is finite
dimensional. ]

If cd4 = 0, then the short exact sequence 0—> m—> 4—> A4 /m1—>0 induces an
exact sequence

0—>p(m)—>Tp(A4)— A/ m—> R T, (im) = 0.
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Hence 1 € I'y;(A4), so A =Ty, (A4) is finite dimensional. Next we consider the case
cdA4 = 1. Let GKdim denote the Gelfand-Kirillov dimension.

LEMMA 1.4. Let A and B be noetherian graded rings.

(1) If GKdimd4 =1, then A is PI (PI=satisfying a polynomial identity) and
Kdim4 = 1.

(2) If Kdim A = 1, then GKdimA4 = 1.

(3) If M is a graded (A, B)-module noetherian on both sides, then the following are
equivalent:
(a) KdmMp=1, (b) GKdimMp=1, (¢) 1 <GKdimMg <2, (d)

GKdim M = 1.

Proof. (1) By [10], if GKdimA =1, then A4 is PI. By [8, 6.4.8 and 13.10.6]
Kdim 4 = GKdim4 = 1.

(2) We may assume A is prime. By a graded version of Goldie’s theorem [9, 1.1.6],
there is a homogeneous regular element xe€ 4 of degree d> 0. Hence
Kdim 4/xA4 = 0, which implies that 4/xA is finite dimensional. Hence GKdim4 = 1.

(3) By noetherian induction we may assume M is critical and ann(, M) =: Q and
ann(Mp) =: P are graded prime ideals such that 4M is A/Q-torsionfree and My is
B/ P-torsionfree. Hence Kdim M = Kdim B/P and GKdimM 3 = GKdimB/P. Now
(a) and (b) are equivalent by (1,2), and (b) and (¢) are equivalent by Bergman’s gap
theorem [6, 2.5]. (b) and (d) are equivalent because GKdim is symmetric [6, 5.4]. []

LEMMA 1.5. If cd4 =1, then A is PI of Kdim 1. More generally, if M is a noe-
therian graded A-module such that (a) Ext™(M,R)=0 for all i>1 and (b)
f: M(—d) — M is an injective map for some d > 0, then M /f(M) is finite dimensional.

Proof. We may assume that A4 is prime [4, 8.5] and not k. By [9, 1.1.6], there is a
homogeneous regular element x € A4 of degree d > 0. Then there is a short exact
sequence

0— A(—d) > A — A/xA — 0.

By Lemma 1.4, it suffices to show GKdimA4 = 1. To prove GKdimA4 = 1, it suffices
to prove that A/xA is finite dimensional over k.

We now consider the general case when 0 - M(—d) > M — M/f(M) — 0 is
exact and show that M/f(M) is finite dimensional. By the long exact sequence we see
that

Ext™((M/f(iM),R)=0 forall i>1, and
0 — Ext™'(M/fiM), R) - Ext™'(M, R) - Ext™!(M(—d), R) — Ext’(M/f(M), R)

is exact. Let f"(M) be the image of the map f": M(—dn)— M. Then
f(M))f Y (M) =2 (M/f(M))(—dn). The short exact sequence

0 — f"(M)/f" (M) — M/f"™ (M) — M/f"(M) — 0

yields a long exact sequence
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0 — Ext™'(M/f"(M), R) — Ext~'(M/f"*' (M), R) —
Ext™' (f"(M)/f"" (M), R) > Ext’(M/f"(M), R).

Suppose M/f(M) is infinite dimensional. By Lemma 1.3(3), Ext~'(M/f(M), R), and
hence Ext™'(f"(M)/f"*' (M), R), is infinite dimensional. Since Ext’(M/f"(M), R) is
finite dimensional, the injective map

Ext™'(M/f"(M), R) — Ext™'(M/f""' (M), R)

is not surjective. This shows that {Ext~!(M/f"(M), R) | n > 0} is an ascending chain
of submodules of Ext~!(M, R), which contradicts to the fact that Ext™' (M, R) is
noetherian. [

Let H'R be the i-th cohomology of R. By definition, H'R is noetherian on both
sides for all i.

LEMMA 1.6. Suppose cdA = d > 2 and M is a noetherian graded A-module.

(1) H™“R is noetherian on both sides and Ext~(M, R) = Hom(M, H"R).

(2) Every nonzero left (right) submodule of H-R has Kdim > 2.

(3) If A is prime such that, for every nonzero graded prime P, KdimA/P <1,
then H-R is A-torsionfree on both sides. Namely, Ext™(M, R) = 0 for all A-
torsion modules M.

Proof. (1) Clear.

(2) For any «, the maximal submodule of H~“R of Krull dimension at most « is
a graded submodule. Hence it suffices to consider graded submodules. Suppose N is
a right graded submodule of H~¢R of Kdim < 2. Since H~“R is noetherian on both
sides, we may further assume that (a) N is a critical subbimodule of H~“R, (b)
P:=ann(N,) is prime, and (c) N is A/P-torsionfree [8, 4.3.5(ii1)]. Hence
Kdim A/P = Kdim N4 < 2, and then Kdim A/P < 1. By (1) and Lemma 1.3(2),
H~“R contains no finite dimensional submodule. Thus Kdim A/P = 1. By Lemma
1.4, A/ P is PI, whence there is a central regular elements x € A/P of degree d > 0.
The short exact sequence

0— N(—d) - N—- N/Nx— 0

yields a long exact sequence
Ext™/(N/Nx, R) — Ext™(N, R) — Ext™/(N(—d), R) — Ext""*!(N/Nx, R).

Since N/Nx is finite dimensional, two ends are zero [Lemma 1.3(2)]. Since
Ext™¥(N, R) is left bounded, a graded version of Nakayama lemma implies that
Ext™(N, R) is zero. This contradicts to the fact N ¢ H“R.

(3) Suppose H~“R is not A-torsionfree. Since H~¢R is noetherian on both sides,
there is a critical subbimodule N ¢ H R such that (a) N, is A-torsion, (b)
P := ann(N,) is a nonzero graded prime ideal, and (¢) N is A/P-torsionfree. By the
hypothesis, Kdim N4 = Kdim 4/P < 1. This contradicts to (2). O

If Pis a graded prime ideal of A4, let E(A/P) denote the graded injective hull of 4/P
and E4,p denote the graded injective hull of a graded uniform right ideal of 4/P.
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LEmMA 1.7. Let I be the minimal injective resolution of R as right A-module
complex.

() I1°=4".

(2) Let B~/ be the image of """ — I"". Then I"'/B" is locally finite.

(3) If A is prime and Kdim A > 2, then I"' does not contain any shift of the
injective module E 4.

(4) If P is a graded prime ideal of A such that Kdim A/P > 2, then I"" does not
contain any shift of the injective module E 4,p.

Proof. (1) By local duality (E1.1), Ext’(k, R) = (k) = k. Thus I°=A' @ J
where J is m-torsionfree. Suppose I° # A’, namely, J# 0. Then the inclusion
J — I° induces a nonzero element in Ext’(J, R). Since J is m-torsionfree, by local
duality Ext’(J, R) = I'y(J) = 0, a contradiction.

(2) We have an exact sequence

0> H'R—>TI"/B"> I

By (1) 1° = A4’ is locally finite. By the definition of dualizing complex, H~'R is noe-
therian and hence locally finite. The statement follows.

(3) Let Qg (A) be the graded quotient ring of 4. It is clear that E(A) is iso-
morphic to Q(A) as left and as right graded 4-module. If E(4) is locally finite, then
the Hilbert series of E(A4) = Q,.(A) is periodic. Hence 4 has GKdim 1, which con-
tradicts to the hypothesis. Therefore E(A) is not locally finite. Since E(A) is a finite
direct sum of shifts of £, E, is not locally finite.

Suppose E4 is a submodule of /~!. Since A4 is prime and B! is A-torsion, E
does not intersect with B~!. Hence E, is a submodule of I"'/B~!. By (2), E4 is
locally finite, a contradiction.

(4) Let R, p be the dualizing complex over 4/P. By [16, 3.2 and 4.16], there is a
morphism ¢ : Ry,p — R in D(GrA4°) such that

R,/p =2 RHom4(A/P, R) = RHom 4.(4/P, R). (E1.8)

Note that if M is an injective 4-module, then Hom(A4/P, M) is an injective A/ P-
module. Hence /4,p := Hom(A/P, 1) is a complex of injective 4/P-modules. The
minimality of the complex [ implies that /4,p is a minimal complex of injective 4/ P-
modules. By (E1.8), I/ is a minimal injective resolution of R, p. Suppose I!
contains injective 4-module E,4/p. Then IAT} p contains injective 4/P-module E4p,
which contradicts with (3). [

2. Rings with cohomological dimension 2. By Lemma 1.5, if cd4 = 1 then 4 is PI
of Kdim 1, which implies that R is Auslander. In this section we will discuss the case
cd4 = 2. If Kdim 4 = 1, then 4 is PI [Lemma 1.4]. By [16, 5.13 and 5.14], cd4 = 1.
So cd4 = 2 implies Kdim 4 > 2. Next is a consequence of Lemma 1.7(4).

PropoSITION 2.1. Suppose cdA = 2. Then there are only finitely many graded

primes P C A with Kdim A/P > 2. As a consequence A has a finite classical Krull
dimension.
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Proof. Let I be the minimal injective resolution of R as right 4-module complex.
Then 172 is the injective hull of H2R. Since H 2R is noetherian, its Goldie rank is
finite and /=2 is a finite direct sum of indecomposable injectives. By Lemma 1.7(4)
and [16, 1.11], if P is prime with Kdim A/P > 2, then E,,p is a direct summand of
I72. If P # P, then E4/p 2 E4/p. Therefore the number of graded primes P with
Kdim 4/P > 2 is no more than the Goldie rank of H2R.

The last assertion follows from [9, 1.1.9]. O

LEMMA 2.2. Let cdA = 2 and let M be a noetherian graded right A-module.

(1) If Hom(M, A/P) #0 for a graded prime P with Kdim A/P > 2, then
Ext™2(M, R) # 0.

(2) Let A be prime. If M is A-torsion and every factor of M with Kdim > 2 is A-
faithful, then Ext™>(M, R) = 0.

(3) Let A be prime such that, for every nonzero graded prime P, Kdim A/P < 1.
If M is not A-torsion, then Ext™2(M, R) is not A-torsion.

Proof. (1) Since Ext™2(M, R) = Hom(M, H2R), it suffices to show that 4/P as
right A-module embeds to a finite direct sum of shifts of H—2R. By Lemma 1.7(1,4),
E4/p does not appear in /° and I-!. Since E4/p appears in the minimal injective
resolution of R [16, 1.11], it must appear in I-2. Therefore H2R contains a shift of a
graded uniform right ideal of 4/P, and hence 4/P embeds to a finite direct sum of
shifts of H>R.

(2) Let T be the A-torsion submodule of H~>R as right A-module. Then T'is a
subbimodule and hence noetherian on both sides. Since 74 is A-torsion, the right
annihilator of T is not zero. Suppose Ext™2(M, R) # 0. Then there is a nonzero map
f: M — T. Thus the image of f has Kdim > 2 and is not A4-faithful.

(3) First we may replace M by a factor of M and assume M is a graded uniform
right ideal of A. Then replace M by a finite direct sum of shifts of M we may assume
M is an essential right ideal of 4. The exact sequence

0>M—>A4A—> A/M— 0
yields a long exact sequence
0 — Ext™2(4/M, R) — Ext™%(4, R) — Ext (M, R) — ---.

Since A/M is A-torsion, Ext™2(4/M, R) = 0 [Lemma 1.6(3)]. Since Ext=%(4, R) =
H2R is A-torsionfree [Lemma 1.6(3)], Ext2(M, R) is not A-torsion. O

LeEMMA 2.3. Suppose cdA < 2 and M is a noetherian graded A-module.

(1) Let EP4(M) = Ext’(Ext!(M, R), R). Then EP1{(M)=0 for (p,q) =(-2,0),
(-1,0), (=1, =2), (0, =2) and (-2, —1).

(2) If Ext™2(M, R) # 0, then Kdim Ext™>(M, R) > 2.

Proof. (1) We have a convergent spectral sequence (E1.2) and the E;-page of
(E1.2) is

EZ0M)  EYO0M) B

E27\M) ET (M) B ()
E22(M) ET3(M) B2 (M)
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with other terms being zero. The boundary maps in the E,-page have degree
(r,r—1). For (p, q) = (—2,0), (—1,0), (-1, =2), (0, —2),

EM(M) = By = B0 = 0.

At (p,q) = (=2, —1), we have E;>~' = E>~! = 0. Therefore E->~'(M) is a sub-
module of E®%(M) which is finite dimensional [Lemma 1.3(1)]. Let
N = Ext™'(M, R). Then (E1.2) for N shows that E®2(N) = 0, which implies that
E2(N)= E">~Y(M) contains no nonzero Mm-torsion submodule. Therefore
E~2~1(M) must be zero.

(2) Let N = Ext™>(M, R). By (1) Ext"(N, R) =0 for p =0, —1. If Kdim N < 2,
by Lemma 1.6(2) Ext™(N, R) = 0. By (E1.2) N = 0. O

PROPOSITION 2.4. Suppose cdA = 2. Then the following conditions are equivalent:
(1) for any chain of graded primes P'C P C A, Kdim A/P < 1.

(2) R is Auslander.

(3) Kdim4 = 2.

(4) Kdim Ext™'(M, R) < 1 for all noetherian graded module M.

Proof. (1) = (2) By [16, 4.18] we may assume A is prime. By Lemma 1.3(1), for
any noetherian graded A-module M, Ext’(M, R) is finite dimensional and by
Lemma 1.3(2) Ext/(N, R) = 0 for all N ¢ Ext’(M, R) and for all ¢ < 0. By the defi-
nition of cd, for all N C Ext’(M, R) and for all ¢ < —cdA, Ext/(N, R) = 0. Hence it
remains to show that Ext=(V, R) = 0 for all N  Ext™'(M, R). By Lemma 1.6(3), it
suffices to show that Ext™'(M, R) is A-torsion, which follows from Lemmas 2.2(3)
and 2.3(1).

(2) = (3) By [16, 4.14], Kdim 4 < cd4 = 2. So Kdim 4 = 2.

(3) = (1) Clear, or see Lemma 3.3(2).

(3) = (4) Again we may assume A is prime. By the proof of (1) = (2),
Ext™'(M, R) is A-torsion. Hence Kdim Ext™' (M, R) < KdimA4 — 1 < 1.

(4) = (2) By the prove of (1) = (2), it remains to show that Ext (N, R) = 0 for
all N c Ext™!(M, R). Since KdimExt™'(M,R) <1, KdimN <1 and by Lemma
1.6(2), Ext™2(N, R) = 0. O

REMARK 2.5. We can also prove the following, but tedious proofs are omitted.

Suppose cd4 = 2. Then the following are equivalent:

(1) Kdim4 = 2.

(2) KdimM ®,4 P < 1 for every graded primes P with Kdim 4/P = 2 and for all
noetherian graded A-module M with Kdim M = 1.

(3) KdimExt™!(M, R) <1 for every noetherian graded A-module M with
Kdim M = 1.

LEMMA 2.6. Suppose cdA = 2. Let M be a graded A-bimodule noetherian on both
sides.

(1) If Kdim M = 1, then Ext™>(M, R) = 0 and Kdim Ext™' (M, R) = 1.

(2) If Kdim M > 1, then Kdim Ext™>(M, R) > 2 and Kdim Ext~'(M, R) < 1.

Proof. (1) By Lemma 1.6(2), Ext™>(M,R)=0. By Lemma 1.3(3),
Kdim Ext™'(M, R) > 0. So it remains to show Kdim Ext~'(M, R) < 1. By noetherian
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induction we may assume the bimodule M is right 4/ P-torsionfree for some graded
ideal P and Kdim A/P = 1. Hence Ext™!(M.R) is a noetherian left 4/P-module,
which has Kdim < 1.

(2) To prove Kdim Ext™(M, R) > 2 we may replace M by a factor of M and
assume that every proper bimodule factor of M has Kdim no more than 1. Pick a
nonzero subbimodule M’ C M such that M’ is right A/P-torsionfree for some gra-
ded prime ideal P. Let M = M/M’. Then Kdim M < 1. The short exact sequence

0O>M-—>M-—>M-—>0

yields an exact sequence
0 — Ext™2(M, R) — Ext™%(M, R) — Ext~%(M’, R) — Ext™'(M, R).

By (1) Ext?>(M,R)=0 and KdimExt"!(M,R)<1. By Lemma 2.2(1),
Ext2(M',R)#0 and by Lemma 23(2), KdimExt>(M’,R)> 1. Hence
Kdim Ext™2(M, R) > 2. O

PROPOSITION 2.7. Suppose cdA = 2.

(1) Let M be a graded A-bimodule noetherian on both sides. If
MDMyDMy;D- - is a descending chain of subbimodules, then
Kdim M;/ M1 <1 for i > 0. As a consequence Kdim 4 M < 2.

(2) Kdim 44 < 2.

Proof. (2) is a special case of (1).
(1) Let N; = M/M; and let M} = M,;/M,;,. Suppose Kdim M/ > 1 for all i. The
exact sequence
0—> M,— Ny — N;— 0
yields an exact sequence

0 — Ext™(N;, R) — Ext™2(N;y1, R) — Ext*(M/, R) — Ext"'(N;, R) — - -.

By Lemma 2.6, KdimExt™'(¥;, R) <1 and KdimExt’z(Mg, R) > 2. Hence the
injective map Ext (N, R) — Ext™>(Ny., R) is not surjective for all i. Thus
{Ext™2(N;, R) | i > 0} is an ascending chain of submodules of Ext~>(M, R), which
contradicts to the fact Ext=2(M, R) is noetherian. OJ

Proposition 0.5 follows from Corollary 2.1 and Proposition 2.7.

ReEMARK 2.8. (1) We don’t know whether or not KdimA4 =2 implies
GKdim4 = 2.

(2) If 4 is PI or FBN or more generally satisfies similar submodule condition,
then R is Auslander and Kdim 4 = GKdimA4 = c¢dA4 [16, 5.13 and 5.14].

3. Graded dimension function.

DEFINITION 3.1. A graded dimension function is a map 0 sending finitely gener-

ated right (and left) graded modules over a connected graded ring to the set of —oo,
all real numbers, and all ordinals > w satisfying the following properties:
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(d0) 90 = —o0, and dM = 0 if and only if M is finite dimensional;

(d1) If M is infinite dimensional, then oM > 1;

(d2) M = max{d(M/N), dN} for any N C M (this property is called exactness);

(d3) If x is a regular element of M = 4/P for some prime ideal P C A4, then

IM > AM/xM) + 1;

(d4) oM = a(M(1)) where M(1) is the degree shift of M.

The graded dimension function is slightly different from the dimension function
in the ungraded case (see [8, Sect. 6.8.4] or [16, 2.4]) because we add some natural
conditions (d0), (d1) and (d4) concerning graded modules. Given a finitely generated
graded module M, Kdim M in the graded module category is equal to Kdim M in
the ungraded module category. Using this fact one can easily check that Krull
dimension is also a graded dimension function. For Gelfand-Kirillov dimension,
(d0,d1,d3,d4) are clear and the next lemma shows that (d2) is true.

LEMMA 3.2. Let A be a right noetherian connected ring and let M be a finitely
generated right graded A-module. Then
(1) GKdimM = limlog,(}_,., dim xM)).
(2) GKdimM = max{GKdimM/N, GKdimN} for any graded submodule N C M.
3) If f:M(—d)— M is an injective map for some integer d >0, then
GKdimM/fiM) = GKdimM — 1.

Proof. (1) This follows from the facts that A4 is a finitely generated algebra and
that M is a finitely generated right 4-module.

(2) By [8, 8.3.2(i1))], GKdimM > max{GKdimM/N, GKdimN}. Let o be any
number bigger than max{GKdimM /N, GKdimN}. Then there is a constant C such
that

> dimi(M/N); < Cn*  and ) dimiN; < Cn®

i<n i<n

for n > 0. Thus >_,_, dim ;M; < 2Cn® for n > 0. By (1) GKdimM < «.

(3) By [8, 8.3.5], GKdimM/fiM) < GKdimM — 1. To prove the opposite
inequality let o be any number bigger than GKdimM /f(M). Let dim (M/f(M));, =
h(i). Then there is a constant C such that .. i(j) < Ci* for alli > 0. Let dim ,M; =
g(i). Then '

Jj<i

g(i) = h(i) + h(i — d) + h(i = 2d) + --- < > h(j) < C&*,

J<i

whence stig(j)fUl““ for some constant C' and for i> 0. Therefore
GKdimM < «a + 1. O

LEMMA 3.3. Let 9 be a graded dimension function.
(1) If d(44) < 2, then A is PI of Kdim < 1.
(2) If d(A4) < 3, then, for any chain of graded primes P'C P C A, Kdim A/P < 1.

Proof. (1) We may assume A is prime and not k. Since A is noetherian, by [9,
1.1.6], there is a homogeneous regular element x € 4 of positive degree. Then
d(A/xA) <94 —1 < 1. Hence d(A/xA) =0 and 4/xA is finite dimensional. There-
fore GKdimA4 = 1 and 4 is PI of Kdim 1 [Lemma 1.4].
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(2) Since P/P’ is a nonzero prime ideal of 4/P’, 9(A/P’) < 3 implies d(4/P) < 2.
Then the statement follows from (1) . ]

Let R be a balanced dualizing complex. The canonical dimension is defined by

Cdim M = —min{i | Ext/(M, R) # 0}.

Note that cd4 = Cdim A. If R is Auslander, then Cdim is a dimension function for
ungraded modules [16, 2.10]. To verify Cdim is a graded dimension function, we
need to check (d0), (d1) and (d4). But (d0) and (d1) follow from Lemma 1.3(2,3) and
(d4) is clear for Cdim . Therefore we have:

ProPOSITION 3.4. If R is Auslander, then Cdim is a graded dimension function.

Proof of Theorem 0.1. By Proposition 2.4, (1), (2) and (4) are equivalent.

(2) = (3) is clear and (3) = (4) is Lemma 3.3(2).

(1) = (5) is Proposition 3.4.

(5) = (7) By [16, 4.14], Kdim M < Cdim M. It remains to show Cdim M <
Kdim M. This is clear when Kdim M = 0 or 2. So we only consider the case when
Kdim M = 1. Since both dimension functions are exact, we may use noetherian
induction on M. So we may assume M is critical faithful over 4/P for some graded
prime P. There are two cases. Case 1 is when Kdim 4/P = 2. Since Kdim 4 = 2, P is
minimal. Hence M is A/P-torsion. Thus Cdim M < CdimA/P — 1 < 1. Case 2 is
when Kdim A/P < 1. Then by Lemma 3.3(1), 4/P is PI and of GKdim < 1. Hence
Cdim 4/P < 1 and hence Cdim M < 1.

(7) = (6) Clear.

(6) = (1) By the proof of Proposition 2.4, it suffices to show Ext™2(N, R) = 0 for
all submodules N c Ext™'(M, R) and for all noetherian graded module M. By
Lemma 2.3(1) (for (p, q) = (=2, —1)), Cdim Ext~!(M, R) < 2. Since Cdim is exact,
Cdim N < 2, i.e., Ext™2(N, R) = 0. m

4. AS-Gorenstein rings of injective dimension 2. By [14, 4.14] a noetherian AS-
Gorenstein ring A of injective dimension d has a balanced dualizing complex
R = A°[—d](—e) for some graded automorphism o of 4 and some integer e in the
Definition 0.3(1).

PROPOSITION 4.1. If A is AS-Gorenstein of injective dimension 2 and has an arti-
nian quotient ring (with respect to the set of the regular elements of A), then A is
Auslander-Gorenstein.

Note that Proposition 4.1 is [7, 5.13] without the hypothesis that GKdimA4 = 2. It
also follows from Theorem 0.4 that the artinian quotient ring of A4 is in fact self-injective.

Proof. By Theorem 0.1, it suffices to show that, for any chain of graded primes
P'CPCA, KdimA/P < 1. Suppose this is not true, namely, there are graded
primes P'C P C A such that Kdim 4/P > 1. By Lemma 2.2(1),

Hom(A/P, A) = Ext™%(4/P, R(e)) = Ext >(4/P, R)(e) # 0
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because R = A°[-2](—e). Let Q be the artinian quotient ring of A. Then
Hom(A4/P, A) # 0 implies that 4/P ® 4 O # 0. Next we show that this contradicts to
the fact P is not a minimal prime. By [8, 4.1.3(iv)], 4/N(A) ®4 Q = Q/N(Q) := Q'
where N(—) is the prime radical of —, and Q/Q(N) is the artinian quotient ring of
A/N(A). Since P is not a minimal prime, P/N(A) is an essential (left and right) ideal
of A/N(A). By Goldie’s theorem, Q'/PQ’ = 0. Hence

A/P®4Q=0Q/PQ=0Q'/PQ' =0.
This contradicts to A/P®4 Q # 0. O

Let 9 be a (graded) dimension function. A nonzero (graded) module N is called
p-pure with respect to 9 if 9M = p for all nonzero noetherian (graded) submodule
M C N. In most cases we will take d = Cdim. Let R be the balanced dualizing
complex over 4 and let 0 be a graded dimension function. Following Yekutieli’s
definition [15, 2.3], R is called residue complex over A (with respect to 9) if (i) each A4-
bimodule RY is graded injective on both sides and (ii) each A-bimodule R? is pure of
o-dimension —¢ on both sides. Note that in [15] this is called strong residue complex,
and later in [17], this is called residue complex. By [15, 2.6], if R is a residue complex
over A with respect to 9, then R is Auslander and 9M = Cdim M for all noetherian
graded modules M.

We are ready to prove Theorem 0.4.

Proof of Theorem 0.4. First of all Theorem 0.4(1) is equivalent to Theorem
0.1(1) for AS-Gorenstein rings.

(1) = (2) follows from [16, 6.23.3], (2) = (3) is clear and (3) = (1) is Proposition
4.1.

(1) = (4) is [16, 6.23.2] and (4) = (1) follows from the implication (2) = (1) of
Theorem 0.1.

(5) = (1) is [15, 2.6].

(1) = (5) By Theorem 0.1(6) Cdim M = Kdim M for graded noetherian mod-
ules M. (Note that Cdim M and Kdim M could be different for ungraded module M
though both dimensions are well-defined.) Hence purity with respect to Cdim is
equivalent to purity with respect to Kdim .

Take the minimal injective resolution of the left A-module complex
R = A°[-2](—e), say

0I5 150 (E4.2)

By Lemma 1.7(1), 1° = 4’ which is 0-pure. Let Q be the (ungraded) artinian quo-
tient ring of 4. Since /=2 (as ungraded module) is a submodule of Q and since Q is 2-
pure as an ungraded module, /-2 is 2-pure. Since Q/A is A-torsion, so is I-2/A(—e).
Thus Cdim N < 1 for all noetherian submodule N C I-2/A(—e). Since A is AS-
Gorenstein, 172/ A(—e) C I"! contains no finite dimensional submodules. Therefore
I72/A(—e) is 1-pure. Since the complex (E4.2) is exact at I~ and since 1° is O-pure,
I"! is l-pure. Similarly, the minimal injective resolution of the right A-module
complex R has a pure resolution. By [17, 3.8], the Cousin complex ER of R is a
residue complex, namely, ER is a balanced dualizing complex in D/?-g(GrA") which is
a pure minimal injective resolution on both sides.
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(5) = (6) By (5) A4 is 2-pure with respect to Cdim and Kdim .
(6) = (1) follows from Theorem 0.1 because Kdim 4 = 2. O

REMARK 4.3. Part (5) is a generalization of a result of Ajitabh [1, 3.12], which
proves the existence of residue complexes for AS-regular algebras of global dimension
2.

COROLLARY 4.4. Let A be AS-Gorenstein of injective dimension 2. If 0 is a graded
dimension function such that 9 A < 2 then

oM =KdimM = Cdim M

for all noetherian graded left and right A-modules M.

Proof. First of all, by Theorem 0.1, A is Auslander-Gorenstein and
Cdim M = Kdim M. So it remains to show that oM = Kdim M.

Let P be a minimal prime of 4. By Theorem 0.4(4) Kdim A/P = 2, whence
A/(P+ xA) is not finite dimensional over k for any x of positive degree. Pick
X:=x+ P a homogeneous regular element of A/P of positive degree. Then
dA/P > 0A/(P+xA) + 1> 2. Thus 94 = d(A/P) =2 for all minimal prime P.
Since both Kdim and 9 are exact we may use noctherian induction and may assume
M is a critical module and faithful over 4/P for a graded prime P. If P = m, then M
is k and hence both dimensions are 0. If M is infinitely dimensional and either P is
not minimal or P is minimal and M is A/P-torsion, then both dimensions are 1 (by
(d1) and (d3)). The last possibility is when M is a right ideal of A/P when P is
minimal. In this case, Kdim M = Kdim A/P and aM = 04/P. We have already
shown that both dimensions on 4/P are equal to 2. That completes our proof. [
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