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Abstract. Let A be a noetherian connected graded ring with a balanced dua-
lizing complex R. If A has cohomological dimension and Krull dimension 2, then

(1) R is Auslander;
(2) CdimM � KdimM for all noetherian graded A-modules M.
In particular, if A is AS-Gorenstein of injective and Krull dimension 2, then
(3) A is Auslander-Gorenstein;
(4) A is 2-pure with a self-injective artinian quotient ring;
(5) A has a residue complex.
(1,3,4) generalize a result of Levasseur [7, 5.13] and (5) generalizes a result of

Ajitabh [1, 3.12].

1991 Mathematics Subject Classi®cation. 16E10, 16W50.

0. Introduction. Auslander property is closely related to other properties such
as catenarity, localizability, and existence of nice dimension function (see [16]). The
Auslander property is proved for some classes of rings such as AS-regular rings of
global dimension no more than 3 [2, 3, 7] and the Sklyanin algebras [11, 12]. It is an
open question whether or not every noetherian AS-Gorenstein ring is Auslander-
Gorenstein. Levasseur [7, 5.13] proved that a noetherian AS-Gorenstein ring A of
injective dimension 2 is Auslander-Gorenstein if A has Gelfand-Kirillov dimension 2
and A is 2-homogeneous (i.e., 2-pure) with a self-injective artinian quotient ring. The
main object of this note is to generalize Levasseur's result. The following is proved
in Section 3.

Theorem 0.1. Let A be a noetherian connected graded ring with a balanced dua-
lizing complex R. Suppose A has cohomological dimension 2. Then the following are
equivalent:

(1) R is Auslander.
(2) KdimA � 2 where Kdim denotes the Krull dimension.
(3) there is a graded dimension function @ such that @A < 3.
(4) for any chain of graded primes P0�

=
P � A, KdimA=P � 1.

(5) the canonical dimension Cdim is a graded dimension function.
(6) Cdim is exact.
(7) CdimM � KdimM for all noetherian graded A-modules M.
The de®nitions of the Auslander property and Gorenstein property are given

next.
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Definition 0.2. A balanced dualizing complex R over A is Auslander if for
every noetherian graded A-module M and for every graded A-submodule
N � Exti�M;R�, Extj�N;R� � 0 for all j < i.

Definition 0.3. (1) A noetherian connected graded ring A is called AS-Goren-
stein (where AS stands for Artin and Schelter) if A has injective dimension d <1
and Exti�k;A� � 0 for i 6� d and Extd�k;A� � k�e� for some e 2 Z, where k is viewed
as either left or right trivial A-module.

(2) A noetherian (graded) ring A is called (graded) Auslander-Gorenstein if A
has ®nite injective dimension and for every noetherian (graded) A-module M and for
every (graded) A-submodule N � Exti�M;A�, Extj�N;A� � 0 for all j < i.

We refer to [13, 14, 15, 16] for other de®nitions and notations.
By [7, 6.3] every connected graded Auslander-Gorenstein ring is AS-Gorenstein.

By [5, 0.1], a noetherian graded ring is Auslander-Gorenstein if and only if it is
graded Auslander-Gorenstein. By [14, 4.14], AS-Gorenstein rings have balanced
dualizing complexes and in this case the injective dimension of A is its cohomologi-
cal dimension. By [15, Section 0], a connected graded ring is Auslander-Gorenstein if
and only if it is AS-Gorenstein and its balanced dualizing complex is Auslander.

In addition to Theorem 0.1, we prove the following for AS-Gorenstein rings in
Section 4.

Theorem 0.4. Let A be a noetherian AS-Gorenstein ring of injective dimension 2.
Then the following are equivalent (and equivalent to the conditions in Theorem 0.1):

(1) A is Auslander-Gorenstein.
(2) A has a self-injective artinian quotient ring.
(3) A has an artinian quotient ring.
(4) for every minimal prime ideal P � A, KdimA=P � 2.
(5) A has a residue complex.
(6) A is 2-pure, i.e., for every nonzero left (right) ideal I � A, Kdim I � 2.

We are unable to show that every noetherian connected graded ring of coho-
mological dimension 2 has Krull dimension 2. The following partial result is proved
in Section 2.

Proposition 0.5. Let A be a noetherian connected graded ring with a balanced
dualizing complex. If A has cohomological dimension 2, then

(1) Kdim AeA � 2, where Ae � A
 Aop,
(2) there are only ®nitely many graded prime ideals P with KdimA=P � 2.

1. Balanced dualizing complexes. Let k be a base ®eld and A a connected graded
ring over k, i.e., A � k� A1 � A2 � � � �. Unless otherwise stated we are working on
connected graded rings over k and their graded modules. If A is left (or right) noe-
therian, then each Ai is ®nite dimensional over k. Let m denote the maximal graded
ideal A�1 of A. The m-torsion submodule of M, denoted by ÿm�M�, is the union of
all ®nite dimensional submodules of M. The left (right) cohomological dimension of
A is de®ned to be the cohomological dimension of ÿm applying to the left (right)
graded A-modules.
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Our main tool is the balanced dualizing complex introduced by Yekutieli [14]. A
theorem of Van den Bergh [13, 6.3] states as follows: A noetherian connected graded
ring A has a balanced dualizing complex if and only if A satis®es left and right �-
condition and has ®nite left and right cohomological dimension. Both �-condition
and having ®nite cohomological dimension are checked for a large class of noether-
ian graded rings [4, 16].

From now on A is a noetherian connected graded ring with a balanced dualizing
complex R. It follows from [13, 4.8] that the left cohomological dimension of A is
equal to the right cohomological dimension of A, which is denoted by cdA.

Let M be a graded A-module. The graded vector space dual of M is
M0 � �nHomk�Mÿn; k�. The local duality theorem states the following: for any
X 2 D�GrA�,

Rÿm�X�0 � RHomA�X;R� �E1:1�

(see [14, 4.18] and [13, 5.1]).
A dualizing complex R induces a convergent spectral sequence: for any noe-

therian module M

E
p;q
2 :� Extp�Extq�M;R�;R��)Hpÿq�M� �E1:2�

where Hpÿq�M� � 0 if p 6� q and H0�M� �M [16, 1.7].
Suppose A has cohomological dimension d with a balanced dualizing complex

R. It follows from the local duality theorem (E1.1) that, for all i > 0 and i < ÿd,

Exti�M;R� � 0

for all left (or right) A-modules A. Hence we may choose R to be a complex in
Db

fg�GrAe� of the form

R � � � � 0! Rÿd! � � � ! Rÿ1! R0! 0 � � �

where each Rq is injective as left and as right A-module.

Lemma 1.3. Let M be a noetherian graded A-module.
(1) Ext0�M;R� � ÿm�M�0.
(2) If dim kM <1, then Extq�M;R� � 0 for all q 6� 0 and Ext0�M;R� �M0.
(3) If dim kM � 1, then dim kExtq�M;R� � 1 for some q < 0.

Proof. (1,2) Follow from the local duality (E1.1).
(3) Suppose that Extq�M;R� is ®nite dimensional for all q < 0. By (1)

Ext0�M;R� is ®nite dimensional. Hence, by (2), Extp�Extq�M;R�;R� is ®nite dimen-
sional for all p; q. It follows from the spectral sequence (E1.2) that M is ®nite
dimensional. &

If cdA � 0, then the short exact sequence 0ÿ!mÿ!Aÿ!A=mÿ!0 induces an
exact sequence

0ÿ!ÿm�m�ÿ!ÿm�A�ÿ!A=mÿ!R1ÿm�m� � 0:
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Hence 1 2 ÿm�A�, so A � ÿm�A� is ®nite dimensional. Next we consider the case
cdA � 1. Let GKdim denote the Gelfand-Kirillov dimension.

Lemma 1.4. Let A and B be noetherian graded rings.
(1) If GKdimA � 1, then A is PI (PI=satisfying a polynomial identity) and

KdimA � 1.
(2) If KdimA � 1, then GKdimA � 1.
(3) If M is a graded �A;B�-module noetherian on both sides, then the following are

equivalent:
(a) KdimMB � 1, (b) GKdimMB � 1, (c) 1 � GKdimMB < 2, (d)

GKdimAM � 1.

Proof. (1) By [10], if GKdimA � 1, then A is PI. By [8, 6.4.8 and 13.10.6]
KdimA � GKdimA � 1.

(2) We may assume A is prime. By a graded version of Goldie's theorem [9, I.1.6],
there is a homogeneous regular element x 2 A of degree d > 0. Hence
KdimA=xA � 0, which implies that A=xA is ®nite dimensional. Hence GKdimA � 1.

(3) By noetherian induction we may assume M is critical and ann�AM� �: Q and
ann�MB� �: P are graded prime ideals such that AM is A=Q-torsionfree and MB is
B=P-torsionfree. Hence KdimMB � KdimB=P and GKdimMB � GKdimB=P. Now
(a) and (b) are equivalent by (1,2), and (b) and (c) are equivalent by Bergman's gap
theorem [6, 2.5]. (b) and (d) are equivalent because GKdim is symmetric [6, 5.4]. &

Lemma 1.5. If cdA � 1, then A is PI of Kdim 1. More generally, if M is a noe-
therian graded A-module such that (a) Extÿi�M;R� � 0 for all i > 1 and (b)
f : M�ÿd� !M is an injective map for some d > 0, then M=f�M� is ®nite dimensional.

Proof. We may assume that A is prime [4, 8.5] and not k. By [9, I.1.6], there is a
homogeneous regular element x 2 A of degree d > 0. Then there is a short exact
sequence

0! A�ÿd� ! A! A=xA! 0:

By Lemma 1.4, it su�ces to show GKdimA � 1. To prove GKdimA � 1, it su�ces
to prove that A=xA is ®nite dimensional over k.

We now consider the general case when 0!M�ÿd� !M!M=f�M� ! 0 is
exact and show that M=f�M� is ®nite dimensional. By the long exact sequence we see
that

Extÿi�M=f�M�;R� � 0 for all i > 1; and

0! Extÿ1�M=f�M�;R� ! Extÿ1�M;R� ! Extÿ1�M�ÿd�;R� ! Ext0�M=f�M�;R�

is exact. Let f n�M� be the image of the map f n : M�ÿdn� !M. Then
f n�M�=f n�1�M� � �M=f�M���ÿdn�. The short exact sequence

0! f n�M�=f n�1�M� !M=f n�1�M� !M=f n�M� ! 0

yields a long exact sequence
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0! Extÿ1�M=f n�M�;R� ! Extÿ1�M=f n�1�M�;R� !
Extÿ1� f n�M�=f n�1�M�;R� ! Ext0�M=f n�M�;R�:

Suppose M=f�M� is in®nite dimensional. By Lemma 1.3(3), Extÿ1�M=f�M�;R�, and
hence Extÿ1� f n�M�=f n�1�M�;R�, is in®nite dimensional. Since Ext0�M=f n�M�;R� is
®nite dimensional, the injective map

Extÿ1�M=f n�M�;R� ! Extÿ1�M=f n�1�M�;R�

is not surjective. This shows that fExtÿ1�M=f n�M�;R� j n � 0g is an ascending chain
of submodules of Extÿ1�M;R�, which contradicts to the fact that Extÿ1�M;R� is
noetherian. &

Let HiR be the i-th cohomology of R. By de®nition, HiR is noetherian on both
sides for all i.

Lemma 1.6. Suppose cdA � d � 2 and M is a noetherian graded A-module.
(1) HÿdR is noetherian on both sides and Extÿd�M;R� � Hom�M;HÿdR�.
(2) Every nonzero left (right) submodule of HÿdR has Kdim � 2.
(3) If A is prime such that, for every nonzero graded prime P, KdimA=P � 1,

then HÿdR is A-torsionfree on both sides. Namely, Extÿd�M;R� � 0 for all A-
torsion modules M.

Proof. (1) Clear.
(2) For any �, the maximal submodule of HÿdR of Krull dimension at most � is

a graded submodule. Hence it su�ces to consider graded submodules. Suppose N is
a right graded submodule of HÿdR of Kdim < 2. Since HÿdR is noetherian on both
sides, we may further assume that (a) N is a critical subbimodule of HÿdR, (b)
P :� ann�NA� is prime, and (c) N is A=P-torsionfree [8, 4.3.5(iii)]. Hence
KdimA=P � KdimNA < 2, and then KdimA=P � 1. By (1) and Lemma 1.3(2),
HÿdR contains no ®nite dimensional submodule. Thus KdimA=P � 1. By Lemma
1.4, A=P is PI, whence there is a central regular elements x 2 A=P of degree d > 0.
The short exact sequence

0! N�ÿd� ! N! N=Nx! 0

yields a long exact sequence

Extÿd�N=Nx;R� ! Extÿd�N;R� ! Extÿd�N�ÿd�;R� ! Extÿd�1�N=Nx;R�:

Since N=Nx is ®nite dimensional, two ends are zero [Lemma 1.3(2)]. Since
Extÿd�N;R� is left bounded, a graded version of Nakayama lemma implies that
Extÿd�N;R� is zero. This contradicts to the fact N � HÿdR.

(3) Suppose HÿdR is not A-torsionfree. Since HÿdR is noetherian on both sides,
there is a critical subbimodule N � HÿdR such that (a) NA is A-torsion, (b)
P :� ann�NA� is a nonzero graded prime ideal, and (c) N is A=P-torsionfree. By the
hypothesis, KdimNA � KdimA=P � 1. This contradicts to (2). &

IfP is a graded prime ideal ofA, let E�A=P� denote the graded injective hull ofA=P
and EA=P denote the graded injective hull of a graded uniform right ideal of A=P.
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Lemma 1.7. Let I be the minimal injective resolution of R as right A-module
complex.

(1) I 0 � A0.
(2) Let Bÿi be the image of Iÿiÿ1! Iÿi. Then Iÿ1=Bÿ1 is locally ®nite.
(3) If A is prime and KdimA � 2, then Iÿ1 does not contain any shift of the

injective module EA.
(4) If P is a graded prime ideal of A such that KdimA=P � 2, then Iÿ1 does not

contain any shift of the injective module EA=P.

Proof. (1) By local duality (E1.1), Ext0�k;R� � ÿm�k�0 � k. Thus I 0 � A0 � J
where J is m-torsionfree. Suppose I 0 6� A0, namely, J 6� 0. Then the inclusion
J! I 0 induces a nonzero element in Ext0�J;R�. Since J is m-torsionfree, by local
duality Ext0�J;R� � ÿm�J�0 � 0, a contradiction.

(2) We have an exact sequence

0! Hÿ1R! Iÿ1=Bÿ1! I 0:

By (1) I 0 � A0 is locally ®nite. By the de®nition of dualizing complex, Hÿ1R is noe-
therian and hence locally ®nite. The statement follows.

(3) Let Qgr�A� be the graded quotient ring of A. It is clear that E�A� is iso-
morphic to Qgr�A� as left and as right graded A-module. If E�A� is locally ®nite, then
the Hilbert series of E�A� � Qgr�A� is periodic. Hence A has GKdim 1, which con-
tradicts to the hypothesis. Therefore E�A� is not locally ®nite. Since E�A� is a ®nite
direct sum of shifts of EA, EA is not locally ®nite.

Suppose EA is a submodule of Iÿ1. Since A is prime and Bÿ1 is A-torsion, EA

does not intersect with Bÿ1. Hence EA is a submodule of Iÿ1=Bÿ1. By (2), EA is
locally ®nite, a contradiction.

(4) Let RA=P be the dualizing complex over A=P. By [16, 3.2 and 4.16], there is a
morphism � : RA=P ! R in D�GrAe� such that

RA=P � RHomA�A=P;R� � RHomA� �A=P;R�: �E1:8�

Note that if M is an injective A-module, then Hom�A=P;M� is an injective A=P-
module. Hence IA=P :� Hom�A=P; I� is a complex of injective A=P-modules. The
minimality of the complex I implies that IA=P is a minimal complex of injective A=P-
modules. By (E1.8), IA=P is a minimal injective resolution of RA=P. Suppose Iÿ1

contains injective A-module EA=P. Then Iÿ1A=P contains injective A=P-module EA=P,
which contradicts with (3). &

2. Rings with cohomological dimension 2. By Lemma 1.5, if cdA � 1 then A is PI
of Kdim 1, which implies that R is Auslander. In this section we will discuss the case
cdA � 2. If KdimA � 1, then A is PI [Lemma 1.4]. By [16, 5.13 and 5.14], cdA � 1.
So cdA � 2 implies KdimA � 2. Next is a consequence of Lemma 1.7(4).

Proposition 2.1. Suppose cdA � 2. Then there are only ®nitely many graded
primes P � A with KdimA=P � 2. As a consequence A has a ®nite classical Krull
dimension.
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Proof. Let I be the minimal injective resolution of R as right A-module complex.
Then Iÿ2 is the injective hull of Hÿ2R. Since Hÿ2R is noetherian, its Goldie rank is
®nite and Iÿ2 is a ®nite direct sum of indecomposable injectives. By Lemma 1.7(4)
and [16, 1.11], if P is prime with KdimA=P � 2, then EA=P is a direct summand of
Iÿ2. If P 6� P0, then EA=P 6� EA=P0 . Therefore the number of graded primes P with
KdimA=P � 2 is no more than the Goldie rank of Hÿ2R.

The last assertion follows from [9, I.1.9]. &

Lemma 2.2. Let cdA � 2 and let M be a noetherian graded right A-module.
(1) If Hom�M;A=P� 6� 0 for a graded prime P with KdimA=P � 2, then

Extÿ2�M;R� 6� 0.
(2) Let A be prime. If M is A-torsion and every factor of M with Kdim � 2 is A-

faithful, then Extÿ2�M;R� � 0.
(3) Let A be prime such that, for every nonzero graded prime P, KdimA=P � 1.

If M is not A-torsion, then Extÿ2�M;R� is not A-torsion.

Proof. (1) Since Extÿ2�M;R� � Hom�M;Hÿ2R�, it su�ces to show that A=P as
right A-module embeds to a ®nite direct sum of shifts of Hÿ2R. By Lemma 1.7(1,4),
EA=P does not appear in I 0 and Iÿ1. Since EA=P appears in the minimal injective
resolution of R [16, 1.11], it must appear in Iÿ2. Therefore Hÿ2R contains a shift of a
graded uniform right ideal of A=P, and hence A=P embeds to a ®nite direct sum of
shifts of Hÿ2R.

(2) Let T be the A-torsion submodule of Hÿ2R as right A-module. Then T is a
subbimodule and hence noetherian on both sides. Since TA is A-torsion, the right
annihilator of T is not zero. Suppose Extÿ2�M;R� 6� 0. Then there is a nonzero map
f : M! T. Thus the image of f has Kdim � 2 and is not A-faithful.

(3) First we may replace M by a factor of M and assume M is a graded uniform
right ideal of A. Then replace M by a ®nite direct sum of shifts of M we may assume
M is an essential right ideal of A. The exact sequence

0!M! A! A=M! 0

yields a long exact sequence

0! Extÿ2�A=M;R� ! Extÿ2�A;R� ! Extÿ2�M;R� ! � � � :

Since A=M is A-torsion, Extÿ2�A=M;R� � 0 [Lemma 1.6(3)]. Since Extÿ2�A;R� �
Hÿ2R is A-torsionfree [Lemma 1.6(3)], Extÿ2�M;R� is not A-torsion. &

Lemma 2.3. Suppose cdA � 2 and M is a noetherian graded A-module.
(1) Let Ep;q�M� � Extp�Extq�M;R�;R�. Then Ep;q�M� � 0 for �p; q� � �ÿ2; 0�,
�ÿ1; 0�, �ÿ1;ÿ2�, �0;ÿ2� and �ÿ2;ÿ1�.

(2) If Extÿ2�M;R� 6� 0, then Kdim Extÿ2�M;R� � 2.

Proof. (1) We have a convergent spectral sequence (E1.2) and the E2-page of
(E1.2) is

Eÿ2;0�M� Eÿ1;0�M� E0;0�M�
Eÿ2;ÿ1�M� Eÿ1;ÿ1�M� E0;ÿ1�M�
Eÿ2;ÿ2�M� Eÿ1;ÿ2�M� E0;ÿ2�M�
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with other terms being zero. The boundary maps in the Er-page have degree
�r; rÿ 1�. For �p; q� � �ÿ2; 0�; �ÿ1; 0�; �ÿ1;ÿ2�; �0;ÿ2�,

Ep;q�M� � E
p;q
2 � Ep;q

1 � 0:

At �p; q� � �ÿ2;ÿ1�, we have Eÿ2;ÿ13 � Eÿ2;ÿ11 � 0. Therefore Eÿ2;ÿ1�M� is a sub-
module of E0;0�M� which is ®nite dimensional [Lemma 1.3(1)]. Let
N � Extÿ1�M;R�. Then (E1.2) for N shows that E0;ÿ2�N� � 0, which implies that
Eÿ2�N� � Eÿ2;ÿ1�M� contains no nonzero m-torsion submodule. Therefore
Eÿ2;ÿ1�M� must be zero.

(2) Let N � Extÿ2�M;R�. By (1) Extp�N;R� � 0 for p � 0;ÿ1. If KdimN < 2,
by Lemma 1.6(2) Extÿ2�N;R� � 0. By (E1.2) N � 0. &

Proposition 2.4. Suppose cdA � 2. Then the following conditions are equivalent:
(1) for any chain of graded primes P0�

=
P � A, KdimA=P � 1.

(2) R is Auslander.
(3) KdimA � 2.
(4) Kdim Extÿ1�M;R� � 1 for all noetherian graded module M.

Proof. �1� ) �2� By [16, 4.18] we may assume A is prime. By Lemma 1.3(1), for
any noetherian graded A-module M, Ext0�M;R� is ®nite dimensional and by
Lemma 1.3(2) Extq�N;R� � 0 for all N � Ext0�M;R� and for all q < 0. By the de®-
nition of cd, for all N � Extp�M;R� and for all q < ÿcdA, Extq�N;R� � 0. Hence it
remains to show that Extÿ2�N;R� � 0 for all N � Extÿ1�M;R�. By Lemma 1.6(3), it
su�ces to show that Extÿ1�M;R� is A-torsion, which follows from Lemmas 2.2(3)
and 2.3(1).
�2� ) �3� By [16, 4.14], KdimA � cdA � 2. So KdimA � 2.
�3� ) �1� Clear, or see Lemma 3.3(2).
�3� ) �4� Again we may assume A is prime. By the proof of �1� ) �2�,

Extÿ1�M;R� is A-torsion. Hence Kdim Extÿ1�M;R� � KdimAÿ 1 � 1.
�4� ) �2� By the prove of �1� ) �2�, it remains to show that Extÿ2�N;R� � 0 for

all N � Extÿ1�M;R�. Since Kdim Extÿ1�M;R� � 1, KdimN � 1 and by Lemma
1.6(2), Extÿ2�N;R� � 0. &

Remark 2.5. We can also prove the following, but tedious proofs are omitted.
Suppose cdA � 2. Then the following are equivalent:
(1) KdimA � 2.
(2) KdimM
A P � 1 for every graded primes P with KdimA=P � 2 and for all

noetherian graded A-module M with KdimM � 1.
(3) Kdim Extÿ1�M;R� � 1 for every noetherian graded A-module M with

KdimM � 1.

Lemma 2.6. Suppose cdA � 2. Let M be a graded A-bimodule noetherian on both
sides.

(1) If KdimM � 1, then Extÿ2�M;R� � 0 and Kdim Extÿ1�M;R� � 1.
(2) If KdimM > 1, then Kdim Extÿ2�M;R� � 2 and Kdim Extÿ1�M;R� � 1.

Proof. (1) By Lemma 1.6(2), Extÿ2�M;R� � 0. By Lemma 1.3(3),
Kdim Extÿ1�M;R� > 0. So it remains to show Kdim Extÿ1�M;R� � 1. By noetherian
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induction we may assume the bimodule M is right A=P-torsionfree for some graded
ideal P and KdimA=P � 1. Hence Extÿ1�M:R� is a noetherian left A=P-module,
which has Kdim � 1.

(2) To prove Kdim Extÿ2�M;R� � 2 we may replace M by a factor of M and
assume that every proper bimodule factor of M has Kdim no more than 1. Pick a
nonzero subbimodule M0 �M such that M0 is right A=P-torsionfree for some gra-
ded prime ideal P. Let M �M=M0. Then KdimM � 1. The short exact sequence

0!M0 !M!M! 0

yields an exact sequence

0! Extÿ2�M;R� ! Extÿ2�M;R� ! Extÿ2�M0;R� ! Extÿ1�M;R�:
By (1) Extÿ2�M;R� � 0 and Kdim Extÿ1�M;R� � 1. By Lemma 2.2(1),
Extÿ2�M0;R� 6� 0 and by Lemma 2.3(2), Kdim Extÿ2�M0;R� > 1. Hence
Kdim Extÿ2�M;R� � 2. &

Proposition 2.7. Suppose cdA � 2.
(1) Let M be a graded A-bimodule noetherian on both sides. If

M �M1 �M2 � � � � is a descending chain of subbimodules, then
KdimMi=Mi�1 � 1 for i� 0. As a consequence Kdim AeM � 2.

(2) Kdim AeA � 2.

Proof. (2) is a special case of (1).
(1) Let Ni �M=Mi and let M0i �Mi=Mi�1. Suppose KdimM0i > 1 for all i. The

exact sequence

0!M0i ! Ni�1! Ni ! 0

yields an exact sequence

0! Extÿ2�Ni;R� ! Extÿ2�Ni�1;R� ! Extÿ2�M0i;R� ! Extÿ1�Ni;R� ! � � � :
By Lemma 2.6, Kdim Extÿ1�Ni;R� � 1 and Kdim Extÿ2�M0i;R� � 2. Hence the
injective map Extÿ2�Ni;R� ! Extÿ2�Ni�1;R� is not surjective for all i. Thus
fExtÿ2�Ni;R� j i � 0g is an ascending chain of submodules of Extÿ2�M;R�, which
contradicts to the fact Extÿ2�M;R� is noetherian. &

Proposition 0.5 follows from Corollary 2.1 and Proposition 2.7.

Remark 2.8. (1) We don't know whether or not KdimA � 2 implies
GKdimA � 2.

(2) If A is PI or FBN or more generally satis®es similar submodule condition,
then R is Auslander and KdimA � GKdimA � cdA [16, 5.13 and 5.14].

3. Graded dimension function.

Definition 3.1. A graded dimension function is a map @ sending ®nitely gener-
ated right (and left) graded modules over a connected graded ring to the set of ÿ1,
all real numbers, and all ordinals � ! satisfying the following properties:
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(d0) @0 � ÿ1, and @M � 0 if and only if M is ®nite dimensional;
(d1) If M is in®nite dimensional, then @M � 1;
(d2) @M � maxf@�M=N�; @Ng for any N �M (this property is called exactness);
(d3) If x is a regular element of M � A=P for some prime ideal P � A, then

@M � @�M=xM� � 1;
(d4) @M � @�M�1�� where M�1� is the degree shift of M.
The graded dimension function is slightly di�erent from the dimension function

in the ungraded case (see [8, Sect. 6.8.4] or [16, 2.4]) because we add some natural
conditions (d0), (d1) and (d4) concerning graded modules. Given a ®nitely generated
graded module M, KdimM in the graded module category is equal to KdimM in
the ungraded module category. Using this fact one can easily check that Krull
dimension is also a graded dimension function. For Gelfand-Kirillov dimension,
(d0,d1,d3,d4) are clear and the next lemma shows that (d2) is true.

Lemma 3.2. Let A be a right noetherian connected ring and let M be a ®nitely
generated right graded A-module. Then

(1) GKdimM � lim logn�
P

i�n dim kMi�.
(2) GKdimM � maxfGKdimM=N;GKdimNg for any graded submodule N �M.
(3) If f : M�ÿd� !M is an injective map for some integer d > 0, then

GKdimM=f�M� � GKdimMÿ 1.

Proof. (1) This follows from the facts that A is a ®nitely generated algebra and
that M is a ®nitely generated right A-module.

(2) By [8, 8.3.2(ii)], GKdimM � maxfGKdimM=N;GKdimNg. Let � be any
number bigger than maxfGKdimM=N;GKdimNg. Then there is a constant C such
that X

i�n
dim k�M=N�i � Cn� and

X
i�n

dim kNi � Cn�

for n� 0. Thus
P

i�n dim kMi � 2Cn� for n� 0. By (1) GKdimM � �.
(3) By [8, 8.3.5], GKdimM=f�M� � GKdimMÿ 1. To prove the opposite

inequality let � be any number bigger than GKdimM=f�M�. Let dim k�M=f�M��i �
h�i�. Then there is a constant C such that

P
j�i h� j� � Ci� for all i > 0. Let dim kMi �

g�i�. Then

g�i� � h�i� � h�iÿ d� � h�iÿ 2d� � � � � �
X
j�i

h� j� � Ci�;

whence
P

j�i g� j� � C0i��1 for some constant C0 and for i > 0. Therefore
GKdimM � �� 1. &

Lemma 3.3. Let @ be a graded dimension function.
(1) If @�AA� < 2, then A is PI of Kdim � 1.
(2) If @�AA� < 3, then, for any chain of graded primes P0�

=
P � A, KdimA=P � 1.

Proof. (1) We may assume A is prime and not k. Since A is noetherian, by [9,
I.1.6], there is a homogeneous regular element x 2 A of positive degree. Then
@�A=xA� � @Aÿ 1 < 1: Hence @�A=xA� � 0 and A=xA is ®nite dimensional. There-
fore GKdimA � 1 and A is PI of Kdim 1 [Lemma 1.4].
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(2) Since P=P0 is a nonzero prime ideal of A=P0, @�A=P0� < 3 implies @�A=P� < 2.
Then the statement follows from (1) . &

Let R be a balanced dualizing complex. The canonical dimension is de®ned by

CdimM � ÿminfi j Exti�M;R� 6� 0g:

Note that cdA � CdimA. If R is Auslander, then Cdim is a dimension function for
ungraded modules [16, 2.10]. To verify Cdim is a graded dimension function, we
need to check (d0), (d1) and (d4). But (d0) and (d1) follow from Lemma 1.3(2,3) and
(d4) is clear for Cdim . Therefore we have:

Proposition 3.4. If R is Auslander, then Cdim is a graded dimension function.

Proof of Theorem 0.1. By Proposition 2.4, (1), (2) and (4) are equivalent.
�2� ) �3� is clear and �3� ) �4� is Lemma 3.3(2).
�1� ) �5� is Proposition 3.4.
�5� ) �7� By [16, 4.14], KdimM � CdimM. It remains to show CdimM �

KdimM. This is clear when KdimM � 0 or 2. So we only consider the case when
KdimM � 1. Since both dimension functions are exact, we may use noetherian
induction on M. So we may assume M is critical faithful over A=P for some graded
prime P. There are two cases. Case 1 is when KdimA=P � 2. Since KdimA � 2, P is
minimal. Hence M is A=P-torsion. Thus CdimM � CdimA=Pÿ 1 � 1. Case 2 is
when KdimA=P � 1. Then by Lemma 3.3(1), A=P is PI and of GKdim � 1. Hence
CdimA=P � 1 and hence CdimM � 1.
�7� ) �6� Clear.
�6� ) �1� By the proof of Proposition 2.4, it su�ces to show Extÿ2�N;R� � 0 for

all submodules N � Extÿ1�M;R� and for all noetherian graded module M. By
Lemma 2.3(1) (for �p; q� � �ÿ2;ÿ1�), Cdim Extÿ1�M;R� < 2. Since Cdim is exact,
CdimN < 2, i.e., Extÿ2�N;R� � 0. &

4. AS-Gorenstein rings of injective dimension 2. By [14, 4.14] a noetherian AS-
Gorenstein ring A of injective dimension d has a balanced dualizing complex
R � A��ÿd��ÿe� for some graded automorphism � of A and some integer e in the
De®nition 0.3(1).

Proposition 4.1. If A is AS-Gorenstein of injective dimension 2 and has an arti-
nian quotient ring (with respect to the set of the regular elements of A), then A is
Auslander-Gorenstein.

Note that Proposition 4.1 is [7, 5.13] without the hypothesis that GKdimA � 2. It
also follows fromTheorem 0.4 that the artinian quotient ring ofA is in fact self-injective.

Proof. By Theorem 0.1, it su�ces to show that, for any chain of graded primes
P0�

=
P � A, KdimA=P � 1. Suppose this is not true, namely, there are graded

primes P0�
=
P � A such that KdimA=P > 1. By Lemma 2.2(1),

Hom�A=P;A� � Extÿ2�A=P;R�e�� � Extÿ2�A=P;R��e� 6� 0
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because R � A��ÿ2��ÿe�. Let Q be the artinian quotient ring of A. Then
Hom�A=P;A� 6� 0 implies that A=P
A Q 6� 0. Next we show that this contradicts to
the fact P is not a minimal prime. By [8, 4.1.3(iv)], A=N�A� 
A Q � Q=N�Q� :� Q0

where N�ÿ� is the prime radical of ÿ, and Q=Q�N� is the artinian quotient ring of
A=N�A�. Since P is not a minimal prime, P=N�A� is an essential (left and right) ideal
of A=N�A�. By Goldie's theorem, Q0=PQ0 � 0. Hence

A=P
A Q � Q=PQ � Q0=PQ0 � 0:

This contradicts to A=P
A Q 6� 0. &

Let @ be a (graded) dimension function. A nonzero (graded) module N is called
p-pure with respect to @ if @M � p for all nonzero noetherian (graded) submodule
M � N. In most cases we will take @ � Cdim . Let R be the balanced dualizing
complex over A and let @ be a graded dimension function. Following Yekutieli's
de®nition [15, 2.3], R is called residue complex over A (with respect to @) if (i) each A-
bimodule Rq is graded injective on both sides and (ii) each A-bimodule Rq is pure of
@-dimension ÿq on both sides. Note that in [15] this is called strong residue complex,
and later in [17], this is called residue complex. By [15, 2.6], if R is a residue complex
over A with respect to @, then R is Auslander and @M � CdimM for all noetherian
graded modules M.

We are ready to prove Theorem 0.4.

Proof of Theorem 0.4. First of all Theorem 0.4(1) is equivalent to Theorem
0.1(1) for AS-Gorenstein rings.
�1� ) �2� follows from [16, 6.23.3], �2� ) �3� is clear and �3� ) �1� is Proposition

4.1.
�1� ) �4� is [16, 6.23.2] and �4� ) �1� follows from the implication �2� ) �1� of

Theorem 0.1.
�5� ) �1� is [15, 2.6].
�1� ) �5� By Theorem 0.1(6) CdimM � KdimM for graded noetherian mod-

ules M. (Note that CdimM and KdimM could be di�erent for ungraded module M
though both dimensions are well-de®ned.) Hence purity with respect to Cdim is
equivalent to purity with respect to Kdim .

Take the minimal injective resolution of the left A-module complex
R � A��ÿ2��ÿe�, say

� � � 0! Iÿ2! Iÿ1! I 0! 0 � � � : �E4:2�

By Lemma 1.7(1), I 0 � A0 which is 0-pure. Let Q be the (ungraded) artinian quo-
tient ring of A. Since Iÿ2 (as ungraded module) is a submodule of Q and since Q is 2-
pure as an ungraded module, Iÿ2 is 2-pure. Since Q=A is A-torsion, so is Iÿ2=A�ÿe�.
Thus CdimN � 1 for all noetherian submodule N � Iÿ2=A�ÿe�. Since A is AS-
Gorenstein, Iÿ2=A�ÿe� � Iÿ1 contains no ®nite dimensional submodules. Therefore
Iÿ2=A�ÿe� is 1-pure. Since the complex (E4.2) is exact at Iÿ1 and since I 0 is 0-pure,
Iÿ1 is 1-pure. Similarly, the minimal injective resolution of the right A-module
complex R has a pure resolution. By [17, 3.8], the Cousin complex ER of R is a
residue complex, namely, ER is a balanced dualizing complex in Db

fg�GrAe� which is
a pure minimal injective resolution on both sides.
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�5� ) �6� By (5) A is 2-pure with respect to Cdim and Kdim .
�6� ) �1� follows from Theorem 0.1 because KdimA � 2. &

Remark 4.3. Part (5) is a generalization of a result of Ajitabh [1, 3.12], which
proves the existence of residue complexes for AS-regular algebras of global dimension
2.

Corollary 4.4. Let A be AS-Gorenstein of injective dimension 2. If @ is a graded
dimension function such that @ A � 2 then

@M � KdimM � CdimM

for all noetherian graded left and right A-modules M.

Proof. First of all, by Theorem 0.1, A is Auslander-Gorenstein and
CdimM � KdimM. So it remains to show that @M � KdimM.

Let P be a minimal prime of A. By Theorem 0.4(4) KdimA=P � 2, whence
A=�P� xA� is not ®nite dimensional over k for any x of positive degree. Pick
�x :� x� P a homogeneous regular element of A=P of positive degree. Then
@A=P � @A=�P� xA� � 1 � 2. Thus @A � @�A=P� � 2 for all minimal prime P.
Since both Kdim and @ are exact we may use noetherian induction and may assume
M is a critical module and faithful over A=P for a graded prime P. If P � m, then M
is k and hence both dimensions are 0. If M is in®nitely dimensional and either P is
not minimal or P is minimal and M is A=P-torsion, then both dimensions are 1 (by
(d1) and (d3)). The last possibility is when M is a right ideal of A=P when P is
minimal. In this case, KdimM � KdimA=P and @M � @A=P. We have already
shown that both dimensions on A=P are equal to 2. That completes our proof. &
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