
Ship’s Trajectory Planning for
Collision Avoidance at Sea Based on

Ant Colony Optimisation
Agnieszka Lazarowska

(Department of Ship Automation, Faculty of Electrical Engineering, Gdynia Maritime
University, Morska 81-87, 81-225 Gdynia, Poland)

(E-mail: aglaz@am.gdynia.pl)

Swarm Intelligence (SI) constitutes a rapidly growing area of research. At the same time
trajectory planning in a dynamic environment still constitutes a very challenging research
problem. This paper presents a new approach to path planning in dynamic environments
based on Ant Colony Optimisation (ACO). Assumptions, a concise description of the method
developed and results of real navigational situations (case studies with comments) are included.
The developed solution can be applied in decision support systems on board a ship or in an
intelligent Obstacle Detection and Avoidance system, which constitutes a component of
Unmanned Surface Vehicle (USV) Navigation, Guidance and Control systems.

KEY WORDS

1. Trajectory Planning. 2. Swarm Intelligence. 3. Ant Colony Optimisation
4. Collision Avoidance.

Submitted: 5 December 2013. Accepted: 22 September 2014. First published online: 21 October 2014.

1. INTRODUCTION. The problem of collision avoidance in dynamic
environments occurs, for example, in robotics, military, aerospace and maritime
industries. Example applications that need to deal with the path-planning problem in
a dynamic environment include decision support systems, unmanned vehicles, mobile
robots and manipulators.
Planning of the object motion is a growing area of research. Many different

approaches to solving the path planning problem have been developed so far. These
methods can be divided into two categories: path planning in static environments and
in dynamic environments. Static environments contain only stationary obstacles,
while in dynamic environments there are also moving obstacles.
The scope of this research covers Swarm Intelligence (SI), specifically Ant Colony

Optimisation (ACO), which is classified within this group of methods. Approaches to
solving path-planning problems based on ACO are found in the literature. However,
most of the solutions deal with determining the object transition path in a static
environment. Brand et al. (2010) have presented the application of ACO to robot path

THE JOURNAL OF NAVIGATION (2015), 68, 291–307. © The Royal Institute of Navigation 2014
doi:10.1017/S0373463314000708

https://doi.org/10.1017/S0373463314000708 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000708

planning. In this approach the optimal path is first searched for between the initial and
final position in the obstacle-free environment. After that, static obstacles are added
and the optimal path is recomputed. The objective function associated with each
solution is defined as the total path length. The environment is discretized into a grid
of cells. The ant occupying a current cell can choose an adjacent cell by moving in
four directions: up, down, left and right. The total path length is defined as a number
of cells used by an ant to reach the final position. The maximum number of iterations
constitutes a termination condition. Simulation tests have been performed for a grid
size of 20×20, 30×30 and 40×40 cells. The results presented have confirmed that
the algorithm is capable of determining a safe path in an environment with static
obstacles.
A similar approach for solving a mobile robot path-planning problem has been

reported by Lee and Lee (2010). In this study a modified version of the ACO algorithm
was introduced, called Heterogeneous ACO (HACO). A series of modifications have
been developed in this solution with respect to the basic ACO approach. These
improvements include a different function defining the manner in which artificial ants
choose their next move. The formula, called the pheromone trail update rule, which is
used for computing a value deposited by the ants on their paths during problem
solving, has been also modified. Another significant difference between ACO and
HACO is the use of different species of artificial ants. Heterogeneous ants differ in
sight and speed. The results of a comparative analysis between ACO and HACO have
confirmed that better solutions are obtained with the use of the second approach,
which means smooth and straight-line paths even for more complex environments in
a shorter computation time.
Mingxin et al. (2010) have reported a hybrid method applied to mobile robot path

planning in a static environment, combining ACO and the Immune Network
Algorithm (INA). In this approach an immune network is first constructed, where
stimulation and suppression between an antigen and an antibody occurs. An antigen
represents an environment surrounding a robot, while an antibody expresses a robot
action. In the second step of the algorithm artificial ants are put on the network to
search for an optimal path.
Escario et al. (2012) have introduced an approach based on ACO to optimise

manoeuvres of an Unmanned Surface Vessel (USV) and called their solution Ant
Colony Extended due to a number of modifications applied to the original version of
ACO. One of these modifications is similar to that proposed by Lee and Lee (2010)
and uses a heterogeneous population of ants called patrollers and foragers. Patrollers
are responsible for exploration; their task is to find new solutions. The foragers’ task is
exploitation, which is searching for solutions similar to those already found. The
method uses a dynamical model of a vessel in three degrees of freedom, which includes
surge, sway and yaw motions. The state variables include the ship’s position
coordinates (x and y), the ship’s heading, the ship’s linear velocities in surge and
sway directions and the ship’s angular velocity. The action variables are represented
by the force exerted by a waterjet and a waterjet orientation. The results presented
include the USV’s trajectories in the open sea and in situations with the presence
of static obstacles, such as port manoeuvres, navigation through narrow channels
or shallow waters.
In Tsou and Hsueh (2010) ACO has been applied to ship collision avoidance

route planning. Results concerning an encounter situation with one moving obstacle

292 AGNIESZKA LAZAROWSKA VOL. 68

https://doi.org/10.1017/S0373463314000708 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000708

and with four moving obstacles have been presented. Multi-ship encounter situations
are decomposed into single encounter situations with one target ship. The collision
avoidance route is calculated for the encounter situation with the target ship with the
highest collision risk. If the determined path imposes a risk of collision on other target
ships, it has to be corrected. In this approach a comparison of the ACO and genetic
algorithms has been presented and it has been stated that the ACO algorithm has
better performance with respect to execution efficiency and execution results.
Based on the current state of the art analysis concerning the problem of determining

the object transition path, summarised in Table 1, it is apparent that the algorithms
developed so far do not exhaust the possibilities of research in this field. Solutions
developed so far in a large part cover the problem considered in a static environment.
The determination of an optimal transition path of an object in an environment in
which moving obstacles occur, even though some methods can be found in the current
literature, still constitutes a very challenging research task. Methods presented in
the literature have some limitations, for example there is no information about
the reproducibility of results. The results presented of simulation tests cover simple
situations with few dynamic obstacles and some results include only one example
solution.
This paper presents a new ACO-based solution of a ship’s trajectory planning

problem in a collision situation at sea. The paper is organised as follows: Section 2
describes the safe ship control process in a collision situation at sea with all of the
adopted assumptions and presents the developed ACO algorithm. Section 3 includes
results of simulation tests performed with input data of real navigational situations
with the evaluation of the method efficiency. The last section summarises the reported
approach and describes achievements and limitations of the solution.

2. METHOD
2.1. Environment representation. The navigational environment (E) has bound-

aries defined by Equation (1) and consists of free space (Efree) and obstacles space
(Eobs), which includes static and dynamic obstacles. The environment is presented in
Figure 1 and is defined by Equation (2). The obstacles space consists of a set of static
restrictions (Estat) and dynamic restrictions (Edyn(t)), evolving in time, as defined
by Equation (3).

E = {(x, y) [R2 : k ≤ x ≤ l, m ≤ y ≤ n} (1)
E = Efree < Eobs (2)

Eobs = Estat < Edyn(t) (3)

Table 1. Summary of the most interesting ACO-based path planning algorithms found in recent literature.

Method Environment Application Author/Reference

ACO Static Mobile robot Brand et al. (2010)
HACO Static Mobile robot Lee and Lee (2010)
ACO-INA Static Mobile robot Mingxin et al. (2010)
HACO Static Ship Escario et al. (2012)
ACO Dynamic Ship Tsou and Hsueh (2010)

293SHIP ’S TRAJECTORY PLANNING FOR COLLISION AVOIDANCENO. 2

https://doi.org/10.1017/S0373463314000708 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000708

Static obstacles such as land, shallow waters, canals and fairways are represented by
concave and convex polygons. Dynamic obstacles are represented by the target ship
domain in the form of a hexagon, as presented in Figure 2, inspired by Smierzchalski
and Michalewicz (2000). However, it is also possible to apply in the algorithm other
shapes of the target ship domain, for example in the form of a circle, an ellipse or a
parabola. The target ship domain dimensions enforce the International Regulations
for Preventing Collisions at Sea (COLREGs) compliance of the determined own ship
trajectory (Cockcroft and Lameijer, 2012). Extension of the target ship domain in the
bow direction in a crossing situation (rule 15 of COLREGs) requires own ship to pass
astern of the target vessel. Enlargement of the target ship domain starboard side in
a head-on situation (rule 14 of COLREGs) induces a course alteration of own ship
to starboard.

2.2. Problem definition. The ship’s trajectory is determined as a set of waypoints
as shown in Figure 1. Each waypoint is defined by the geographical coordinates
(latitude – x and longitude – y). The solution of the ship’s collision avoidance problem
is the trajectory from the current ship’s position to the next waypoint, which enables
the own ship to avoid collision with other ships and static obstacles with the smallest
possible deviation from the given path.

X

Y

x0 xj

y0

yj

wpe

wp0

wp1

wp2

TS

OS

Eobs

Eobs

Eobs

Efree

n

m
k l

TS

Figure 1. Navigational environment representation.

Figure 2. Target ship hexagon domain.

294 AGNIESZKA LAZAROWSKA VOL. 68

https://doi.org/10.1017/S0373463314000708 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000708

It is assumed that the target ships do not change their courses and speeds. The
process of collision avoidance at sea is described with the use of the kinematic model
of ship motion. The state equations of the control process are defined by Equations
(4), where the state variables are: x1=x, x2=y, x2·j+1=xj, x2·j+2=yj, for (j=1, . . . , m)
and m is the number of target ships identified in the environment. The decision
variable u is represented by the own ship course Ψ. An example collision situation
defined by Equations (4) is shown in Figure 3.
Two types of the safe ship control process are distinguished, for which the aim is to:

. avoid a collision and return to the given final course, for the situation in the
open sea

. avoid a collision and return to the given final point of the trajectory, for
the situation in restricted waters.

The developed algorithm solves the ship’s collision avoidance task, for which the
final condition is the return to the given waypoint of the trajectory.

ẋ1 = V · sin u(t) = V · sinψ(t)
ẋ2 = V · cos u(t) = V · cosψ(t)
ẋ2·j+1 = Vj · sinψj(t)

(4)

The dynamic properties of the own ship during a course alteration manoeuvre
are taken into account by the use of the manoeuvre time. The manoeuvre time tm, as
expressed by Equation (5), is a complex function of the rudder angle δ, the speed of the
own ship V and the loading condition L. The manoeuvre time is defined as the time of
the own ship movement from the beginning of the manoeuvre to the moment when the
value of the new course has been reached. As is shown in Figure 4, it is the time of
passage of the line segment A0A1 and the time of passage of the curve A1A2 with the
angular speed ω.

tm = f(δ,V,L) (5)

Figure 3. An example collision situation at sea defined by Equations (4).

295SHIP ’S TRAJECTORY PLANNING FOR COLLISION AVOIDANCENO. 2

https://doi.org/10.1017/S0373463314000708 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000708

The angular speed of the own ship ω is determined experimentally during the turning
manoeuvre trials. The manoeuvre time is approximated, based upon the work by
Lisowski (2010), by Equation (6), where t01 is the time of passage of the line segment
A0A1 and ΔΨ is the course alteration value.

tm = t01 + ΔΨ
ω

− 1
ω
tg
ΔΨ
2

(6)

In the algorithm, the trajectory of the own ship during a course alteration
manoeuvre is approximated by the line segments instead of a curve. Determination of
the course alteration manoeuvre is performed by the calculation of a kinematic
manoeuvre at the moment t1=t0+tm, where t0 is the moment of the beginning of the
manoeuvre – the ship is at point A0, tm is the time of passage of line segment A0B and
t1 is the time, when the own ship is at point B.

2.3. ACO-based algorithm for calculations of ship’s safe trajectory. ACO, as
defined by Bonabeau et al. (1999), is an attempt to build an algorithm inspired by the
collective behaviour of a colony of insects or other animal communities. An ant
colony constitutes a decentralised system characterised by self-organisation, flexibility
and robustness. It is composed of a number of relatively simple interacting individuals
and has a high capability of solving many problems such as foraging or building
and expanding a nest. These problems are very similar to problems occurring in
engineering and computer science. The knowledge gained during observations of the
behaviour of ant colonies led to the development of ACO. This approach was been
introduced by Bonabeau et al. (1999) and has been applied to a combinatorial
optimisation problem of finding the shortest route between a number of cities, called
the Traveling Salesman Problem (TSP). ACO has been inspired by the discovery of the
mechanism of indirect communication observed in ant colonies. While moving
between a food source and a nest ants deposit some chemical substance on the ground,
called the pheromone trail. Other ants follow the path, where the pheromone trail
concentration is greater. This phenomenon, where the behaviour of individuals affects
the environment, which in turn affects the behaviour of other individuals, is called
stigmergy. Ants utilise this mechanism to find the shortest path between a food source
and their nest. In ACO a group of agents, called artificial ants, realise this trail-laying
and trail-following behaviour by depositing a virtual pheromone trail. This action

Figure 4. Diagram of the own ship motion during the course alteration manoeuvre.

296 AGNIESZKA LAZAROWSKA VOL. 68

https://doi.org/10.1017/S0373463314000708 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000708

strengthens parts of good solutions, which enables the algorithm to find better
solutions in subsequent iterations.
The description of the ACO algorithm for collision avoidance at sea is presented

below and compared with the most relevant method developed recently by Tsou and
Hsueh (2010). A summary of the algorithm comparison is shown in Table 2. The ACO
algorithm for collision avoidance at sea is composed of the following steps, as
presented at the flowchart in Figure 5:

(1) The collection of the following integrated input data from ARPA and AIS:
. the course and the speed of the own ship
. the course and the speed of the j-th target ship
. the bearing of the j-th target ship
. the distance of the j-th target ship from the own ship
. the data related to static navigational obstacles (shoals, shorelines, buoys).

ARPA (Automatic Radar Plotting Aid) is a system that calculates motion and
approach parameters of objects tracked with the use of a marine radar. AIS
(Automatic Identification System) also constitutes a system used on ships for
identifying and locating other vessels in the vicinity of an own ship. In the AIS
system data is transmitted with the use of the VHF transmitter built into the
AIS transponder. In the approach reported by Tsou and Hsueh (2010) static
obstacles are not taken into account and a circle domain is used around the own
ship instead of a hexagon domain around the target ship.

(2) The calculation of the relative course, speed and bearing of the target ships with
respect to the own ship.

(3) Checking for every target ship if it is a dangerous object –whether it intersects
its course with the course of the own ship.

(4) Building a construction graph, as shown in Figure 6. The graph vertices reflect
the possible own ship positions, taking into account all static and dynamic
constraints.

Table 2. The comparison of ACO-based methods for the collision avoidance at sea.

Method (Tsou and Hsueh, 2010) Method presented here

Type of manoeuvre Course alteration Course alteration
Number of manoeuvres Single manoeuvre Single manoeuvre or a set

of manoeuvres
Static obstacles Not considered Modelled as convex and concave

polygons
Moving obstacles – ship domain Considered – circle domain

around the own ship
Hexagon domain around
the target ship

Input data format Vector format data Grid format data
COLREGs Considered – head-on, crossing

and overtaking situations are
distinguished

Considered – size and shape
of the domain

Objective function The length of the trajectory The length of the trajectory
Multi-ship encounter Considered as a single-ship

encounter with the most dangerous
target ship

Considered as a whole situation,
all target ships taken into account
during calculations

Target ship strategies Do not change course and speed Do not change course and speed

297SHIP ’S TRAJECTORY PLANNING FOR COLLISION AVOIDANCENO. 2

https://doi.org/10.1017/S0373463314000708 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000708

In the solution presented by Tsou and Hsueh (2010) a construction graph
includes vector format data instead of grid format data representing the own
ship waypoints.

The following four parameters are used in their method instead of the
longitude and latitude of possible waypoints:

. the required time to the turning point

. the required collision avoidance angle for passing the target ship at the safe
distance

input data collection

calculation of target ship relative
course, speed and bearing

dangerous object check procedure

NO

YES

building of a construction graph

ACO data initialisation

solution construction

iteration<=
max_iteration?

START

iteration= 1

time<=
max_computation_time

?

pheromone trail update

iteration= iteration+1

optimal trajectory
selection

graphical presentation
of the trajectory

STOP

YES

NO

Figure 5. Flowchart of the ACO-based algorithm for collision avoidance at sea.

298 AGNIESZKA LAZAROWSKA VOL. 68

https://doi.org/10.1017/S0373463314000708 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000708

. the time between the turning to collision avoidance and the turning to
navigational restore

. the limited angle upon turning of navigational restore.
(5) The ACO calculations procedure, which is composed of the following steps:

. the data initialisation

. the solution construction

. the pheromone trail update.
(6) The graphical presentation of the solution.

2.3.1. Data initialisation. In this procedure the following parameters of the ACO
algorithm are initialised:

. the pheromone trail amount for all vertices (τ0)

. the α and β coefficients used in the formula calculating ant’s next move
probability

. the pheromone evaporation rate (ρ)

. the number of ants

. the maximum number of ant’s steps

. the number of iterations.

2.3.2. Solution construction. Every ant starts to build its path from the starting
vertex of the graph (wp0(x0, y0)), which constitutes the current position of the own
ship. An ant constructs its path until it reaches the ending vertex of the graph
(wpe(xe, ye)) – the defined final point of the trajectory or the maximum number of
steps. At each stage the ant chooses the next own ship position (the vertex on the
graph) on the basis of the action choice rule. The choice of the next vertex depends on
the value of the pheromone trail (τwpj(t)) on the neighbouring vertex and the heuristic
information called visibility (ηwpij). The heuristic information is the inverse of
the distance between the current vertex (i) and the neighbouring vertex (j). The
probabilistic choice of the next vertex works similarly to the roulette wheel selection
procedure used in the evolutionary algorithms.

wpj

wpi

wp0

wpe

wpkwpl

Figure 6. Explanatory diagram of a construction graph used in the ACO algorithm for ship
collision avoidance.

299SHIP ’S TRAJECTORY PLANNING FOR COLLISION AVOIDANCENO. 2

https://doi.org/10.1017/S0373463314000708 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000708

This process is composed of the following stages:

. summing the probability of the selection of individual vertices

. the random selection of q number in the range [0,1]

. the passage of the neighbouring vertices until the sum of selection probabilities
for previously visited vertices is greater than the number (q); reaching this
condition means the choice of that vertex.

Pant
wpij

(t) =
[τwpj(t)]α · [ηwpij]βP

l[wpanti
[τwpl (t)]α · [ηwpil]β

(7)

In Equation (7), based on Dorigo and Stutzle (2004), for calculating the probability
of choosing the next vertex, there are two factors. If the (α) coefficient equals zero the
most likely choice is the closest vertex, whereas if the (β) coefficient is equal to zero
only the pheromone trail is taken into account, which results in rather unsatisfactory
solutions. The feasible neighbourhood of an ant when being at vertex (i) is expressed
by (wpi

ant). The explanatory diagram of Equation (7) is shown in Figure 7.
2.3.3. Pheromone trail update. When all of the ants in the iteration of the

algorithm have finished their paths, the pheromone trail amount is updated according
to Equation (8), which consists of two stages:

. the pheromone evaporation

. the pheromone deposit

τwpj (t+ 1) = (1− ρ) · τwpj (t) +
Xm
ant=1

Δτantwpj
(t) (8)

At the first stage the pheromone evaporation is performed, which means reducing the
pheromone trail for all vertices of a constant value. Evaporation of the pheromone
trail is the mechanism to “forget” the ants’ bad decisions.
Then, the pheromone deposit is carried out, which means adding a certain value

to all vertices belonging to the paths constructed by ants in the iteration.
Through this mechanism, the vertices that constitute parts of the shortest paths

receive more pheromone trail and the likelihood of their selection by the ants in
subsequent iterations increases. Before the start of the next iteration, the best solution
found so far is saved.

2.3.4. The objective function. The algorithm determines only feasible solutions.
The termination condition is defined as the maximum number of iterations or the

wpj wpk

wpi

wpl

?

τwpl

τwpi

τwpj τwpk

ηwpikηwpij ηwpil

Figure 7. Explanatory diagram of the equation for calculating ant’s next move probability.

300 AGNIESZKA LAZAROWSKA VOL. 68

https://doi.org/10.1017/S0373463314000708 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000708

maximum computational time. The optimality criterion is expressed as the shortest
path determined by ants. The objective function is defined by Equation (9), similarly
to the Tsou and Hsueh (2010) approach, as the length of the determined trajectory.
The aim of the safe ship trajectory optimisation process is the minimisation of the
objective function.

I =
XN−1

i=1

ffi
(xi+1 − xi)2 + (yi+1 − yi)2

q
� min (9)

3. RESULTS. The developed algorithm has been implemented in the MATLAB
programming language, mainly due to the integrated graph-plotting and dynamic
simulation features, which allow an easy graphical presentation of the results. The
algorithms have been examined with the use of several dozen test cases. The input data
of the examined navigational scenarios constitute information describing real
navigational situations registered with the use of the Marine Traffic service available
at http://www.marinetraffic.com/. Two example situations have been chosen to
prove the problem solving capability of the developed algorithm and the efficiency
of the received solutions. The calculations have been conducted with the use of a
PC with an Intel Core i5 M430 2·27 GHz processor, 2GB RAM, 32-bit Windows 7
Professional.
The following values of parameters used in the ACO calculations have been used in

the presented simulation tests: τ0=1, ρ=0·1, α=1, β=1, number of iterations=20 and
number of ants=10. The following dimensions of the hexagon domain have been used
for the simulation tests: a – distance towards bow=1 nm, b – distance of amidships=
0·6 nm, c – distance towards starboard=0·6 nm, d – distance towards stern=0·25 nm,
e –distance towards port side=0·25 nm.

3.1. Scenario 1. The first example scenario presents an encounter of the own ship
(marked with the number zero) with four target ships marked with the numbers
from one to four. The situation was registered in the Baltic Sea. Figure 8 shows this
navigational situation registered by the Marine Traffic service. The situation is
presented in the north up orientation, which means that the graph vertical axis
represents the direction of true north. The data input to the algorithm are shown in
Table 3. The first column includes the numbers indicating the ships as marked in

Figure 8. Navigational Scenario 1 (source: http://www.marinetraffic.com/).

301SHIP ’S TRAJECTORY PLANNING FOR COLLISION AVOIDANCENO. 2

https://doi.org/10.1017/S0373463314000708 Published online by Cambridge University Press

http://www.marinetraffic.com/
http://www.marinetraffic.com/
http://www.marinetraffic.com/
http://www.marinetraffic.com/
https://doi.org/10.1017/S0373463314000708

Figure 8. The second column contains the courses of the own ship and the target ships
in degrees, while in the third column the own ship and target ships speeds in knots are
listed. The fourth column includes the bearings of the target ships’ relative to true
north in degrees, what means that the direction toward the geographic north pole is
used as a reference point, as presented in Figure 3. The last column contains the ranges
of the target ships with respect to the own ship in nautical miles.
The calculations for this example situation have been repeated 100 times. The

results obtained were identical for every repetition. The calculations differ only in
computational time (presented by the graph in Figure 9). The shortest computational
time was 8·64 seconds, while the longest computational time was 29·88 seconds, so it
has never exceeded one minute. The value of the mean computational time for one
hundred repetitions of calculations was 15·69 seconds.
Figure 10 shows the successive stages of the own ship movement along the

determined trajectory. Figure 10(a) presents the initial phase of the navigational
situation. The figure is oriented in the own ship course up orientation; this means that
the own ship heading line points upwards on the graph. In Figure 10(b) the closest
approach of the target ship 1 with respect to the own ship is presented. Figure 10(c)
presents the situation when the own ship is located at waypoint one (wp1(x1,y1)),
after it has altered its course to 077°. Figure 10(d) shows the situation when the own
ship reaches the ending waypoint (wpe(xe,ye)), after it has changed its course to 052°.

Table 3. Navigational data of Scenario 1.

Setting COURSE SPEED BEARING RANGE

[°] [kn] [°] [nm]
0 66 10·4 – –

1 294 10·4 90 7·9
2 67 12·2 64 5·9
3 74 15·8 65 8·3
4 249 18·4 25 5·5

Figure 9. Computational time for every repetition of calculation for example Scenario 1.

302 AGNIESZKA LAZAROWSKA VOL. 68

https://doi.org/10.1017/S0373463314000708 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000708

The graphical presentation of results at consecutive stages of the own ship
movement confirms that the calculated own ship manoeuvres allow the avoidance of
all target ships, maintaining a safe distance between the ships. The values of course
alterations were 11° to the starboard side and 25° to the port side, that proves that
the solution fulfils Rule 8(b) of COLREGs. This rule states that “any alteration of
course and/or speed to avoid collision shall, if the circumstances of the case admit, be
large enough to be readily apparent to another vessel observing visually or by radar; a
succession of small alterations of course and/or speed should be avoided”. The solution
also satisfies Rule 15 of COLREGs. According to this rule “the vessel which has the
other on her starboard side shall keep out of the way and shell, if the circumstances of the
case admit, avoid crossing ahead of the other vessel”.

3.2. Scenario 2. The second example navigational scenario presents an
encounter situation of eight ships in the Kattegat area. The input data describing
this situation are in Table 4, while Figure 11 shows the navigational situation
registered by the Marine Traffic service.
The calculations for this example were also repeated 100 times and the results

obtained were also identical for every repetition. The differences in computational
time between repetitions of calculations are presented in Figure 12. The shortest
computational time was 12·59 seconds, while the longest computational time was

(a) (b)

(c) (d)

Figure 10. Graphical solution of Scenario 1.

303SHIP ’S TRAJECTORY PLANNING FOR COLLISION AVOIDANCENO. 2

https://doi.org/10.1017/S0373463314000708 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000708

57·69 seconds, so it has never exceeded one minute. The value of the mean
computational time for 100 repetitions of calculations was 26·93 seconds.
In Figure 13 the graphical solution of this example is presented. Figure 13(a)

shows the initial phase of the situation. This situation is more complex than the
previous one, but the algorithm has also dealt with finding a solution for this scenario
by the determination of three manoeuvres. In Figure 13(b) the own ship is placed at
waypoint one (wp1(x1,y1)), after it has changed its course to 050°. Figure 13(c)
presents the situation when the own ship is placed in the waypoint two (wp2(x2,y2)),
after it has altered its course to 079°. In Figure 13(d) the own ship is placed at the end
waypoint (wpe(xe,ye)), after it has changed its course to 061°. The own ship course
alterations have reached the following values: 11° to the port side, then 29° to the
starboard side and finally 18° to the port side. These values confirm the solution’s
compliance with Rule 8(b) of COLREGs. The solution also fulfils Rule 15 of
COLREGs.

4. CONCLUSION. This paper presents a new approach to ship trajectory
planning in collision situations at sea based on SI. The results presented confirm
the successful implementation of the approach to solve the considered problem.

Table 4. Navigational data of Scenario 2.

Setting COURSE SPEED BEARING RANGE

[°] [kn] [°] [nm]
0 61 15·4 – –

1 171 8·9 103 6·5
2 347 8·7 93 7·4
3 169 15·4 66 5·8
4 336 11·7 62 10·5
5 162 12·1 29 7·7
6 161 13·9 36 7·8
7 337 7·9 37 9

Figure 11. Navigational Scenario 2 (source: http://www.marinetraffic.com/).

304 AGNIESZKA LAZAROWSKA VOL. 68

https://doi.org/10.1017/S0373463314000708 Published online by Cambridge University Press

http://www.marinetraffic.com/
http://www.marinetraffic.com/
https://doi.org/10.1017/S0373463314000708

The algorithm satisfactorily solves not only simple, but also complex situations,
such as the example Scenario 2. The solutions meet the requirements of specific
COLREGs, especially Rule 8(b), but also rules 14 and 15. The optimality of solutions

Figure 12. Computational time for every repetition of calculation for Scenario 2.

(a) (b)

(c) (d)

Figure 13. Graphical solution of Scenario 2.

305SHIP ’S TRAJECTORY PLANNING FOR COLLISION AVOIDANCENO. 2

https://doi.org/10.1017/S0373463314000708 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000708

is confirmed by the use of the objective function in the form of the smallest distance of
the determined trajectory. It should also be mentioned that the objective function can
be modified to include other factors such as the smallest turning angle of the own ship
manoeuvre. The efficiency of the approach is confirmed by the results of simulation
tests. It should be underlined that the results are identical for each of 100 repetitions
and the computational time values vary from about ten to 60 seconds, which is
acceptable for the implementation of such a method in on board collision avoidance
systems. It can also be adapted to solve path-planning problems of mobile robots and
manipulators.
To sum up, the following achievements of the approach have been distinguished:

. implementation of the own ship dynamics in the form of the manoeuvre time

. meeting the requirements of specific COLREGs

. determination of the own ship trajectory to the specified final point, which
enables the method to solve navigational situations in restricted waters

. the ability to include the avoidance of static obstacles (e.g. land, shallows, buoys)

. identical solutions for every repetition of calculations.

The following limitations have also been noted:

. the speed reduction manoeuvre of the own ship has not been implemented

. changes of the target ships’ strategies are not considered, when the target ship
course or speed change is detected, calculations have to be performed for this new
navigational situation

. computational time is different for every repetition of calculations

. computational time could be shorter.

Further developments of the presented approach include the implementation of the
algorithm in the C programming language, the implementation of the speed change
manoeuvre of the own ship, when the solution of the own ship course alteration
cannot be found and the introduction of parallel calculations, which will shorten the
computational time.

REFERENCES

Bonabeau, E., Dorigo, M. and Theraulaz, G. (1999). Swarm Intelligence: From Natural to Artificial
Systems, Oxford University Press, Inc.

Brand, M., Masuda, M., Wehner, N. and Xiao-Hua, Yu. (2010). Ant colony optimization algorithm for
robot path planning. Proceedings of the International Conference on Computer Design and Applications,
436–440.

Cockcroft, A. and Lameijer, J. (2012). A Guide to the Collision Avoidance Rules. Butterworth-Heinemann.
Dorigo, M. and Stutzle, T. (2004). Ant Colony Optimization. MIT Press Massachusetts Institute of
Technology.

Escario, J. B., Jimenez, J. F. and Giron-Sierra, J.M. (2012). Optimisation of autonomous ship manoeuvres
applying ant colony optimisation metaheuristic. Expert Systems with Applications, 39(11), 10120–10139.

Lee, Joon-Woo, Lee, Ju-Jang (2010). Novel Ant Colony Optimization Algorithm with Path Crossover and
Heterogeneous Ants for Path Planning. Proceedings of the IEEE International Conference on Industrial
Technology, 559–564.

Lisowski, J. (2010). Sensitivity of Safe Game Ship Control on Base Information from ARPA Radar. Radar
Technology, Guy Kouemou (Ed.), InTech.

306 AGNIESZKA LAZAROWSKA VOL. 68

https://doi.org/10.1017/S0373463314000708 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000708

Mingxin, Yuan, Sun’an, Wang, Canyang, Wu and Kunpeng, Li (2010). Hybrid ant colony and
immune network algorithm based on improved APF for optimal motion planning. Robotica, 28, 833–846.

Smierzchalski, R. and Michalewicz, Z. (2000). Modelling of ship trajectory in collision situations by an
evolutionary algorithm. IEEE Transactions on Evolutionary Computation, 4, 227–241.

Tsou, Ming-Cheng and Hsueh, Chao-Kuang (2010). The study of ship collision avoidance route planning
by ant colony algorithm. Journal of Marine Science and Technology, 18(5), 746–756.

307SHIP ’S TRAJECTORY PLANNING FOR COLLISION AVOIDANCENO. 2

https://doi.org/10.1017/S0373463314000708 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000708

