REMARKS ON JAMES'S DISTORTION THEOREMS

PATRICK N. DOWLING, NARCISSE RANDRIANANTOANINA AND BARRY TURETT

If a Banach space X contains a complemented subspace isomorphic to c_0 (respectively, ℓ^1), then X contains complemented almost isometric copies of c_0 (respectively, ℓ^1). If a Banach space X is such that X^* contains a subspace isomorphic to $L^1[0,1]$ (respectively, ℓ^{∞}), then X^* contains almost isometric copies of $L^1[0,1]$ (respectively, ℓ^{∞}).

In [3], James proved that if a Banach space contains a subspace which is isomorphic to c_0 (respectively, ℓ^1), then it contains almost isometric copies of c_0 (respectively, ℓ^1). In this short note we shall prove complemented versions of these results and show that a dual Banach space containing a subspace isomorphic to $L^1[0,1]$ (respectively, ℓ^{∞}) must contain almost isometric copies of $L^1[0,1]$ (respectively, ℓ^{∞}). In particular, the $L^1[0,1]$ result is in sharp contrast to a result of Lindenstrauss and Pełczyński [4], who show that $L^1[0,1]$ is arbitrarily distortable, and so $L^1[0,1]$ can be equivalently renormed so as not to contain almost isometric copies of $L^1[0,1]$ (with its usual norm). As for the ℓ^{∞} result, it is known that if a Banach space contains a subspace isomorphic to ℓ^{∞} then it must contain almost isometric copies of ℓ^{∞} . This result was proved by Partington in [6]. Unaware of Partington's result, Hudzik and Mastyło [2] reproved this result in the setting of function spaces.

The Results

Two Banach spaces X and Y are said to be λ -isometric (with $\lambda \ge 1$), if there exists a linear isomorphism $T: X \to Y$ so that $||T|| ||T^{-1}|| \le \lambda$. A Banach space X is said to contain almost isometric copies of the Banach space Y if, for each $\varepsilon > 0$, there exists a subspace Z of X so that Y and Z are $(1 + \varepsilon)$ -isometric.

PROPOSITION 1. If X is a Banach space which contains a complemented subspace isomorphic to c_0 , then X contains complemented almost isometric copies of c_0 .

PROOF: Let Y be a complemented subspace of X which is isomorphic to c_0 . Let P be a bounded linear projection from X onto Y.

Received 6th February, 1997

The third author was supported in part by an Oakland University Research Fellowship. The authors wish to thank Joe Diestel for bringing Partington's paper [6] to their attention.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/98 \$A2.00+0.00.

Let $\varepsilon > 0$ be given. Since Y contains a subspace isomorphic to c_0 , Y contains a subspace Z so that Z and c_0 are $(1 + \varepsilon)$ -isometric by the James Distortion Theorem [1, 3, 5]. Since Y is a separable Banach space and Z is a subspace of Y isomorphic to c_0 , Z is complemented in Y by Sobczyk's Theorem [1, 7]. Let Q be a bounded linear projection of Y onto Z. Then QP is a bounded linear projection of X onto Z. This completes the proof.

THEOREM 2. If X is a Banach space which contains a complemented subspace isomorphic to ℓ^1 , then X contains complemented almost isometric copies of ℓ^1 .

PROOF: Let Y_1 be a complemented subspace of X such that Y_1 is isomorphic to ℓ^1 . Let P be a linear projection from X onto Y_1 .

Let $\varepsilon > 0$ be given. Let $T : \ell^1 \to Y_1$ be a bounded linear isomorphism of ℓ^1 onto Y_1 and, for each $n \in \mathbb{N}$, let $x_n = T(e_n)$ where e_n is the usual n^{th} unit basis vector of ℓ^1 . Then, for each element $(a_n)_n \in \ell^1$, we have

$$\frac{1}{\|T^{-1}\|}\sum_{n}|a_{n}| \leq \left\|\sum_{n}a_{n}x_{n}\right\| \leq \|T\|\sum_{n}|a_{n}|.$$

For each $n \in \mathbb{N}$, define

$$D_n = \left\{ \sum_{k=n}^l a_k x_k : l \ge n \text{ and } \sum_{k=n}^l |a_k| = 1 \right\}.$$

Let $K_n = \inf\{\|x\| : x \in D_n\}$. Then $K_n \leq K_{n+1}$ and $1/\|T^{-1}\| \leq K_n \leq \|T\|$ for all $n \in \mathbb{N}$. Therefore $\lim_{n \to \infty} K_n$ exists. Let $K = \lim_{n \to \infty} K_n$ and note that $K_n \leq K$ for all $n \in \mathbb{N}$. Choose $N \in \mathbb{N}$ so that $K_n > (1+\varepsilon)^{-1/2}K$ for all $n \geq N$. Choose $y_1 \in D_N$ so that $\|y_1\| < (1+\varepsilon)^{1/2}K$. Since $y_1 \in D_N$, y_1 can be written as

$$y_1 = \sum_{k=N}^{n_1} a_k^{(1)} x_k$$
, where $n_1 \ge N$ and $\sum_{k=N}^{n_1} \left| a_k^{(1)} \right| = 1$.

Choose $y_2 \in D_{n_1+1}$ so that $||y_2|| < (1+\varepsilon)^{1/2}K$. Since $y_2 \in D_{n_1+1}$, y_2 can be written as

$$y_2 = \sum_{k=n_1+1}^{n_2} a_k^{(2)} x_k$$
, where $n_2 \ge n_1 + 1$ and $\sum_{k=n_1+1}^{n_2} \left| a_k^{(2)} \right| = 1$.

Continuing in this manner, we can choose $y_j \in D_{n_{j-1}+1}$ so that $||y_j|| < (1+\varepsilon)^{1/2} K$ and y_j can be written as

$$y_j = \sum_{k=n_{j-1}+1}^{n_j} a_k^{(j)} x_k$$
, where $n_j \ge n_{j-1}+1$ and $\sum_{k=n_{j-1}+1}^{n_j} \left| a_k^{(j)} \right| = 1$,

[2]

where $n_0 = N - 1$.

For scalars
$$t_1, t_2, \ldots, t_p$$
 with $\sum_{j=1}^p |t_j| = 1$, we have

$$\left\|\sum_{j=1}^{p} t_{j} y_{j}\right\| = \left\|\sum_{j=1}^{p} \sum_{k=n_{j-1}+1}^{n_{j}} t_{j} a_{k}^{(j)} x_{k}\right\| \ge K_{N} > (1+\varepsilon)^{-1/2} K ,$$

since $\sum_{j=1}^{p} \sum_{k=n_{j-1}+1}^{n_j} t_j a_k^{(j)} x_k \in D_N$.

On the other hand,

$$\left\|\sum_{j=1}^{p} t_{j} y_{j}\right\| \leq \sum_{j=1}^{p} |t_{j}| \|y_{j}\| < \sum_{j=1}^{p} |t_{j}| (1+\varepsilon)^{1/2} K = (1+\varepsilon)^{1/2} K.$$

Thus for any scalars t_1, t_2, \ldots, t_p , we have

$$K(1+\varepsilon)^{-1/2}\sum_{j=1}^{p}|t_{j}| \leq \left\|\sum_{j=1}^{p}t_{j}y_{j}\right\| \leq K(1+\varepsilon)^{1/2}\sum_{j=1}^{p}|t_{j}|.$$

Hence the Banach space $Y = \overline{\text{span}} \{y_j\}_{j=1}^{\infty}$ is a subspace of Y_1 , and Y and ℓ^1 are $(1 + \varepsilon)$ -isometric.

Now let $z_j = \sum_{k=n_{j-1}+1}^{n_j} a_k^{(j)} e_k$ for each $j \in \mathbb{N}$, where $n_0 = N - 1$. Let Z =

 $\overline{\text{span}} \{z_j\}_{j=1}^{\infty}$. Since $(z_j)_j$ is a block basic subsequence of $(e_n)_n$, Z is a subspace of ℓ^1 which is isomorphic to ℓ^1 and complemented in ℓ^1 by a norm 1 projection Q. Note also that the restriction of T to Z, $T|_Z$, is an isomorphism of Z onto Y. Thus we have the following diagram:

$$\begin{array}{c} X \xrightarrow{P} Y_1 \xrightarrow{T^{-1}} \ell^1 \\ & \downarrow \\ Y \xleftarrow{T \mid z} Z \end{array}$$

Clearly, Y is complemented in X by the projection $T|_Z Q T^{-1} P$. This completes the proof.

REMARK. Much of the proof of Theorem 2 is similar to James's original proof [3], and the proof used in Theorem 2 could also be used to prove Proposition 1. The next result is a special case of a theorem of Partington [6].

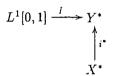
COROLLARY 3. If X is a Banach space such that X^* contains a subspace isomorphic to ℓ^{∞} , then X^* contains almost isometric copies of ℓ^{∞} .

PROOF: If X^* contains a subspace isomorphic to ℓ^{∞} , then X contains a complemented subspace isomorphic to ℓ^1 [1]. By Theorem 2, X contains complemented almost isometric copies of ℓ^1 . Thus for each $\varepsilon > 0$, there is a complemented subspace Y of X so that Y and ℓ^1 are $(1 + \varepsilon)$ -isometric. Thus Y^* and ℓ^{∞} are $(1 + \varepsilon)$ -isometric, and since Y is complemented in X, Y^* is isometric to a subspace of X^* . This completes the proof.

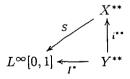
THEOREM 4. If X is a Banach space such that X^* contains a subspace isomorphic to $L^1[0,1]$, then X^* contains almost isometric copies of $L^1[0,1]$.

PROOF: Let $\varepsilon > 0$ be given. Since X^* contains a subspace isomorphic to $L^1[0,1]$, X contains a subspace isomorphic to ℓ^1 [1]. Hence, by the James Distortion Theorem [1, 3, 5], X contains a subspace Y so that Y and ℓ^1 are $(1 + \varepsilon)$ -isometric. Hence Y^* and ℓ^{∞} are $(1 + \varepsilon)$ -isometric. Since ℓ^{∞} contains a subspace which is isometric to $L^1[0,1]$, there is an isomorphism $I: L^1[0,1] \to Y^*$ with $||I|| ||I^{-1}|| \leq 1 + \varepsilon$. Without loss of generality we can and do assume that ||I|| = 1 and $||I^{-1}|| \leq 1 + \varepsilon$.

Let $i: Y \to X$ be the natural inclusion map. Taking an adjoint gives the following diagram:



Taking adjoints again and using the fact that $L^{\infty}[0,1]$ is an injective space, there exists a bounded linear mapping $S : X^{**} \to L^{\infty}[0,1]$ so that $||S|| = ||I^*|| = 1$ and the following diagram commutes:



Taking adjoints yet again, we get another commutative diagram:

$$L^{1}[0,1] \xrightarrow{J} (L^{\infty}[0,1])^{*} \xrightarrow{I^{**}} Y^{***} \xrightarrow{R^{*}} Y^{*}$$

$$\downarrow^{i^{***}} \qquad \uparrow^{i^{*}} X^{***} \xrightarrow{Q^{*}} X^{*}$$

where Q and R denote the canonical mappings from X and Y to X^{**} and Y^{**} (respectively) and the mapping J is the canonical mapping from $L^1[0,1]$ into $(L^1[0,1])^{**} = (L^{\infty}[0,1])^*$.

Let $U = Q^*S^*J$. Then $U: L^1[0,1] \to X^*$ and since $||i^*|| = 1$ and $I^{**} = I$ on $L^1[0,1]$, we have for each $f \in L^1[0,1]$

$$||Uf|| = ||Q^*S^*Jf|| \geq ||i^*Q^*S^*Jf|| = ||R^*I^{**}Jf|| = ||If|| \geq (1 + \varepsilon)^{-1} ||f||_1 .$$

On the other hand,

$$\begin{split} \|Uf\| &= \|Q^*S^*Jf\| \\ &\leqslant \|Q^*\| \, \|S^*\| \, \|J\| \, \|f\|_1 \\ &= \|f\|_1 \ . \end{split}$$

Thus $U(L^1[0,1])$ is a subspace of X^* so that $U(L^1[0,1])$ and $L^1[0,1]$ are $(1+\varepsilon)$ isometric. This completes the proof.

REMARK. The proof of Theorem 4 can also be used to show that if a Banach space X contains a subspace isomorphic to ℓ^1 , then X^* contains almost isometric copies of $\ell^1(2^{\mathbb{N}})$.

References

- J. Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics 92 (Springer-Verlag, New York, 1984).
- [2] H. Hudzik and M. Mastyło, 'Almost isometric copies of ℓ_{∞} in some Banach spaces', *Proc.* Amer. Math. Soc. 119 (1993), 209–215.
- [3] R.C. James, 'Uniformly non-square Banach spaces', Ann. of Math. 80 (1964), 542-550.
- [4] J. Lindenstrauss and A. Pełczyński, 'Contributions to the theory of the classical Banach spaces', J. Funct. Anal. 8 (1971), 225-249.
- [5] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I. Sequence spaces, Ergebnisse der Mathematik und Ihrer Grenzgebiete 92 (Springer-Verlag, Berlin, Heidelberg, New York, 1977).
- [6] J.R. Partington, 'Subspaces of certain Banach sequence spaces', Bull. London Math. Soc. 13 (1981), 162-166.
- [7] A. Sobczyk, 'Projection of the space m on its subspace c₀', Bull. Amer. Math. Soc. 47 (1941), 938-947.

Department of Mathematics and Statistics Miami University Oxford OH 45056 United States of America e-mail: dowlinpn@muohio.edu Department of Mathematics and Statistics Miami University Oxford OH 45056 United States of America e-mail: randrin@muohio.edu Department of Mathematical Sciences Oakland University Rochester MI 48309 United States of America turett@vela.acs.oaklad.edu