Canad. Math. Bull. Vol. 46 (2), 2003 pp. 304-309

Localization of the Hasse-Schmidt Algebra

William N. Traves

Abstract. The behaviour of the Hasse-Schmidt algebra of higher derivations under localization is studied using André cohomology. Elementary techniques are used to describe the Hasse-Schmidt derivations on certain monomial rings in the nonmodular case. The localization conjecture is then verified for all monomial rings.

1 Introduction

The Hasse-Schmidt algebra is a higher-order analogue of the derivation algebra that enjoys particularly nice properties in prime characteristic. It arises naturally in many areas of commutative algebra: the study of singularity theory [5], differential operators [4], [7], tight closure [8] and modular invariant theory [6], [9]. Despite the interest inspired by these connections, several fundamental questions about the Hasse-Schmidt algebra remain open, including the localization question: Does formation of the Hasse-Schmidt algebra commute with localization?

Let *R* be an algebra of finite type over a field *k*. An (infinite order) *Hasse-Schmidt* derivation $\{\delta_n\}_{n=0}^{\infty}$ is a sequence of *k*-module endomorphisms of *R* with $\delta_0 = id_R$ that satisfy the *product rule*

$$\delta_n(ab) = \sum_{i+j=n} \delta_i(a)\delta_j(b).$$

Similarly, an *m*-th order Hasse-Schmidt derivation is just a finite collection $\{\delta_n\}_{n=0}^m$ of *k*-linear endomorphisms of *R* satisfying the previous relations. The divided powers operators $\delta_n = \frac{1}{n!} \frac{\partial^n}{\partial x_i^n}$ on the polynomial ring $R = k[x_1, \ldots, x_d]$ are the simplest example of a Hasse-Schmidt derivation. The Hasse-Schmidt algebra HS(*R*/*k*) (or just HS(*R*) when *k* is understood) is the *R*-algebra generated by all components δ_n of all Hasse-Schmidt derivations. The *R*-algebra structure on HS(*R*) comes from identifying *R* with the multiplication maps in End_k(*R*).

Another way to describe the Hasse-Schmidt derivations involves *k*-algebra homomorphisms $R \to R[[t]]$. Each Hasse-Schmidt derivation $\{\delta_n\}$ is identified with a *k*-algebra map, $D = \sum_{n=0}^{\infty} \delta_n t^n \colon R \to R[[t]]$ that reduces to the identity on *R* modulo (*t*). Similarly, *m*-th order Hasse-Schmidt derivations are identified with deformations $D_m = \sum_{n=0}^{m} \delta_n t^n \colon R \to R[t]/(t^{m+1})$ of the identity on *R*.

Received by the editors October 18, 2001; revised January 11, 2002.

Part of this work was completed on a visit to the University of Jyväskylä in Finland. I would like to thank my hosts for their warm hospitality. This work was partially supported by ONR Grant N0001401WR20205.

AMS subject classification: 13D03, 13N10.

[©]Canadian Mathematical Society 2003.

Brown and Kuan [2] investigated the localization of Hasse-Schmidt derivatives. Given a Hasse-Schmidt derivative $\{\delta_n\}$ and $r \in R$, let $r\{\delta_n\} = \{r^n \delta_n\}$. It can be shown that every Hasse-Schmidt derivation on R induces a unique Hasse-Schmidt derivation on each localization $S^{-1}R$ (see [7], [8]); however, it is not true that every Hasse-Schmidt derivation on the localization arises in this way. For example, if R = k[x] and $S = \{1, g, g^2, ...\}$ then this would require that the powers of g appearing in the denominators of $\delta_n(x)$ grow linearly in n. Though the Hasse-Schmidt derivations do not localize well, the Hasse-Schmidt algebra might behave better.

The Localization Conjecture for HS(R/k) If R is a k-algebra of finite type and S is a multiplicatively closed set in R, then HS(R) $\otimes_R S^{-1}R$ is naturally isomorphic to HS($S^{-1}R/k$).

In characteristic zero, HS(R/k) is just the derivation algebra Der(R/k) [7] and when R is smooth over k, then HS(R/k) equals the ring of differential operators D(R/k) [8]. So the localization conjecture holds trivially unless R is singular and k is a field of prime characteristic.

The next section describes the obstruction (living in André cohomology [1]) to lifting a finite-order Hasse-Schmidt derivation to a Hasse-Schmidt derivation of higher order. Unfortunately, the obstruction lives in a cohomology module that seldom vanishes. The last section describes the Hasse-Schmidt derivations for schemes defined by monomial ideals. This extends results of Brumatti and Simis [3] on the derivations of such algebras. The localization conjecture for Hasse-Schmidt algebras is then verified for monomial rings.

2 Lifting Truncated Derivations

We describe a homological approach to the localization conjecture based on [5]. Let $\{\delta_n\}$ be a Hasse-Schmidt derivation on $S^{-1}R$. Fix an integer m > 0. We aim to show that $\delta_m \in HS(R) \otimes_R S^{-1}R$. Multiplying the derivation by an element of *S*, we may assume that the maps δ_n with $n \leq m$ map *R* into *R*. Now we ask whether the *m*-th order Hasse-Schmidt derivation extends to an infinite Hasse-Schmidt derivation on *R*.

The truncated derivation determines a map $D_m: R \to R[t]/(t^{m+1})$. Because R[[t]] is the inverse limit of $R[t]/(t^n)$, it suffices to find step-by-step extensions $D_n: R \to R[t]/(t^{n+1})$ (n > m) such that $D_m(a) \equiv D_n(a) \mod t^{m+1}$. Now consider the exact sequence

$$0 \longrightarrow R \xrightarrow{t^n} R[t]/(t^{n+1}) \xrightarrow{p} R[t]/(t^n) \longrightarrow 0$$

where $p(x) = x \mod t^n$. Taking the pullback by the map $D_{n-1}: R \to R[t]/(t^n)$ gives the exact sequence

$$(*) 0 \longrightarrow R \longrightarrow T \xrightarrow{\pi_2} R \longrightarrow 0$$

with

$$T = \{(u, r) \in R[t]/(t^{n+1}) \times R : p(u) = D_{n-1}(r)\}.$$

This extension of *k*-algebras splits (determines the trivial extension) if and only if D_{n-1} lifts to D_n . Therefore the obstruction to lifting D_{n-1} is the cohomology class represented by (*) in the module $H^1(k, R, R)$. This cohomology module agrees with Grothendieck's Exalcom_k(R, R), but we do not discuss this further.

One might naively hope that $H^1(k, R, R) = 0$ for many algebras, but this is seldom the case for nonsmooth *R*, as the next example shows.

Example The cohomology module $H^1(k, R, R)$ need not vanish. If $R = k[x_1, \ldots, x_d]/(f)$, then $H^1(k, R, R) = R/(f_1, \ldots, f_d)$, where f_i is the *i*-th partial derivative of f. For instance, if R = k[x, y]/(xy), then $H^1(k, R, R) = k \neq 0$.

The example also shows that a direct approach using cohomology will be difficult. For instance, using Corollaries 4.59 and 5.27 of André [1], we find that

$$H^{1}(k, S^{-1}R, S^{-1}R) \cong S^{-1}H^{1}(k, R, R).$$

Since we are given a truncated Hasse-Schmidt derivation on $S^{-1}R$ that extends to an infinite Hasse-Schmidt derivation, the associated class of (*) in $S^{-1}H^1(k, R, R)$ is zero. However, this is not enough to guarantee that the class of (*) is zero in $H^1(k, R, R)$; indeed, this module has support on the singular locus of R. For instance, localizing by any nontrivial multiplicative set S in the example gives $S^{-1}H^1(k, R, R) =$ 0. So a direct approach using localization results on cohomology appears to be fruitless. The next section collects some preliminary results, after which, we give a direct proof of the localization conjecture for quotients of polynomial rings by monomial ideals.

3 **P**reliminary Lemmata

Lemma 3.1 Let *I* be an ideal of a commutative ring *R* and *x* and *y* be elements of *R*. Then $(I : (I : x)) (I : (I : y)) \subset I : (I : xy)$.

Proof Note $I : (I : y) \subset (I : x) : (I : xy)$. Then:

$$(I:(I:x)) (I:(I:y)) \subset (I:(I:x)) ((I:x):(I:xy)) \subset I:(I:xy).$$

When $\mathbf{a} = (a_1, \ldots, a_d) \in \mathbb{N}^d$, then define the order $|\mathbf{a}| = a_1 + \cdots + a_d$, the factorial $\mathbf{a}! = a_1! a_2! \cdots a_d!$, and the associated monomial $x^{\mathbf{a}} = x_1^{a_1} \cdots x_d^{a_d}$. For two multiexponents \mathbf{a} and \mathbf{b} we say that $\mathbf{a} \leq \mathbf{b}$ if $x^{\mathbf{a}}$ divides $x^{\mathbf{b}}$ and we set $\binom{\mathbf{b}}{\mathbf{a}} = \binom{b_1}{a_2} \binom{b_2}{a_2} \cdots \binom{b_d}{a_d}$.

Lemma 3.2 Let $\{\delta_n\}$ be a Hasse-Schmidt derivation on $R = k[x_1, \ldots, x_d]/I$. Each δ_n is a differential operator of order less than or equal to n and for n > 0, $\delta_n = \sum_{|\mathbf{a}| \le n} P_{\mathbf{a}} \frac{1}{\mathbf{a}!} \frac{\partial^{|\mathbf{a}|}}{\partial x^{\mathbf{a}}}$, where

$$P_{\mathbf{a}} = \sum \prod_{j=1}^{d} \prod_{k=1}^{a_j} \delta_{i_{jk}}(x_j)$$

306

and the sum is over all tuples $(i_{11}, \ldots, i_{da_d})$ of order *n*, none of whose entries are zero. In particular, the constant term of δ_n is zero.

Proof First use induction to see that δ_n is a differential operator of order less than or equal to *n*. This is clear for n = 0 and the inductive step follows from

$$[\delta_n, f] = \sum_{k=1}^n \delta_k(f) \delta_{n-k}.$$

So for n > 0 we can write $\delta_n = \sum_{|\mathbf{a}| \le n} Q_{\mathbf{a}} \frac{1}{\mathbf{a}!} \frac{\partial^{|\mathbf{a}|}}{\partial x^{\mathbf{a}}}$. We aim to show that $Q_{\mathbf{a}} = P_{\mathbf{a}}$. This follows from comparing the expressions given by applying $\sum_{|\mathbf{a}| \le n} Q_{\mathbf{a}} \frac{1}{\mathbf{a}!} \frac{\partial^{|\mathbf{a}|}}{\partial x^{\mathbf{a}}}$ and δ_n to monomials $x^{\mathbf{b}}$:

$$\left(\sum_{|\mathbf{a}| \le n} Q_{\mathbf{a}} \frac{1}{\mathbf{a}!} \frac{\partial^{|\mathbf{a}|}}{\partial x^{\mathbf{a}}}\right) (x^{\mathbf{b}}) = \sum_{\mathbf{a} \le \mathbf{b}} Q_{\mathbf{a}} \binom{\mathbf{b}}{\mathbf{a}} x^{\mathbf{b}-\mathbf{a}}$$
$$\delta_{n}(x^{\mathbf{b}}) = \sum_{\mathbf{a} \le \mathbf{b}} \binom{\mathbf{b}}{\mathbf{a}} \left(\sum \prod_{j=1}^{d} \prod_{k=1}^{a_{j}} d_{i_{jk}}(x_{j})\right) d_{0}(x^{\mathbf{b}-\mathbf{a}}),$$

where the interior summation is over all tuples $(i_{11}, \ldots, i_{da_d})$ of order *n*, none of whose entries are zero. The last statement of the Lemma can also be obtained from the product rule using induction on *n*.

4 Monomial Algebras

Let $I \subset k[x_1, ..., x_d]$ be a monomial ideal with minimal monomial generators $m_1, ..., m_t$. Assume that the characteristic of *k* is p > 0. Define the ideals

 $I_i = (m_i: p \text{ does not divide the exponent of } x_i \text{ in } m_i)$

$$=\left(x_i\frac{\partial m_j}{\partial x_i}:j=1,\ldots,t\right).$$

When I = R we adopt the convention that $I_i = R$ as well.

Theorem 4.1 Let $\{\delta_n\}$ be a Hasse-Schmidt derivation of $R = k[x_1, \ldots, x_d]/(m_1, \ldots, m_t)$. Then $\{\delta_n\}$ induces a ring map $D = \sum d_n t^n \colon R \to R[[t]]$ with $d_0 = id_R$ and $d_n(x_k) \in I : (I_k : x_k)$ for n > 0.

Proof Assume that $\{\delta_n\}$ is a Hasse-Schmidt derivation. Fix n > 0. Then the algebra map $D_n: R \to R[t]/(t^{n+1})$ induced by $D_n(x_i) = \sum_{k=0}^n \delta_k(x_i)t^k$ is a well-defined ring homomorphism. Applying this map to any generator m_u gives

$$D_n(m_u) = m_u + \cdots + \nabla m_u \cdot \langle \delta_n(x_1), \ldots, \delta_n(x_d) \rangle t^n \in IR[t]/(t^{n+1}).$$

Since *I* is a monomial ideal, this implies $\delta_n(x_k) \frac{\partial m_u}{\partial x_k} \in I$ for all generators m_u . That is, $\delta_n(x_k) \in I : (\frac{\partial m_u}{\partial x_k} : u = 1, ..., t)$. However, $(\frac{\partial m_u}{\partial x_k} : u = 1, ..., t) = I_k : x_k$, so the result holds for each index *n*.

In the nonmodular case, the converse to this theorem is also true.

Theorem 4.2 Suppose that for each variable x_i and each monomial generator m_u , the exponent of x_i in m_u is not divisible by the prime p and consider the ring $R = k[x_1, \ldots, x_d]/(m_1, \ldots, m_t)$ of characteristic p. Then $I_k = I$ for all k and each choice of images $\delta_n(x_k) \in I : (I : x_k)$ for n > 0 induces a Hasse-Schmidt derivation $\{\delta_n\}$ on R.

Proof We need to check that the induced algebra map $\sum_{n=0}^{\infty} \delta_n t^n \colon R \to R[[t]]$ is well-defined. It suffices to show that $\delta_n(m_u) \in I$ for all n and all $u = 1, \ldots, t$. Using Lemma 3.2, $\delta_n(m_u) = \sum_{|\mathbf{a}| \leq n} P_{\mathbf{a}} \frac{1}{\mathbf{a}!} \frac{\partial^{\mathbf{a}} m_u}{\partial x^{\mathbf{a}}}$, where

$$P_{\mathbf{a}} = \sum \prod_{j=1}^{d} \prod_{k=1}^{a_j} \delta_{i_{jk}}(x_j)$$

and the sum is over all tuples $(i_{11}, \ldots, i_{da_d})$ of order n, none of whose entries are zero. Each $\delta_{i_{jk}}(x_j) \in I : (I : x_j)$ so by Lemma 3.1, $P_{\mathbf{a}} \in I : (I : x^{\mathbf{a}})$. But $\frac{1}{\mathbf{a}!} \frac{\partial^{\mathbf{a}} m_u}{\partial x^{\mathbf{a}}}$ is either 0 or a multiple of $m_u/x^{\mathbf{a}}$; in either case, $\frac{1}{\mathbf{a}!} \frac{\partial^{\mathbf{a}} m_u}{\partial x^{\mathbf{a}}} \in I : x^{\mathbf{a}}$. So $P_{\mathbf{a}} \frac{1}{\mathbf{a}!} \frac{\partial^{\mathbf{a}} m_u}{\partial x^{\mathbf{a}}} \in I$, as desired.

Example The conditions in Theorems 4.1 and 4.2 are not equivalent. For instance, when $I = (x^p, x^2y^3, xy^4, y^5)$ in k[x, y] with char k = p > 5, then $I : (I_k : x) \neq I : (I : x)$.

In the nonmodular case, these two theorems give necessary and sufficient conditions for a collection of maps $\{\delta_n\}$ on a monomial ring to be a Hasse-Schmidt derivation. In particular, they characterize the Hasse-Schmidt derivations of Stanley-Reisner rings. Two remarks are pertinent here:

- 1. Every derivation in the nonmodular case is integrable, that is, it can be extended to an infinite Hasse-Schmidt derivation. Integrable derivations play a key role in the study of singularities in prime characteristic via derivational methods [5].
- 2. Since the conditions $d_n(x_k) \in I : (I : x_k)$ localize well, these theorems establish the localization conjecture in the nonmodular case. We now give an argument that verifies the conjecture for all monomial rings.

Theorem 4.3 The localization conjecture holds for all monomial rings $R = k[x_1, \ldots, x_d]/(m_1, \ldots, m_t)$.

Proof Assume that $D = \sum_{n=0}^{\infty} \delta_n t^n \colon S^{-1}R \to S^{-1}R[[t]]$ defines a ring homomorphism. Then from Lemma 3.2, we see that

$$\sum \prod_{j=1}^{d} \prod_{k=1}^{a_j} \delta_{i_{jk}}(x_j) \frac{1}{\mathbf{a}!} \frac{\partial^{\mathbf{a}} m_u}{\partial x^{\mathbf{a}}} \in (m_1, \ldots, m_t) S^{-1} R.$$

308

Pick $\tilde{\delta}_n(x_j) \in R$ such that there is an $s_n \in S$ with $\delta_n(x_j) = \tilde{\delta}_n(x_j)/s_n$. Since the ideal is monomial, we see that there exist s_a and \tilde{s}_a in S such that

$$s_{\mathbf{a}}\prod_{j=1}^{d}\prod_{k=1}^{a_{j}}\delta_{i_{jk}}(x_{j})\frac{1}{\mathbf{a}!}\frac{\partial^{\mathbf{a}}m_{u}}{\partial x^{\mathbf{a}}}=\tilde{s}_{\mathbf{a}}\prod_{j=1}^{d}\prod_{k=1}^{a_{j}}\tilde{\delta}_{i_{jk}}(x_{j})\frac{1}{\mathbf{a}!}\frac{\partial^{\mathbf{a}}m_{u}}{\partial x^{\mathbf{a}}}\in(m_{1},\ldots,m_{t})R.$$

Now since the ring *R* is Noetherian, the ideal $\left(\prod_{j=1}^{d}\prod_{k=1}^{a_j}\tilde{\delta}_{i_{jk}}(x_j)\frac{1}{a!}\frac{\partial^a m_u}{\partial x^a}\right)_a$ is finitely generated. It follows that there exists a single $s \in S$ such that $s\prod_{j=1}^{d}\prod_{k=1}^{a_j}\tilde{\delta}_{i_{jk}}(x_j)\frac{1}{a!}\frac{\partial^a m_u}{\partial x^a} \in (m_1,\ldots,m_t)R$ for all **a**. This implies that the collection $s\{\tilde{\delta}_n\}$ is a Hasse-Schmidt derivation on *R*. In particular, $s^n \tilde{\delta}_n \in \text{HS}(R) \otimes_R S^{-1}R$. Since $\tilde{\delta}_n$ and δ_n differ by a factor in *S*, $\delta_n \in \text{HS}(R) \otimes_R S^{-1}R$, as desired.

References

- [1] M. André, Homologie des algèbres commutatives. Springer-Verlag, Berlin, 1974.
- W. C. Brown and W. Kuan, Ideals and higher derivations in commutative rings. Canad. J. Math. 24(1972), 400–415.
- P. Brumatti and A. Simis, *The module of derivations of a Stanley-Reisner ring*. Proc. Amer. Math. Soc. 123(1995), 1309–1318.
- [4] A. Grothendieck and J. Dieudonné, Éléments de géometrie algébrique IV. Inst. Hautes Études Sci. Publ. Math. 32, Le Bois-Marie Bures-sur-Yvette, 1967.
- [5] H. Matsumura, *Integrable Derivations*. Nagoya Math J. **87**(1982), 227–245.
- [6] L. Smith, Polynomial invariants of finite groups. Research Notes in Mathematics 6, A. K. Peters, Ltd., Wellesley, MA, 1995.
- [7] W. N. Traves, Differential Operators and Nakai's Conjecture. Ph.D. thesis, University of Toronto, 1998.
- [8] _____, Differential Simplicity and Tight Closure. J. Algebra. 228(2000), 457–476.
- [9] R. M. W. Wood, Problems in the Steenrod Algebra. Bull. London Math. Soc. (5) 30(1998), 449–517.

Department of Mathematics U.S. Naval Academy 572C Holloway Road Annapolis, MD 21402 USA email: traves@usna.edu