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Localization of the Hasse-Schmidt Algebra

William N. Traves

Abstract. The behaviour of the Hasse-Schmidt algebra of higher derivations under localization is stud-

ied using André cohomology. Elementary techniques are used to describe the Hasse-Schmidt deriva-

tions on certain monomial rings in the nonmodular case. The localization conjecture is then verified

for all monomial rings.

1 Introduction

The Hasse-Schmidt algebra is a higher-order analogue of the derivation algebra that

enjoys particularly nice properties in prime characteristic. It arises naturally in many

areas of commutative algebra: the study of singularity theory [5], differential op-

erators [4], [7], tight closure [8] and modular invariant theory [6], [9]. Despite

the interest inspired by these connections, several fundamental questions about the

Hasse-Schmidt algebra remain open, including the localization question: Does for-

mation of the Hasse-Schmidt algebra commute with localization?

Let R be an algebra of finite type over a field k. An (infinite order) Hasse-Schmidt

derivation {δn}
∞
n=0 is a sequence of k-module endomorphisms of R with δ0 = idR

that satisfy the product rule

δn(ab) =

∑

i+ j=n

δi(a)δ j(b).

Similarly, an m-th order Hasse-Schmidt derivation is just a finite collection {δn}
m
n=0 of

k-linear endomorphisms of R satisfying the previous relations. The divided powers

operators δn =
1
n!

∂n

∂xn
i

on the polynomial ring R = k[x1, . . . , xd] are the simplest

example of a Hasse-Schmidt derivation. The Hasse-Schmidt algebra HS(R/k) (or

just HS(R) when k is understood) is the R-algebra generated by all components δn

of all Hasse-Schmidt derivations. The R-algebra structure on HS(R) comes from

identifying R with the multiplication maps in Endk(R).

Another way to describe the Hasse-Schmidt derivations involves k-algebra homo-

morphisms R → R[[t]]. Each Hasse-Schmidt derivation {δn} is identified with a

k-algebra map, D =

∑∞
n=0 δntn : R → R[[t]] that reduces to the identity on R mod-

ulo (t). Similarly, m-th order Hasse-Schmidt derivations are identified with defor-

mations Dm =

∑m
n=0 δntn : R → R[t]/(tm+1) of the identity on R.
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like to thank my hosts for their warm hospitality. This work was partially supported by ONR Grant
N0001401WR20205.

AMS subject classification: 13D03, 13N10.
c©Canadian Mathematical Society 2003.

304

https://doi.org/10.4153/CMB-2003-031-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-031-2


Localization of the Hasse-Schmidt Algebra 305

Brown and Kuan [2] investigated the localization of Hasse-Schmidt derivatives.

Given a Hasse-Schmidt derivative {δn} and r ∈ R, let r{δn} = {rnδn}. It can be

shown that every Hasse-Schmidt derivation on R induces a unique Hasse-Schmidt

derivation on each localization S−1R (see [7], [8]); however, it is not true that every

Hasse-Schmidt derivation on the localization arises in this way. For example, if R =

k[x] and S = {1, g, g2, . . . } then this would require that the powers of g appearing in

the denominators of δn(x) grow linearly in n. Though the Hasse-Schmidt derivations

do not localize well, the Hasse-Schmidt algebra might behave better.

The Localization Conjecture for HS(R/k) If R is a k-algebra of finite type and S

is a multiplicatively closed set in R, then HS(R) ⊗R S−1R is naturally isomorphic to

HS(S−1R/k).

In characteristic zero, HS(R/k) is just the derivation algebra Der(R/k) [7] and

when R is smooth over k, then HS(R/k) equals the ring of differential operators

D(R/k) [8]. So the localization conjecture holds trivially unless R is singular and

k is a field of prime characteristic.

The next section describes the obstruction (living in André cohomology [1]) to

lifting a finite-order Hasse-Schmidt derivation to a Hasse-Schmidt derivation of

higher order. Unfortunately, the obstruction lives in a cohomology module that sel-

dom vanishes. The last section describes the Hasse-Schmidt derivations for schemes

defined by monomial ideals. This extends results of Brumatti and Simis [3] on the

derivations of such algebras. The localization conjecture for Hasse-Schmidt algebras

is then verified for monomial rings.

2 Lifting Truncated Derivations

We describe a homological approach to the localization conjecture based on [5]. Let

{δn} be a Hasse-Schmidt derivation on S−1R. Fix an integer m > 0. We aim to show

that δm ∈ HS(R) ⊗R S−1R. Multiplying the derivation by an element of S, we may

assume that the maps δn with n ≤ m map R into R. Now we ask whether the m-

th order Hasse-Schmidt derivation extends to an infinite Hasse-Schmidt derivation

on R.

The truncated derivation determines a map Dm : R → R[t]/(tm+1). Because R[[t]]

is the inverse limit of R[t]/(tn), it suffices to find step-by-step extensions Dn : R →
R[t]/(tn+1) (n > m) such that Dm(a) ≡ Dn(a) mod tm+1. Now consider the exact

sequence

0 −→ R
tn

−→ R[t]/(tn+1)
p

−→ R[t]/(tn) −→ 0

where p(x) = x mod tn. Taking the pullback by the map Dn−1 : R → R[t]/(tn)

gives the exact sequence

(∗) 0 −→ R −→ T
π2−→ R −→ 0

with

T = {(u, r) ∈ R[t]/(tn+1) × R : p(u) = Dn−1(r)}.
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This extension of k-algebras splits (determines the trivial extension) if and only if

Dn−1 lifts to Dn. Therefore the obstruction to lifting Dn−1 is the cohomology class

represented by (∗) in the module H1(k, R, R). This cohomology module agrees with

Grothendieck’s Exalcomk(R, R), but we do not discuss this further.

One might naively hope that H1(k, R, R) = 0 for many algebras, but this is seldom

the case for nonsmooth R, as the next example shows.

Example The cohomology module H1(k, R, R) need not vanish. If R =

k[x1, . . . , xd]/( f ), then H1(k, R, R) = R/( f1, . . . , fd), where fi is the i-th partial

derivative of f . For instance, if R = k[x, y]/(xy), then H1(k, R, R) = k 6= 0.

The example also shows that a direct approach using cohomology will be difficult.

For instance, using Corollaries 4.59 and 5.27 of André [1], we find that

H1(k, S−1R, S−1R) ∼= S−1H1(k, R, R).

Since we are given a truncated Hasse-Schmidt derivation on S−1R that extends to

an infinite Hasse-Schmidt derivation, the associated class of (∗) in S−1H1(k, R, R)

is zero. However, this is not enough to guarantee that the class of (∗) is zero in

H1(k, R, R); indeed, this module has support on the singular locus of R. For instance,

localizing by any nontrivial multiplicative set S in the example gives S−1H1(k, R, R) =

0. So a direct approach using localization results on cohomology appears to be fruit-

less. The next section collects some preliminary results, after which, we give a direct

proof of the localization conjecture for quotients of polynomial rings by monomial

ideals.

3 Preliminary Lemmata

Lemma 3.1 Let I be an ideal of a commutative ring R and x and y be elements of R.

Then
(

I : (I : x)
)(

I : (I : y)
)

⊂ I : (I : xy).

Proof Note I : (I : y) ⊂ (I : x) : (I : xy). Then:

(

I : (I : x)
)(

I : (I : y)
)

⊂
(

I : (I : x)
)(

(I : x) : (I : xy)
)

⊂ I : (I : xy).

When a = (a1, . . . , ad) ∈ N
d, then define the order |a| = a1 + · · ·+ad, the factorial

a! = a1! a2! · · · ad!, and the associated monomial xa
= xa1

1 · · · xad

d . For two multiex-

ponents a and b we say that a ≤ b if xa divides xb and we set
(

b

a

)

=

(

b1

a1

)(

b2

a2

)

· · ·
(

bd

ad

)

.

Lemma 3.2 Let {δn} be a Hasse-Schmidt derivation on R = k[x1, . . . , xd]/I. Each

δn is a differential operator of order less than or equal to n and for n > 0, δn =

∑

|a|≤n Pa
1
a!

∂|a|

∂xa , where

Pa =

∑

d
∏

j=1

a j
∏

k=1

δi jk
(x j)
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and the sum is over all tuples (i11, . . . , idad
) of order n, none of whose entries are zero. In

particular, the constant term of δn is zero.

Proof First use induction to see that δn is a differential operator of order less than

or equal to n. This is clear for n = 0 and the inductive step follows from

[δn, f ] =

n
∑

k=1

δk( f )δn−k.

So for n > 0 we can write δn =

∑

|a|≤n Qa
1
a!

∂|a|

∂xa . We aim to show that Qa = Pa. This

follows from comparing the expressions given by applying
∑

|a|≤n Qa
1
a!

∂|a|

∂xa and δn to

monomials xb:
(

∑

|a|≤n

Qa

1

a!

∂|a|

∂xa

)

(xb) =

∑

a≤b

Qa

(

b

a

)

xb−a

δn(xb) =

∑

a≤b

(

b

a

)

(

∑

d
∏

j=1

a j
∏

k=1

di jk
(x j)

)

d0(xb−a),

where the interior summation is over all tuples (i11, . . . , idad
) of order n, none of

whose entries are zero. The last statement of the Lemma can also be obtained from

the product rule using induction on n.

4 Monomial Algebras

Let I ⊂ k[x1, . . . , xd] be a monomial ideal with minimal monomial generators

m1, . . . , mt . Assume that the characteristic of k is p > 0. Define the ideals

Ii = (m j : p does not divide the exponent of xi in m j)

=

(

xi

∂m j

∂xi

: j = 1, . . . , t

)

.

When I = R we adopt the convention that Ii = R as well.

Theorem 4.1 Let {δn} be a Hasse-Schmidt derivation of R = k[x1, . . . , xd]/
(m1, . . . , mt ). Then {δn} induces a ring map D =

∑

dntn : R → R[[t]] with d0 = idR

and dn(xk) ∈ I : (Ik : xk) for n > 0.

Proof Assume that {δn} is a Hasse-Schmidt derivation. Fix n > 0. Then the algebra

map Dn : R → R[t]/(tn+1) induced by Dn(xi) =

∑n
k=0 δk(xi)t

k is a well-defined ring

homomorphism. Applying this map to any generator mu gives

Dn(mu) = mu + · · · + ∇mu · 〈δn(x1), . . . , δn(xd)〉tn ∈ IR[t]/(tn+1).

Since I is a monomial ideal, this implies δn(xk) ∂mu

∂xk
∈ I for all generators mu. That is,

δn(xk) ∈ I : ( ∂mu

∂xk
: u = 1, . . . , t). However, ( ∂mu

∂xk
: u = 1, . . . , t) = Ik : xk, so the

result holds for each index n.
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In the nonmodular case, the converse to this theorem is also true.

Theorem 4.2 Suppose that for each variable xi and each monomial generator mu,

the exponent of xi in mu is not divisible by the prime p and consider the ring R =

k[x1, . . . , xd]/(m1, . . . , mt ) of characteristic p. Then Ik = I for all k and each choice of

images δn(xk) ∈ I : (I : xk) for n > 0 induces a Hasse-Schmidt derivation {δn} on R.

Proof We need to check that the induced algebra map
∑∞

n=0 δntn : R → R[[t]] is

well-defined. It suffices to show that δn(mu) ∈ I for all n and all u = 1, . . . , t . Using

Lemma 3.2, δn(mu) =

∑

|a|≤n Pa
1
a!

∂amu

∂xa , where

Pa =

∑

d
∏

j=1

a j
∏

k=1

δi jk
(x j)

and the sum is over all tuples (i11, . . . , idad
) of order n, none of whose entries are zero.

Each δi jk
(x j) ∈ I : (I : x j) so by Lemma 3.1, Pa ∈ I : (I : xa). But 1

a!
∂amu

∂xa is either 0 or

a multiple of mu/xa; in either case, 1
a!

∂amu

∂xa ∈ I : xa. So Pa
1
a!

∂amu

∂xa ∈ I, as desired.

Example The conditions in Theorems 4.1 and 4.2 are not equivalent. For instance,

when I = (xp, x2 y3, xy4, y5) in k[x, y] with char k = p > 5, then I : (Ik : x) 6= I :

(I : x).

In the nonmodular case, these two theorems give necessary and sufficient con-

ditions for a collection of maps {δn} on a monomial ring to be a Hasse-Schmidt

derivation. In particular, they characterize the Hasse-Schmidt derivations of Stanley-

Reisner rings. Two remarks are pertinent here:

1. Every derivation in the nonmodular case is integrable, that is, it can be extended

to an infinite Hasse-Schmidt derivation. Integrable derivations play a key role in

the study of singularities in prime characteristic via derivational methods [5].

2. Since the conditions dn(xk) ∈ I : (I : xk) localize well, these theorems establish

the localization conjecture in the nonmodular case. We now give an argument

that verifies the conjecture for all monomial rings.

Theorem 4.3 The localization conjecture holds for all monomial rings R =

k[x1, . . . , xd]/(m1, . . . , mt ).

Proof Assume that D =

∑∞
n=0 δntn : S−1R → S−1R[[t]] defines a ring homomor-

phism. Then from Lemma 3.2, we see that

∑

d
∏

j=1

a j
∏

k=1

δi jk
(x j )

1

a!

∂amu

∂xa
∈ (m1, . . . , mt )S−1R.

https://doi.org/10.4153/CMB-2003-031-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-031-2


Localization of the Hasse-Schmidt Algebra 309

Pick δ̃n(x j ) ∈ R such that there is an sn ∈ S with δn(x j) = δ̃n(x j)/sn. Since the ideal

is monomial, we see that there exist sa and s̃a in S such that

sa

d
∏

j=1

a j
∏

k=1

δi jk
(x j)

1

a!

∂amu

∂xa
= s̃a

d
∏

j=1

a j
∏

k=1

δ̃i jk
(x j)

1

a!

∂amu

∂xa
∈ (m1, . . . , mt )R.

Now since the ring R is Noetherian, the ideal
(
∏d

j=1

∏a j

k=1 δ̃i jk
(x j)

1
a!

∂amu

∂xa

)

a
is

finitely generated. It follows that there exists a single s ∈ S such that

s
∏d

j=1

∏a j

k=1 δ̃i jk
(x j)

1
a!

∂amu

∂xa ∈ (m1, . . . , mt )R for all a. This implies that the collec-

tion s{δ̃n} is a Hasse-Schmidt derivation on R. In particular, snδ̃n ∈ HS(R) and so

δ̃n ∈ HS(R) ⊗R S−1R. Since δ̃n and δn differ by a factor in S, δn ∈ HS(R) ⊗R S−1R, as

desired.
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