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ON PICARD VALUES OF ALGEBROID FUNCTIONS
IN A NEIGHBOURHOOD OF A TOTALLY
DISCONNECTED COMPACT SET

JUNJI SUZUKI

1. Let E be a totally disconnected compact set in the z-plane and  its
complement with respect to the extended z-plane. Then 2 is a region.
Let {2,)7-, be an exhaustion of Q satisfying the following conditions:

1. 2,082, for every u,

2. for each »n, the boundary 402, of 2, consists of a finite number of
closed analytic curves,

3. each component of the open set &Q,, the complement of 2,
contains points of E,

4. the open set 2, — 2,., (n >1) consists of a finite number of doubly
connected regions R, (k=1,2, -+, N(n)).

We consider the graph associated with this exhaustion in the sense of
Noshiro [6]. Let u(z) + iv(z) be the mapping function of 2 — 2, into it and
L its Length (see [3]).

Let 8, be the level line {z|u(z) =7, 0<r< L} on 2. Then 8, consists
of a finite number of Jordan curves B, .(m=1,2, -, n(r)), except for a
countably many values of » which we shall exclude. Calling each component
of the open set 2, — 2,, n >k >0, an R-chain, we consider for such a 8,
the longest doubly connected R-chain R(8,,.) such that 8, , is contained in
R(B,.») or is one of two components of 9R(8,.) and denote by g(8,m) its
modulus. We can take a sequence {r,}5-(0<7,< L) such that r,—L as
n—o and for any two level lines

Br, = 1B} and B, = {B,,,,.5}5507
each R(g,,.) (i =1 to n(r,) has one boundary component in common with
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some R(B, .,.;)’s and we set

Ua = Kggr(lmﬂ(ﬁn,i).

Generally R, , may branches off into a finite number of R, .jn If
every R, m=1,2,+++; k=12,+++, Nn) branches off into at most p
regions R,.;m, we say that the exhaustion {£2,} branches off at most p times
everywhere.

In his paper [4], Matsumoto proves the following theorem: If 2 has
an exhaustion which branches off at most p times everywhere and

lim 2, = oo,
then every single-valued meromorphic function in Q with at least one essential singularity
in E has at most p+ 1 Picard values in Q at each singularity.

Here a Picard value in 2 at a singularity {€E is a value which is not
taken in the intersection of 2 and some neighbourhood of &.

In this note, we shall establish an extension of the above theorem to
the case of algebroid functions, which we state here in the following

TueoreM. If Q has an exhaustion which branches off at most p times every-

where and

: J o2 -
(1) ll—rgo 1+ (logk)logn s

then every k-valued algebroid function in Q with at least one essential singularity in
E has at most k(o + 1) Picard values in Q at each singularity.

Owing to the result of Dufresnoy [2], we can apply the arguments of
[4] to our case. In the sequel, we shall give a proof only for p = 2, When
p =1, the set E reduces to one point and our assertion is just the Picard
theorem for algebroid functions (Rémoundos [8]). The other cases when
p>2 can be taken care of in the same way as in p = 2.

2. Before proving our theorem, we give two lemmas. We shall consider
the Riemann sphere 3 with radius 1/2 tangent to the ¢-plane at the origin.
For £ and ¢’ in the extended ¢-plane we denote by {£,¢] their chordal
distance. Further let C(£,d) with & >0 be the spherical disk with center ¢
and chordal radius 4.
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Let f be an n-valued algebroid function in an annulus R: | < |z] <e”
(¢ >0) omitting 3n + 1 values §; (i =1,--+,3n+1) and let ¥; be the n-
sheeted covering surface over R generated by f. We denote by C,,C,, * + «,
C,(p < n) the closed curves on X over the circle {z| =e¢/2 in R and by
Py(z), « « -, P(2) {(g<n) the points on ¥, over a point z in R. We take 6 >0
so small that the spherical disks C({;,6) are disjoint by pairs.

In order to obtain the first lemma, we use the Schottky theorem for
algebroid functions established by Dufresnoy [2]:

Let g(2) be an n-valued algebroid function in |z] < R omitting 2n + 1
values w;(i =1 to 2n+1), one of them being the point at infinity. If
19.(0)] < M, for all branches g, of g and some M, >0, then

An log(1l 4+ M,) + BK*

R—7r
R

1
ﬂl‘zzujlg(z)l < exp + -5 logn]

for all »<< R, where A and B are absolute constants and K depends only
on 112}2][442)& z{)j] and not on g.

LEmMa 1. There exists a positive constant &' such that, if the values f(Pi(z))
(A=1 to q) lie outside of C(&;,8) for some i1<i<3n+1) at a point z on
l2] = e’?, then the images of C,n =1 to p) lie completely outside of the concentric
disk C(&;,6'). Here &' depends only on n,8 and min[;,&;] and not on f.

1<i<f<ant1

Proof. By the Schottky theorem, we can see easily that, if an n-valued
algebroid function g(z) in 1< [2] < e® omits 2n + 1 values w;(i =1 to 2rn + 1)
one of them being the point at infinity, and Irﬁi:rivg/r:‘(z) < M with
9% (2) = mag1 lg.(z)] for some M >0, then there exists a positive constant M’

z)
1<y

depending only on M and ¢ such that

max [g(z)] < M.

|z)=ec/2

We may assume that {;=o0, for otherwise, it is sufficient for us to consider
the transformation R,(&) = 1—""_%;; under which the chordal distance re-

mains invariant. Let [{| > M bé the region in the extended ¢-plane cor-
responding to C({;,8). For this M and fixed 2n + 1 exceptional values
i vt *s8s,, Of &I =1 to 3k+1), f(z) has the same properties as g stated

above and hence
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(2) [f@I <M on [z]=e"

with M’ > 0 depending on M,¢ and min[{y, %,‘,q]. Since (2” 1Y js finite, we
+

] 1<p<q<in 3n+1
can take M* >0 independently of the choice of 2n 4+ 1 exceptional values

i+ * *+Cspmy, Such that f(z) satisfies (2) with M*. If we denote by &’ the

radius of the spherical disk corresponding to the region [¢{| >M* in the
extended ¢-plane, then this § satisfies all the conditions of the lemma.

3. In order to establish the second lemma, we shall be concerned with the
distance between two systems, which was introduced by Dufresnoy [2].

We consider only the systems consisting of » + 1 complex numbers, all
of which are not zero simultaneously. Let

= (1 ( (1 — 2 2
w® = (wi®, w®, « « -, wP) and w® = (W, w?, - -, wP

be two systems and if w® is proportional to w®, i.e. for all i and some
constant ¢ (¢ #=0), w{¥ = cw'®, we identify w® with w®. We set

,%lw(i”w(f” — PP
WD, w7 = .
3) (LoD, 1 ‘T‘" w5 w; 2
1

Then this satisfies three axioms for the distance and we call [[w®,w®]] the
distance between two systems w® and w®. From (3), we can easily deduce
that an inequality

S — wp|?

(4) [[w(l)’ w(2>]]2 < _V__—_W
holds.

Let
(5) @z +az"t 4 +a, =0
(6) asz" +afzrt 4 -0 +ak =0

be two algebraic equations whose coefficients consist of the systems
a=(ay,a,--*,a,) and ¢* = (ag,af, « + -, a3),

respectively. Then using the distance (3), the theorem [2] on continuity of
roots of algebraic equations is described as follows:

Let zy,2, * * *,2, and z%,2%, + - +, 2% be the roots of the equations (5) and
(6), respectively. Then if [[a,a*]] is sufficiently small, we can associate each
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z(i =1 to n) with some z¥1 < i < #n), say z; with z¥, such that

1
[z 2%] < 8ella, a*]1 " (i =1 to n)

where [ , 1] is the chordal distance.

4. Let f be an n-valued algebroid function in R:1< |z] <e*, #>0, and
¥z be the same as in §2 corresponding to R. We denote again by
C,Cyy + + +,C, (p < m) the closed curves on ¥z over [z] = e~?. Then we have:

LemMa 2. If f takes no value in a spherical disk C(&,,8), 6 >0, then there
exists a positive constant A depending only on & and n such that for every i (1< i < p)
the diameter of the image of C, under f in terms of the chordal distance is dominated
by Ae~+** for sufficiently large p.

In particulier, if & is sufficiently close to 1, i.e. the spherical disk C(— 1/, d)
complementary to C(&y,8) has a sufficiently small radius d, then

1

A< Bd™

where B is a positive constant depending only on n.

Proof. We may assume without loss of generality that the center of
C(&y,0) is the point at infinity, for otherwise we can map ¢, to the point at
infinity by the linear transformation 1*"'_;05— under which the chordal dis-
tance remains invariant. Let |¢] > M be tﬁe region in the extended ¢-plane
corresponding to C(&y,8). Then [f(z)] < M on 1< |z] < e~

We consider the defining equation of f:

FU 4+ S vt e s+ Sa(2) =0

where each S;(z) is single-valued and meromorphic in 1< ]z| < et Since
each S;(z) is a fundamental symmetric function of » branches f,(v =1 to =)
of f and |f,| <M for all v(»=1 to n), |S;(z)| < (:)M* and hence for all
i(i=1 to n) and M, = max (})M’,

1I<ign
18:(2)] < M,.

By Cauchy’s integral formula,

st0= el | g § e
[t]=e# l¢j=1

https://doi.org/10.1017/50027763000013829 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013829

6 JUNJI SUZUKI

for every z on |z] = ¢** and hence, if ¢ > 2, then

M, 2mer 2 2¢?
ISita) | < =57 {(el‘—eﬂ/“’)z (/2 — 1)t } S o= M
and S IS:(Z)]',dZI< ( )2 M1e—P, 2mer/? = (47[81)2 M;e w2,
|z|=etr2

Therefore we have for any two points z, and z, on |z]| = e?,

7 ISi(20) = Sue)| < ;5 Mie® (i =1 to ).

For these two points z, and z,, we consider two algebraic equations:

P4 Silzg) Pt 4 oo +S,(20) =0 and  f" 4 Sy(z) P 4 o+ S,(2) =0
Then the roots of these equations are values taken by » branches of f at
z =2z, and z;:

S1(20)y fol2o)s * = =y fal20)s Fay(21)s fay(22)y * * oy far(20)e

By the theorem in §3, we can associate each f;(z,) (i =1 to x) with some
Sfalz) 1< i< m), say fi(z,) with f,(z), such that for all i,

L

(8) [fi(z0), fu,(21)1<8el[S(z,), S(z))11"
where S(z,) and S(z;) are the systems
(1, Si(zo)y Sa(z0)y * * 4 Salze) and (1, S(zy), Salzy), * + *, Salzy)
respectively.
Applying the inequality (4) to (8) and using (7), we have for all i,

P

1 2 1 a __H
©) [mmﬁmm&wﬂvgyMyeM=me%

Next we denote by K, the spherical disk with center f;(z,) and

.
radius M,e . We continue a branch f; analytically along |z] = ¢*”* from

z, to z;. If we obtain a branch f,, by this continuation, then we have
[fi(zo)’ faj(zl):' < ane-"/2".

In fact, if we denote by 7 the curve on the sphere corresponding to this
analytic continuation, 7 is covered by at most p spherical disks K;(i =1 to
p < n), because each point on 7 must be contained in at least one spherical
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disk of K; from (9). Now noting that z, is an arbitrary point on |z] = ¢"*
we have the desired result with

A= Aln,d) = nM,.

n
If d < 7, then M<2d <1, M,< (l:z ])M and hence
n

B = B(n) =8en%[~ 4”62 - ([ }) 2}*

satisfies our condition.

5. Our theorem will be proved by contradiction. Suppose that there exists
a k-valued algebroid function f on @ with at least one essential singularity
in E and with more than 3k Picard values at an essential singularity z,€E.
Let

(10) FEH Si@) e+ e e 4 Si2) =0

be the defining equation of f with each S,(z) meromorphic in @. Then
there is a neighbourhood U(z,) of z, such that f omits 3k+ 1 values &,
(i=11t03k+1)in Ulz)N2. We take a positive § so small that the spherical
disks C(¢;,8) (i =1 to 3k + 1) are disjoint by pairs. For this § and a ¢ >0,
Lemma 1 determines §’ >0. We take this 6’ as ¢ of Lemma 2 and choose

2, so large that

Ae~Fo/2k < K = mln[ 6k 5?:-], Be~#?t < K

1‘;7”6 to=s>1 (f k>1)

where A and B are the constants of Lemma 2. By our assumption (1) there

is an n, >0 such that

1 Gfk>1)

a2 > =
1 + (logk)logn > ot 20 (n nO)’ n‘:“'no

and so

P _logk_ - M
o Zk + o tologn = op + logn®

Aemin/2h < Agro/?k %1 < 7nK Bemim /2t < _114(7
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The level line B, = {z]u(z) = r} consists of a finite number of Jordan
curves B, ., with m =1 to =n(r), and one of them, say B,,, encloses z,, For
r sufficiently near L the longest doubly connected R-chain R(8,,) = D,, for
B,.; defined in §1 coincides with one of R(ﬁ,ﬂ;,i) (i=1 to n(ry)) for some
7ap (n§>m,) and is contained in U(z,). Thus the modulus of D,,, is not less
than g,; and hence greater than g,+ 20 but is not infinite for otherwise z,
would have to be isolated and f could not have 3k + 1 Picard values at z,.
Therefore D;,, must branch off. Now suppose that D,, is a component of
the open set 2, — 2,,, with » >n’, and branches off into two regions R,.,,,
and R,.,,... Consider the longest doubly connected R-chain D,, and D,,
containing R,.;. and R,., ., respectively. They both have moduli not less
than g,;., and hence greater than g, + 2s and one of them, say D,,, sepa-
rates z, from D,,. Its modulus is finite for the same reason as above.
Hence D,, is a component of the open set 2;— 2, for some #>#n and
branches off into two regions Rj.;. and Ri.;.... We denote by Dy, and
D;,, the longest doubly connected R-chains containing them. If the modulus
of D,, is infinite, one of the boundary components of D,, is a point z,€E
and f is algebroid at z;. If the modulus is finite we obtain two R-chains
D;; and D,,, in the same manners as above. Thus we have at most 22 R-
chains D;,, such that their harmonic moduli are not less than g,;., and so
greater than g, + 20, and one of them encloses z,, Moreover each of them
branches off into two regions if the modulus is finite, or has a point z,€E
as one of its boundary components at which f is algebroid if the modulus
is infinite,

Continuing inductively we obtain a set of R-chains D, , with p =1,2,

-+ and ¢=1,2,- -, Q(p)<2’!, which has the following properties;

o Qp) _ . . . .
() U U D,,o4, where 4 is the intersection of £ with the set bound-
p=14¢=1

ed by the Jordan curve g,,,,

(b) the modulus of each D,, is not less than g,;.,., and so greater
than g, + 20,

(c) each D, , branches off into two regions D,.,, if the modulus of
D,,, is finite, or

(c') each D,, has a point z;€E as one of its boundary components
and f is algebroid at z, if the modulus of D,,, is infinite. In this case we
shall denote the point z, by z,,, and the value f(z,.,) by &y
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Let ¥, be k-sheeted covering surface over 2 generated by f. For any
connected subset C of 2, the part of ¥, over the set C consists of at most k, say
p(C) < k, connected components and we denote them by X4(C) (i =1 to p(C)).

Each D,,, is conformal equivalent to the annulus 1< [¢] < e, where p
is the modulus of D,, If g< o, we denote by D}, D, and D}, the
subregions of D,, corresponding to the annuli 1< [#] <es, o< |E] < e
and e* < |¢] < e#, respectively and by gl,, 82, and B}, the closed curves
corresponding to [#] = e*/?, |¢| = e~? and [¢]| = e*~/%, respectively.

We shall see that for every i (1< i< p(B%,)) the diameter of the image
of X5(82.¢) under f with respect to the chordal distance is dominated by
K/(nj+ »—1). In fact, for 2’8, and z’€8},, the image of f(P,(z’)) and
f(Pi(z") lie outside of at least one C(¢;,d), say C(&,,8), where P,(z’) and Pjz")
are the points of ¥, over z’ and z’/, respectively. Applying Lemma 1 to
D}, and D},, we see that for all i, (1 <4, < p(B8hq)) and 5(1 < i3 < p(B.0)),
the images of X¥}'(8}..) and Xi*(83,) lie completely outside of C(¢;,s’). Con-
sequently ¥5(D2q) (=1 to p(D2,)) lie completely outside of C(¢,,d’) by the
maximum principle. Since for any i, ¥}:(8%,) is contained in one of the
components X}(D3 ), say ¥3(D2,), and the modulus of D, is not less than
tny+p-1 and hence greater than g, + 26 Lemma 2 applied to ¥}(D3,) leads
us to our assertions.

Each D,.,, with p>1 has in common with another D,.,v a D,,
branching off into them, and we shall denote by 4,,, the triply connected
region bounded by 82,, B2.1.co and 82,1, ¢» Where 82,10 =2p11.¢ OF Bii1.an="2Zps1,q7s
if Dys1,gy OF Dpyy,er has infinite modulus. For 9, f(¥3(82..)) (A=1 to p(Bi.)),
9.€ f&5(B341.0)) (=1 t0 P(B3+1.0) and 9,€ f(X(Bhs1.0) (v =1 t0 D(BFe1.0)),
we consider at most 3k spherical disks C(9,, K/n§’) (A=1 to p(B83)), C(3,
Kl(ng+1)°) (#=1 to p(B1.0)) and C@,, Kl(ng +1)°) (v=1 to p(Bis.an)s
respectively. Since K< /3 there exists at least one ¢, say &, not con-
tained in the disks. Let %i(4,, be a component above the region 4,.,,.
We assume that the boundary curves of ¥i(4,,) consist of ¥3(8%,) (A=1 to
P(Bha) < P(Bha))s En(Bisrna) (=1 to P*(Bhrie) < p(Bhe1e)) and X5(B3er.a)
(v=1to p'(Bl+1.0n) < P(B+1,0n). Then the union

P8} ‘Biir,ar B3 41.qn

\q) ) )
C 0 o kol 0w, K+ 000l 0", K+ 1))
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must be connected. In fact, if this were not the case, there would exist a
point PeXj(4,.,) such that f(P) can be joined to & by a curve 4 in the
exterior of the union. We would be led to the contradiction that the
element of the inverse function f~! corresponding to P can be continued
analytically along 4 up to a point arbitrarily near ¢, so that f takes the

value ¢, in ¥i(4,,. We conclude:

() For every 4,, and every component ¥j(d,,), there is a spherical

‘disk with the chordal radius k(?zgf + 2 717&%_—{)—3«) <3k- %I%T containing its
image f(Z}(4,.).

Next consider g3, for p > 2. The region 4,, and some 4,.,, have
8%, as the common boundary and any component ¥}(4,,Ud,-;,,UB2,)
consists of some components ¥}:(4,,), and some components %}*(d,-,,,) and
some closed curves ¥}:(83,). Therefore, in view of (a), the image of
Xi(4,,,UBEqUdy y,y), consequently that of every component ¥}(D2,) con-
tained in Xi(4,,,UpB%q Ud,-,y) is contained in a spherical disk with chordal
radius 6k2K/n{* < 1/2. On applying Lemma 2 to every ¥5(D32,, ) for d = 6k*K[n}*,
we see that the diameter of every ¥;(82,) is less than (6k%)Y*.(K[nj* )%
Be#m*1/2k . For p > 2 and every component ¥i(4,,.), each boundary com-
ponent of ¥j(4,, has an image with diameter less than (6k%)"%. (K/n{*)"/*-
(K|(n§ + -1)’).‘ By the same reasoning as above we infer:

(8) For p>2, the image of every component Xi(4,, is contained in
a spherical disk with chordal redius 3k- (6k%)* - (K/n{*)"*(K|(n{ + 1)°).

By induction we deduce for every y:

(1) For p >y, the image of every component Xi(4,, Is contained in

a spherical disk with chordal radius
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Let 4’ be the intersection of 2 and the region bounded by-a Jordan
curve g%, and let z* be a point of g¢,. Then it follows from the property
(a) of {D,,,} that

o Q(p) _
dc U Ud,,

p=1 g¢=1
and consequently for any z’€4’ there is a 4,,,,, whose closure contains z’.
Let P(z*) and P(z) be any two points on ¥, over z* and 2z’ and let ¥3(4,,,)
and ¥}(4,,,,,) be the components containing P(z*) and P(z’) in their closures,
respectively. By (7) we have for a chain of ¥j(4,, joining ¥i(4,, and
X5(4p1.0)s

LA (P(), F(P)]= 3] diam. £ (25(d,.0)

(6k?)° S 1 k) 1 1
STon K X0 ST e ook kY
AP, FPEN < 35 6K < 5 X () <5 (k= 1.

We may assume that ¥,(4’) consists of a single component with £ sheets.
Therefore the image of ¥,(4’) under f can be covered by some spherical
disk with chordal radius 1/2. By means of a linear transformation we
conclude that f is bounded on ¥,(4’) and hence all coefficients S;(z) of
defining equation (10) of f are bounded and single-valued in 4’. On the
other hand, on applying the criterion of Pfluger [7]-Mori [5] (cf. App. I of
[9)) to the annular regions {D,,,} we easily see that the part E’ of E con-
tained in the region bounded by g%, is an Ngset in the sense of Ahlfors-
Beurling [1]. Hence each point of E’ must be a removable singularity of
Si(z) (i =1 to k). This contradicts our assumption that z,€E’ is an essential
singularity of f and we conclude that f cannot omit 3k + 1 values in @ at
2. Thus our theorem is proved completely.
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