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Abstract Let C∗-algebras A and B be Morita equivalent and let X be an A–B-imprimitivity bimodule.
Suppose that A or B is unital. It is shown that X has the weak Banach–Saks property if and only if it
has the uniform weak Banach–Saks property. Thus, we conclude that A or B has the weak Banach–Saks
property if and only if X does so. Furthermore, when C∗-algebras A and B are unital, it is shown that
X has the Banach–Saks property if and only if it is finite dimensional.
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1. Introduction

First we briefly review the definition of the Banach–Saks property in Banach spaces.
Historically, Banach and Saks showed that every bounded sequence in Lp([0, 1]) with
1 < p < ∞ has a subsequence whose arithmetic means converge in the norm topology
(see [1]). More generally, if every bounded sequence {xn} in a Banach space X has a
subsequence {xn(k)} such that

lim
k→∞

∥∥∥∥1
k

(xn(1) + xn(2) + · · · + xn(k)) − y

∥∥∥∥ = 0

with some y ∈ X, we say that X has the Banach–Saks property. Note here that Banach
spaces with the Banach–Saks property are reflexive.

It is well known that the weak Banach–Saks property is one of the most important
properties in Banach spaces. We recall here the definition of the weak Banach–Saks
property. Let X be a Banach space. If, given any weakly null sequence {xn} in X, one
can extract a subsequence {xn(k)} such that

lim
k→∞

1
k

‖xn(1) + xn(2) + · · · + xn(k)‖ = 0,

then we say that X has the weak Banach–Saks property. Furthermore, there is a slightly
stronger version of the weak Banach–Saks property introduced by Nuñez [10]. We say
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186 M. Kusuda

that a Banach space X has the uniform weak Banach–Saks property if there is a null
sequence {δn} of positive real numbers such that, for any weakly null sequence {xn} in X

with ‖x‖ � 1 and for any natural number k, there exist natural numbers n(1) < n(2) <

· · · < n(k) such that
1
k

‖xn(1) + xn(2) + · · · + xn(k)‖ < δk.

In the theory of C∗-algebras, Chu [3] has studied C∗-algebras with the weak Banach–
Saks property in detail, as a noncommutative extension of characterizations of the Banach
space, of complex continuous functions on a compact Hausdorff space, with the weak
Banach–Saks property. Later, in [5] the author has shown that the weak Banach–Saks
property in C∗-algebras is invariant under Morita equivalence. More precisely, let C∗-
algebras A and B be Morita equivalent, that is, we suppose that there exists a Hilbert
C∗-module X called an A–B-imprimitivity bimodule. We then consider the following
conditions:

(1) A has the weak Banach–Saks property;

(2) B has the weak Banach–Saks property;

(3) X has the uniform weak Banach–Saks property.

In [5, Theorem 2.3], Kusuda has shown that (1) ⇐⇒ (2) =⇒ (3), and that if either
A or B is unital, then conditions (1)–(3) are equivalent. We remark that the uniform
weak Banach–Saks property always implies the weak Banach–Saks property. Hence, con-
dition (3) implies that X has the weak Banach–Saks property. So, under the assumption
that either A or B be unital, it still remains to ask whether, if the above imprimitivity
bimodule X has the weak Banach–Saks property, then conditions (1) and (2) hold, or in
other words, whether, if X has the weak Banach–Saks property, then it has the uniform
weak Banach–Saks property. In Theorem 2.2, we shall show that this problem can be
answered in the affirmative.

Note that the weak Banach–Saks property and the uniform weak Banach–Saks prop-
erty are not equivalent in general, as is shown in [10, Theorem 7]. Hence, it would be
interesting to investigate Banach spaces for which the weak Banach–Saks property and
the uniform weak Banach–Saks property are equivalent. For example, C∗-algebras are
such Banach spaces, which was shown by Chu [3, Theorem 2]. As a corollary to our main
theorem, we obtain the result that a full Hilbert C∗-module X over a unital C∗-algebra
has the weak Banach–Saks property if and only if X has the uniform weak Banach–Saks
property.

In § 3, we discuss the Banach–Saks property in full Hilbert C∗-modules. In general, the
Banach–Saks property in C∗-algebras cannot be preserved under Morita equivalence. But
it will be shown that the Banach–Saks property is preserved under Morita equivalence
for unital C∗-algebras. Furthermore, we then show that X has the Banach–Saks property
if and only if it is finite dimensional.
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2. The weak Banach–Saks property in Hilbert C∗-modules

Recall the definition of a Hilbert C∗-module. Let A be a C∗-algebra. By a left Hilbert
A-module (or a left A-Hilbert module), we mean a left A-module X equipped with an
A-valued pairing 〈· , ·〉, called an A-valued inner product, satisfying the following condi-
tions:

(H1) 〈· , ·〉 is sesquilinear. (We make the convention that 〈· , ·〉 is linear in the first variable
and is conjugate-linear in the second variable.)

(H2) 〈x, y〉 = 〈y, x〉∗ for all x, y ∈ X.

(H3) 〈ax, y〉 = a〈x, y〉 for all x, y ∈ X and a ∈ A.

(H4) 〈x, x〉 � 0 for all x ∈ X, and 〈x, x〉 = 0 implies that x = 0.

(H5) X is a Banach space with respect to the norm ‖x‖ = ‖〈x, x〉‖1/2.

Furthermore, X is said to be full if X satisfies the following additional condition:

(H6) the closed linear span of {〈x, y〉 | x, y ∈ X} coincides with A.

Let B be a C∗-algebra. Right Hilbert B-modules are defined similarly except that
we require that B should act on the right of X, that the B-valued inner product 〈· , ·〉
should be conjugate-linear in the first variable, and that 〈x, yb〉 = 〈x, y〉b for all x, y ∈
X and b ∈ B. We denote by A〈· , ·〉 the A-valued inner product on the left Hilbert
A-module and by 〈· , ·〉B the B-valued inner product on the right Hilbert B-module.
By an A–B-imprimitivity bimodule, we mean a full left Hilbert A-module and full right
Hilbert B-module X satisfying the following condition:

(H7) A〈x, y〉 · z = x · 〈y, z〉B for all x, y, z ∈ X.

We recall here that two C∗-algebras A and B are said to be Morita equivalent if there
exists an A–B-imprimitivity bimodule. We remark that, in this paper, Morita equivalence
means strong Morita equivalence in the sense of Rieffel (see [11, Remark 3.15]). The
reader is referred to [9,11] for Hilbert C∗-modules and Morita equivalence.

Let {Xi}m
i=1 be a finite family of Hilbert A-modules Xi with A-valued inner product

〈· , ·〉i. Then we denote by
⊕m

i=1 Xi the direct sum of {Xi}, which admits a Hilbert
A-module structure in a natural way. Note that the A-valued inner product 〈〈· , ·〉〉 on⊕m

i=1 Xi is defined by 〈〈 m⊕
i=1

yi,

m⊕
i=1

zi

〉〉
=

m∑
i=1

〈yi, zi〉i.

The following lemma plays a key role in the proof of Theorem 2.2. Throughout this
paper, by a Hilbert A-module we mean either a left Hilbert A-module or a right Hilbert
A-module unless we need to specify whether the action of A on the Hilbert A-module is
left or right.
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Lemma 2.1. Let A be a C∗-algebra and let X and Y be Hilbert A-modules. Then
both X and Y have the weak Banach–Saks property if and only if the direct sum X ⊕ Y

does so as a Hilbert C∗-module.

Proof. Regarding X ⊕ Y as the direct sum of Banach spaces X and Y , consider the
norm ‖ · ‖1 on X ⊕ Y given by ‖x ⊕ y‖1 = ‖x‖ + ‖y‖. We denote by the same symbol
〈· , ·〉 each A-valued inner product on X and on Y unless there is a danger of confusion.

Suppose that both X and Y have the weak Banach–Saks property. For any x ∈ X and
y ∈ Y , we have

〈x, x〉, 〈y, y〉 � 〈x, x〉 + 〈y, y〉

in A. Hence, we see that

‖x‖2, ‖y‖2 � ‖x ⊕ y‖2 = ‖〈x, x〉 + 〈y, y〉‖ � ‖〈x, x〉‖ + ‖〈y, y〉‖,

and furthermore that

‖〈x, x〉‖ + ‖〈y, y〉‖ = ‖x‖2 + ‖y‖2 � (‖x‖ + ‖y‖)2 = ‖x ⊕ y‖2
1.

Thus, we obtain
1
2‖x ⊕ y‖1 � ‖x ⊕ y‖ � ‖x ⊕ y‖1, (∗)

that is, the norms ‖ · ‖1 and ‖ · ‖ are equivalent.
Let {xn ⊕ yn} be any weakly null sequence in the Hilbert C∗-module X ⊕ Y . Then it

follows from the equivalence of ‖ · ‖1 and ‖ · ‖ that {xn ⊕ yn} is a weakly null sequence
also in the Banach space X ⊕Y with the norm ‖ · ‖1. Since the Banach space X ⊕Y with
the norm ‖ · ‖1 has the weak Banach–Saks property (see [10, Theorem 5]), there exists
a subsequence {xn(k) ⊕ yn(k)}k of {xn ⊕ yn} such that

lim
k→∞

∥∥∥∥1
k

k∑
i=1

(xn(i) ⊕ yn(i))
∥∥∥∥

1
= 0.

Thus, it follows from (∗) that the subsequence {xn(i) ⊕ yn(i)} satisfies

lim
k→∞

∥∥∥∥1
k

k∑
i=1

(xn(i) ⊕ yn(i))
∥∥∥∥ = 0,

which shows that the Hilbert C∗-module X ⊕ Y has the weak Banach–Saks property.
The converse direction follows from the fact that the weak Banach–Saks property

passes to closed subspaces. �

Since Morita equivalence is an equivalence relation between C∗-algebras, it is important
to investigate which properties in C∗-algebras are invariant under Morita equivalence.
Then it is natural to expect that imprimitivity bimodules must contain sufficient informa-
tion on properties in C∗-algebras invariant under Morita equivalence (see [5–8] for some
results with such a viewpoint). The following theorem means that the weak Banach–Saks
property is one of such properties.
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Theorem 2.2. Let two C∗-algebras A and B be Morita equivalent and let X be an
A–B-imprimitivity bimodule. Consider the following conditions:

(1) A has the weak Banach–Saks property;

(2) B has the weak Banach–Saks property;

(3) X has the weak Banach–Saks property.

Then we have the implications (1) ⇐⇒ (2) =⇒ (3). If either A or B is unital, then
conditions (1)–(3) are equivalent.

Proof. In [5, Theorem 2.3], it was shown that each of conditions (1) and (2) imply
that X has the uniform weak Banach–Saks property. Hence, we have the implications
(1) ⇐⇒ (2) =⇒ (3). Suppose that either A or B is unital. So, without loss of generality,
we assume that A is unital, and now we show (3) =⇒ (1). Since X is a full left Hilbert A-
module equipped with the A-valued inner product A〈· , ·〉 and since A is unital, it follows
from [11, Lemma 5.53] that there is a finite subset {yk}m

k=1 in X such that

∥∥∥∥
m∑

k=1
A〈yk, yk〉 − 1

∥∥∥∥ < 1.

Then a =
∑m

k=1 A〈yk, yk〉 is invertible in A. If we put xk = a−1/2yk, then {xk}m
k=1 ⊂ X

satisfies that
∑m

k=1 A〈xk, xk〉 = 1. Now we fix the natural number m and {xk}m
k=1.

Take any weakly null sequence {an} in A, that is, an → 0 weakly in A. To show
condition (1), we have to show that there exists a subsequence {an(k)} of {an} such that

∥∥∥∥1
k

k∑
i=1

an(i)

∥∥∥∥ → 0, k → ∞.

We remark here that, for each x ∈ X and each ϕ ∈ X∗, the linear functional A � a →
ϕ(ax) belongs to A∗. Since an → 0 weakly, we see that, for each x ∈ X, the sequence
{anx}n in X weakly converges to 0.

Consider the finite direct sum

m⊕
X =

m times︷ ︸︸ ︷
X ⊕ X ⊕ · · · ⊕ X .

Recall now that
⊕m

X has a left Hilbert A-module structure with the A-valued inner
product 〈〈· , ·〉〉 defined by

〈〈 m⊕
i=1

yi,

m⊕
i=1

zi

〉〉
=

m∑
i=1

A〈yi, zi〉.

It then follows from Lemma 2.1 that
⊕m

X has the weak Banach–Saks property. Since
{an(x1⊕x2⊕· · ·⊕xm)}n is weakly convergent to 0 in

⊕m
X, we can extract a subsequence
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{an(k)(x1 ⊕ x2 ⊕ · · · ⊕ xm)}k from {an(x1 ⊕ x2 ⊕ · · · ⊕ xm)}n such that

lim
k→∞

1
k

∥∥∥∥
k∑

i=1

an(i)(x1 ⊕ x2 ⊕ · · · ⊕ xm)
∥∥∥∥ = 0.

Then we see that

∥∥∥∥
〈〈

1
k

k∑
i=1

an(i)(x1 ⊕ x2 ⊕ · · · ⊕ xm), x1 ⊕ x2 ⊕ · · · ⊕ xm

〉〉∥∥∥∥ → 0.

On the other hand, we have

〈〈
1
k

k∑
i=1

an(i)(x1 ⊕ x2 ⊕ · · · ⊕ xm), x1 ⊕ x2 ⊕ · · · ⊕ xm

〉〉

=
1
k

k∑
i=1

〈〈an(i)(x1 ⊕ x2 ⊕ · · · ⊕ xm), x1 ⊕ x2 ⊕ · · · ⊕ xm〉〉

=
1
k

k∑
i=1

(
an(i)

m∑
j=1

A〈xj , xj〉
)

=
1
k

k∑
i=1

an(i).

Hence, we obtain

lim
k→∞

1
k

∥∥∥∥
k∑

i=1

an(i)

∥∥∥∥ = 0,

which completes the proof. �

Let A be a C∗-algebra and let X be a Hilbert A-module with A-valued inner product
〈· , ·〉. For convenience, without loss of generality we suppose that X is a right Hilbert
A-module. We define the linear operator θx,y by θx,y(z) = x · 〈y, z〉 for all x, y, z ∈ X. We
denote by K(X) the C∗-algebra generated by the set {θx,y | xy ∈ X} (see [11, Proposi-
tion 2.21 and Lemma 2.25]). Then X is a K(X)–A-Hilbert bimodule. If X is a full right
Hilbert A-module, then it is a K(X)–A-imprimitivity bimodule [11, Proposition 3.8].

Chu [3, Theorem 2] showed that a C∗-algebra has the weak Banach–Saks property
if and only if it has the uniform weak Banach–Saks property. Thus, we have reached a
question of whether a Hilbert C∗-module with the weak Banach–Saks property has the
uniform weak Banach–Saks property. An answer to the question is given by the following
result.

Corollary 2.3. Let A be a unital C∗-algebra and let X be a full Hilbert A-module.
Then X has the weak Banach–Saks property if and only if it has the uniform weak
Banach–Saks property.
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Proof. Suppose that X has the weak Banach–Saks property. Without loss of gener-
ality, we assume that X is a right Hilbert A-module. Since X is a full Hilbert A-module,
it is a K(X)–A-imprimitivity bimodule. It then follows from Theorem 2.2 that A has the
weak Banach–Saks property. By [5, Theorem 2.3], this assertion implies that X has the
uniform weak Banach–Saks property. �

3. The Banach–Saks property

First we give an easy characterization of C∗-algebras with the Banach–Saks property,
which will be used below. If a Banach space has the Banach–Saks property, it is reflexive.
Hence, we have the following.

Lemma 3.1. Let A be a C∗-algebra. Then A has the Banach–Saks property if and
only if A is finite dimensional.

For a C∗-algebra A, we denote by Â the spectrum of A, that is, the set of (unitary)
equivalence classes [π] of non-zero irreducible representations π of A equipped with the
Jacobson topology. The reader is referred to [11] for the spectrum of a C∗-algebra.

Now we prove that the Banach–Saks property in unital C∗-algebras is preserved under
Morita equivalence.

Lemma 3.2. Let unital C∗-algebras A and B be Morita equivalent. Then the following
conditions are equivalent:

(1) A is finite dimensional;

(2) B is finite dimensional.

Proof. By symmetry, it suffices to show the implication (1) =⇒ (2). Since A is finite
dimensional, A is isomorphic to

⊕n
i=1 Mi with some matrix algebras Mi. Hence, it follows

that the spectrum Â of A is a finite set, which is clearly a discrete space. Since A and B

are Morita equivalent, Â and B̂ are homeomorphic by the Rieffel homeomorphism. Hence,
B̂ is also a finite space equipped with discrete topology. Since type I-ness in C∗-algebras
is preserved under Morita equivalence, B is also a C∗-algebra of type I. Thus, B is the
finite direct sum of closed ideals {Ji} each of which is isomorphic to the C∗-algebra
of all compact operators on some Hilbert space. Since B is unital, each Ji has also an
identity. Hence, each Ji must be isomorphic to some matrix algebra. Thus, B is finite
dimensional. �

Remark 3.3. In the above lemma, the assumption that both C∗-algebras A and B

be unital is essential. In fact, let H be an infinite-dimensional Hilbert space and C(H)
be the C∗-algebra of all compact operators on H. Then H is a C–C(H)-imprimitivity
bimodule. But C(H) is infinite dimensional.

Lemma 3.4. Let unital C∗-algebras A and B be Morita equivalent and let X be an
A–B-imprimitivity bimodule. If either A or B is finite dimensional, then so is X.
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Proof. Let L(X) be the linking algebra for X (see [11] for linking algebras). Then
the C∗-algebra L(X) is Morita equivalent to A and to B. In fact, we have A = pL(X)p
and B = qL(X)q with p + q = 1 for projections p, q in the multiplier algebra of L(X).
Since A and B are unital, so is L(X). It hence follows from Lemma 3.2 that L(X) is finite
dimensional. Since X is isometrically isomorphic to pL(X)q, X is finite dimensional. �

Let E be a Banach space and let F be a closed subspace of E. It is known that E has
the Banach–Saks property if and only if F and the quotient space E/F have the same
property (see [4]). This fact is used to prove Lemma 3.5.

Let A be a C∗-algebra and let X and Y be Hilbert A-modules. Denote by X ⊕ Y the
direct sum of X and Y which becomes a Hilbert A-module in a canonical way. Recall
that the norm on X ⊕ Y is defined by ‖x ⊕ y‖ = ‖〈x, x〉 + 〈y, y〉‖1/2. Then (X ⊕ Y )/Y

is isometrically isomorphic to X, from which Lemma 3.5 easily follows.

Lemma 3.5. Let X and Y be Hilbert A-modules. If X and Y have the Banach–Saks
property, then the direct sum X ⊕ Y also has the Banach–Saks property.

Now we are in a position to establish one of the main results in this section.

Theorem 3.6. Let unital C∗-algebras A and B be Morita equivalent and let X be an
A–B-imprimitivity bimodule. Then the following conditions are equivalent:

(1) A has the Banach–Saks property;

(2) B has the Banach–Saks property;

(3) X has the Banach–Saks property.

Proof. (1) ⇐⇒ (2). This follows from Lemma 3.1 and Lemma 3.2.

(1) =⇒ (3). Suppose that A has the Banach–Saks property. Then it follows from
Lemmas 3.1 and 3.4 that X is finite dimensional. Hence, X has the Banach–Saks property.

(3) =⇒ (1). Suppose that X has the Banach–Saks property. We regard X as a full
left Hilbert A-module equipped with the A-valued inner product A〈· , ·〉. Take a finite
subset {xk}m

k=1 ⊂ X satisfying that
∑m

k=1 A〈xk, xk〉 = 1 (cf. the proof of Theorem 2.2).
Consider the finite direct sum

m⊕
k=1

X =

m times︷ ︸︸ ︷
X ⊕ X ⊕ · · · ⊕ X .

Then it follows from Lemma 3.5 that
⊕m

k=1 X has the Banach–Saks property.

Define a linear map T from A into
⊕m

k=1 X by

T (a) = a

( m⊕
k=1

xk

)
.
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Then we have

〈〈T (a), T (a)〉〉 =
〈〈

a

( m⊕
k=1

xk

)
, a

( m⊕
k=1

xk

)〉〉
= a

m∑
k=1

A〈xk, xk〉a∗ = aa∗.

Thus, we see that T is an isometric isomorphism from A into
⊕m

k=1 X, that is, A is
isometrically embedded into

⊕m
k=1 X. Hence, A has the Banach–Saks property. �

Let E be a Banach space. We say that E has the Schur property if every weak conver-
gent sequence in E converges in norm. Let F be a closed subspace of E. We remark that
E has the Schur property if and only if the quotient space E/F and F have the same
property (see [2, Theorem 6.1.a]). Lemma 3.7 easily follows from this fact.

Lemma 3.7. Let A be a C∗-algebra and let X and Y be Hilbert A-modules. If X and
Y have the Schur property, then the direct sum X ⊕ Y as a Hilbert A-module also has
the Schur property.

Lemma 3.8. Let A be a C∗-algebra. Then A has the Schur property if and only if A

is finite dimensional.

Proof. Suppose that A has the Schur property. If A is infinite dimensional, by using
functional calculus, we then obtain a sequence {an} in A consisting of mutually orthog-
onal positive elements with norm 1. We now claim that {an} weakly converges to 0. For
this, assume that {an} does not weakly converge to 0. Then we can choose a subsequence
{ank

} such that there exist δ > 0 and a state ϕ of A which satisfy the condition that,
for all k, ϕ(ank

) > δ. Since {ank
} is mutually orthogonal, we see that, for any N ,

1 =
∥∥∥∥

N∑
k=1

ank

∥∥∥∥ �
N∑

k=1

ϕ(ank
) > Nδ.

But this is impossible. Thus, {an} weakly converges to 0, which implies that ‖an‖ → 0.
But this contradicts that ‖an‖ = 1. Hence, A is finite dimensional. �

Theorem 3.9. Let unital C∗-algebras A and B be Morita equivalent and let X be an
A–B-imprimitivity bimodule. Then the following conditions are equivalent:

(1) A has the Schur property;

(2) B has the Schur property;

(3) X has the Schur property.

Proof. (1) ⇐⇒ (2). This follows from Lemmas 3.2 and 3.8.

(1) =⇒ (3). Let L(X) be the linking algebra for X. Then the C∗-algebra L(X) is
Morita equivalent to A and to B. Since A and B are unital, so is L(X). It hence follows
from the equivalence of (1) and (2) that L(X) has the Schur property. Since X is identified
with a closed subspace of L(X), X has the Schur property.
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(3) =⇒ (1). Suppose that X has the Schur property. We regard X as a full left
Hilbert A-module equipped with the A-valued inner product A〈· , ·〉. Take a finite subset
{xk}m

k=1 ⊂ X such that
m∑

k=1
A〈xk, xk〉 = 1.

Take any sequence {an} in A such that an → a weakly in A. We will show that
‖an − a‖ → 0 (n → ∞).

Consider the finite direct sum

m⊕
k=1

X =

m times︷ ︸︸ ︷
X ⊕ X ⊕ · · · ⊕ X .

Then it follows from Lemma 3.7 that
⊕m

k=1 X has the Schur property. It is easy to check
that

an

( m⊕
k=1

xk

)
→ a

( m⊕
k=1

xk

)

weakly in
⊕m

k=1 X (n → ∞). Thus, we see that∥∥∥∥an

( m⊕
k=1

xk

)
− a

( m⊕
k=1

xk

)∥∥∥∥ → 0.

For any b ∈ A, we have∥∥∥∥b

( m⊕
k=1

xk

)∥∥∥∥
2

=
∥∥∥∥
〈〈

b

( m⊕
k=1

xk

)
, b

( m⊕
k=1

xk

)〉〉∥∥∥∥
=

∥∥∥∥b

( m∑
k=1

A〈xk, xk〉
)

b∗
∥∥∥∥

= ‖bb∗‖ = ‖b‖2.

Hence, we obtain

‖(an − a)‖2 =
∥∥∥∥(an − a)

( m⊕
k=1

xk

)∥∥∥∥
2

→ 0.

Thus we complete the proof. �

Corollary 3.10. Let unital C∗-algebras A and B be Morita equivalent and let X be
an A–B-imprimitivity bimodule. Then the following conditions are equivalent:

(1) X has the Banach–Saks property;

(2) X has the Schur property;

(3) X is finite dimensional.

Proof. (1) ⇐⇒ (3). Suppose that X has the Banach–Saks property. Then it follows
from Theorem 3.6 that A and B have the Banach–Saks property. Hence, Lemmas 3.1
and 3.4 show that X is finite dimensional. The converse is trivial.
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(2) =⇒ (3). Theorem 3.9 implies that A and B have the Schur property; equivalently,
the linking algebra L(X) for X has the Schur property. Hence, it follows from Lemma 3.8
that L(X) is finite dimensional, so that X is also finite dimensional.

(3) =⇒ (2). This is trivial. Thus, we complete the proof. �

In the above corollary, the assumption that both A and B be unital is essential. If either
A or B is not unital, the assertion fails in general. For example, take H = L2([0, 1]) as an
imprimitivity bimodule, A = C ·1, and B = C(L2([0, 1])) as C∗-algebras (cf. Remark 3.3).
Then the A–B-imprimitivity bimodule H has the Banach–Saks property by the classical
result of Banach–Saks, but H is not finite dimensional.
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