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Tomographic particle image velocimetry experiments were performed in the near
field of the turbulent flow past a square cylinder. A classical Reynolds decomposition
was performed on the resulting velocity fields into a time invariant mean flow and a
fluctuating velocity field. This fluctuating velocity field was then further decomposed
into coherent and residual/stochastic fluctuations. The statistical distributions of the
second and third invariants of the velocity-gradient tensor were then computed
at various streamwise locations, along the centreline of the flow and within the
shear layers. These invariants were calculated from both the Reynolds-decomposed
fluctuating velocity fields and the coherent and stochastic fluctuating velocity fields.
The range of spatial locations probed incorporates regions of contrasting flow physics,
including a mean recirculation region and separated shear layers, both upstream and
downstream of the location of peak turbulence intensity along the centreline. These
different flow physics are also reflected in the velocity gradients themselves with
different topologies, as characterised by the statistical distributions of the constituent
enstrophy and strain-rate invariants, for the three different fluctuating velocity fields.
Despite these differing flow physics the ubiquitous self-similar ‘tear drop’-shaped
joint probability density function between the second and third invariants of the
velocity-gradient tensor is observed along the centreline and shear layer when
calculated from both the Reynolds decomposed and the stochastic velocity fluctuations.
These ‘tear drop’-shaped joint probability density functions are not, however, observed
when calculated from the coherent velocity fluctuations. This ‘tear drop’ shape is
classically associated with the statistical distribution of the velocity-gradient tensor
invariants in fully developed turbulent flows in which there is no coherent dynamics
present, and hence spectral peaks at low wavenumbers. The results presented in this
manuscript, however, show that such ‘tear drops’ also exist in spatially developing
inhomogeneous turbulent flows. This suggests that the ‘tear drop’ shape may not just
be a universal feature of fully developed turbulence but of turbulent flows in general.
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1. Introduction
The smallest scales present in a turbulent flow have long been thought to be

well approximated as statistically homogeneous and isotropic (Kolmogorov 1941;
Batchelor 1953). The general topology of these fine scales may be shown to depend
on the invariants of the velocity-gradient tensor (VGT) which may be split up into
a symmetric and skew-symmetric component, respectively the strain-rate and rotation
tensors,

aij = ∂u′i
∂xj
= sij +ωij = 1

2

(
∂u′i
∂xj
+ ∂u′j
∂xi

)
+ 1

2

(
∂u′i
∂xj
− ∂u′j
∂xi

)
(1.1)

in which u′i denotes the fluctuating components of velocity from a classical Reynolds
decomposition. These invariants are defined as the coefficients in the characteristic
equation for the VGT of the form

ξ 3 + Pξ 2 +Qξ + R= 0. (1.2)

The first invariant, P, is the negative trace of the VGT (P = −aii) and is thus
identically zero for an incompressible flow. Hence, the generalised topology of the
flow may be described by the invariants Q and R, defined as

Q= 1
4(ωiωi − 2sijsij)=Qω +Qs (1.3)

R=− 1
3

(
sijsjkski + 3

4ωisijωj
)

(1.4)

in which ωi = εijkωjk are the components of the vorticity vector. Q may thus be
considered the local excess of swirling over strain rate, with its constituent invariants
Qω being simply half the magnitude of the enstrophy whilst Qs = −ε/4ν, where
ε is the rate of dissipation of turbulent kinetic energy. R may be considered the
local excess of strain-rate production (self-amplification) over enstrophy production
(vorticity stretching due to the interaction between strain rate and rotation).

The joint probability density function (p.d.f.) between Q and R, fQR(Q, R), is
observed to make self-similar ‘tear drop’ shapes in a variety of fully developed
turbulent flows including homogeneous isotropic turbulence, mixing layers and
wall-bounded flows (e.g. Soria et al. 1994; Blackburn, Mansour & Cantwell 1996;
Tsinober 2009; Buxton & Ganapathisubramani 2010). The ubiquity of this ‘tear
drop’-shaped joint p.d.f. has led to it being described as a universal feature of
fine-scale turbulent motions (Chacin & Cantwell 2000; Elsinga & Marusic 2010).

The state of the VGT itself may be broadly divided up into four sectors of
the Q–R space according to the signs of R and the discriminant of (1.2), ∆. For an
incompressible flow (P= 0) the line ∆=Q3+ (27/4)R2 separates purely real solutions
to (1.2) (∆< 0), physically interpreted as the flow being locally straining only, from
one real and a complex conjugate pair of roots, for which the flow is locally swirling
(∆ > 0). The four sectors may thus be defined as I : ∆ > 0, R < 0 is referred to
as stable foci which is the sector primarily responsible for enstrophy amplification,
II :∆> 0,R> 0 is referred to as unstable foci and primarily responsible for enstrophy
attenuation, III :∆< 0, R> 0 is referred to as unstable nodes and IV :∆< 0, R< 0
is referred to as stable nodes (Soria et al. 1994). These sectors are illustrated in
figure 6(a). Cantwell (1992) made the assumption that the cross-derivatives of the
pressure field and viscous diffusion were negligible in the evolution equation for
the VGT and was hence able to model some of the phenomenology of fine-scale
turbulence. However, Cantwell (1993) showed that whilst this restricted Euler analysis
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Invariants of the velocity-gradient tensor in a spatially developing flow 3

may account for certain features of the ‘tear drop’-shaped joint p.d.f., it was unable
to account for the particular form of this statistical distribution.

The vast majority of studies examining the statistical distribution of the invariants
Q and R have done so in fully developed turbulent flows, in which the spectrum
of turbulent kinetic energy is akin to the model spectrum proposed by Pope (2000).
More recently, however, Gomes-Fernandes, Ganapathisubramani & Vassilicos (2014)
have examined the evolution of the state of the VGT in a spatially developing
turbulent flow generated by a multi-scale space-filling fractal square grid. The study
examined the joint p.d.f. between Q and R at three streamwise locations, upstream
of the location of peak turbulence intensity (in the ‘turbulence production region’),
at the location of peak turbulence intensity and downstream of the location of peak
turbulence intensity (in the ‘turbulence decay region’), for which the flow may be
considered to be a fully developed turbulent flow. It is observed that the ‘tear drop’
shape of the joint p.d.f. gradually unfolds with distance x travelled downstream.
In particular sector I is observed to broaden with x at the expense of sector II.
Gomes-Fernandes, Ganapathisubramani & Vassilicos (2015) showed that in the near
field of the flow past such a fractal square grid the two-point statistics revealed an
inverse cascade of turbulent kinetic energy along an attractive axis inclined at some
small angle relative to the streamwise direction. Buxton & Ganapathisubramani (2010)
showed that sector II is the only sector within the Q–R space that can account for
enstrophy attenuation due to the process of vorticity compression, i.e. 〈ωisijωj〉 < 0,
which is the inviscid mechanism for such an inverse cascade. In a fully developed flow
it has been known since Taylor (1938) that on average 〈ωisijωj〉> 0, that is vorticity
stretching (enstrophy amplification) exceeds vorticity compression on average. The
broadening of sector I, which is primarily responsible for enstrophy amplification
(Buxton & Ganapathisubramani 2010), at the expense of sector II as x increases
is thus consistent with this cascade driven picture. Additionally, the discriminant is
known to act as an attractor as R becomes large, encompassing sectors II and III
leading to an elongated tail in the Q–R joint p.d.f. (Vieillefosse 1982). This was
another feature that was observed to be revealed as x was increased in the study of
Gomes-Fernandes et al. (2014). The ‘Vieillefosse tail’ is one such feature that was
able to be accurately predicted by the restricted Euler analysis of Cantwell (1993).

The objective of this paper is to further probe the spatial evolution of the statistical
distribution of the Q–R space, and hence the state of the VGT, in a spatially
developing inhomogeneous flow. A characteristic feature of many spatially developing
turbulent flows is that they contain a significant energy content in coherent dynamics
due to, for example, vortex shedding in bluff body flows or Kelvin–Helmholtz
instabilities in shear layers. Crucially, in the context of the VGT in turbulent flows,
this coherent dynamics is a consequence of large-scale instabilities within the flow
that will scale with the largest relevant/global length scales. It is thus not reasonable
to consider them statistically homogeneous or isotropic as are the fine scales of
turbulence. The presence of such coherent dynamics led to the introduction of a
triple decomposition of the form (Hussain & Reynolds 1970)

Ui = ui + uφi + u′′i︸ ︷︷ ︸
u′i

(1.5)

in which ui is the (time-averaged) base flow and the fluctuating component of
the classical Reynolds decomposition, u′i, is further decomposed into a coherent
fluctuation uφi and a stochastic fluctuation u′′i . There are several ways in which such
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a decomposition of u′ may be performed, for example phase-conditioned sampling
(Hussain & Reynolds 1970), phase bin averaging (Cantwell & Coles 1983), frequency
domain filtering (Brereton & Kodal 1992) or projection of the velocity field onto a
modal decomposition of the flow (Perrin et al. 2007; Baj, Bruce & Buxton 2015).
For a more detailed exposition on the pros and cons of these various methods the
reader is referred to the introduction of Baj et al. (2015).

This paper will examine the spatial evolution of the invariants of the VGTs,
aij = ∂u′i/∂xj, aφij = ∂uφi /∂xj and a′′ij = ∂u′′i /xj as the flow develops in space. The
particular flow chosen is that past a high aspect ratio (effectively infinitely long)
square cylinder, at a sufficiently high Reynolds number to ensure that the flow is
adequately turbulent, which is described in § 2. Such flows have a notable peak in
their spectra corresponding to the vortex shedding mode of the cylinder, accounting
for a significant energy content in coherent motions. In order to isolate these motions
the flow will be subjected to a triple decomposition as laid out in (1.5) and described
in § 3. The results and conclusions are presented in §§ 4 and 5 respectively.

2. Methodologies and data set
2.1. Data acquisition and processing

The experiments were performed in the water tunnel of the Laboratory for Aero and
Hydrodynamics at TU Delft. This facility has a cross section of 600 × 600 mm2.
Preliminary, planar particle image velocimetry (PIV) experiments revealed that
the operating condition was at a free-stream velocity of U∞ = 0.34 m s−1 with
a turbulence intensity of 0.7 %. A high aspect ratio (A = 16) square cylinder of
side length D = 32 mm was carefully mounted just downstream of the contraction
of the tunnel with great care having been taken to ensure that the cylinder was
mounted perpendicularly to the incoming flow. This configuration yielded a Reynolds
number based on the cylinder side length and free-stream velocity of ReD = 10 840.
Throughout this manuscript a Cartesian coordinate system, x–y–z with corresponding
velocity components U–V–W, is adopted with an origin located on the centre of the
rear face of the cylinder such that the spanwise extent of the cylinder is −8D6 z68D,
and the cross-stream extent is −D/2 6 y 6 D/2 with the rear face of the cylinder
identically defined as x = 0. The spanwise-averaged (the flow may be considered as
infinite in the spanwise direction since we are at the centre of the cylinder) mean,
u, and root-mean-square (r.m.s.), u′rms (i.e. before the triple decomposition of (1.5) is
applied), streamwise velocity fields are presented in figure 1.

In order to capture the three-dimensional three-component (3D3C) data that were
required to compute the statistics of the velocity-gradient tensor tomographic PIV
experiments were conducted that imaged the flow immediately downstream of the
cylinder in a field of view (FOV) that measured 3.8D × 2D × 0.168D. The flume
was homogeneously seeded with polyamide particles of diameter 56 µm which
comfortably met the requirement to act as tracers and the FOV was illuminated
with the frequency doubled output of a dual cavity/double pulsed Nd:YAG laser
(200 mJ pulse−1 output) that was passed through appropriate light cone-forming
optics. A variable aperture slit was used to clip the light cone to produce a thickened
light sheet (≈7 mm thick) with a steep illumination gradient at the edges. The FOV
was imaged with four cameras (LaVision Imager Pro X) with 2048 × 2048 pixel
charge-coupled device sensors with 14 bit grey-scale dynamic range, mounted to
Scheimpflug adapters and lenses (Nikkor) with a focal length of f = 105 mm. The
off-axis viewing angles were deliberately kept small, as were the apertures of the
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FIGURE 1. (Colour online) Spanwise-averaged mean, u, (a) and r.m.s., u′rms, (b) of the
streamwise component of the velocity within the experimental field of view.

lenses ( f /16), such that water prisms were not deemed necessary due to the changes
in refractive index at the tunnel wall.

N = 2000 (×4 cameras) image pairs were captured at an acquisition frequency of
0.76 Hz with an inter-frame time of δt = 1 ms. A convergence study showed that
this was a sufficient number of images to converge the computation of the mean
fluctuating components of velocity to zero. These images were processed using the
multiplicative algebraic reconstruction technique (MART) tomographic PIV algorithm
to produce the tomographic volume reconstruction (Elsinga et al. 2006). To improve
the quality of this reconstruction the images were pre-processed with a background
subtraction (from previously acquired dark images) and Gaussian smoothing using a
3× 3 pixel filter length and volume self-calibration (Wieneke 2008) was applied. The
particle displacement field was obtained from these reconstructed volumes using an
iterative cross-correlation technique. The final volume size was 32 × 32 × 32 voxels
and an overlap of 75 % between adjacent correlation volumes was used. This translates
to a spatial resolution of 0.0486D, with a vector spacing of 0.0122D. This spatial
resolution equates to approximately 11η, where η is the Kolmogorov length scale,
for x/D & 1.5 up to a worst case scenario of ≈17η in the separated shear layers
at x/D = 0. Whilst a spatial resolution of ≈3η is generally considered necessary to
resolve the smallest, dissipative length scales within a turbulent flow (Worth, Nickels
& Swaminathan 2010; Buxton, Laizet & Ganapathisubramani 2011) it has been shown
that resolving the characteristic ‘tear drop’ shape of the joint p.d.f. between Q and R
is reliant upon a mix of dissipative and inertial range scales >λ, where λ is the Taylor
micro-scale (Buxton 2015). The spatial resolution of the present data easily meet this
criteria (it is no worse than 0.4λ and remains better than 0.15λ everywhere other
than within the mean recirculation region) and thus this data set may be considered
adequately spatially resolved to examine the statistics of the velocity-gradient tensor
invariants.

2.2. Numerical differentiation and data post-processing
A fourth-order accurate in space, centred finite-difference scheme was used to compute
the nine components of the VGT. Only the central five planes of the velocity field
were retained due to deteriorating signal-to-noise ratio for the cross-correlations
obtained in the volumetric PIV processing towards the edge of the thickened light
sheet. Nevertheless, this was satisfactory for the implementation of the fourth-order
accurate central-differencing scheme, with only the central plane being retained for
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FIGURE 2. (Colour online) Joint p.d.f. between ∂ ũ/∂x and −(∂ṽ/∂y + ∂w̃/∂z), where ·̃
denotes the application of the divergence correction scheme of (de Silva et al. 2013) to
the data.

the VGT field. By necessity, a lower-order accurate numerical scheme would have
been required to compute the spatial velocity gradients in the outer planes, hence
they were discarded. An excellent test of the quality of a 3D3C data set from which
the velocity gradients are computed is the scatter on the divergence of the velocity
field. For an incompressible flow ∂ui/∂xi = 0. However, the presence of experimental
noise on a data set leads to spurious, non-zero divergence.

In order to correct for this non-zero divergence the data were post-processed using
the divergence correction scheme of de Silva, Philip & Marusic (2013). This consists
of a nonlinear constraint based optimisation that minimally alters the measured
velocity field under the constraint of restricting the magnitude of the divergence to a
specified level. The tolerable divergence error was specified as |∂ ũi/∂xi| 6 1 s−1, in
which ·̃ denotes the application of the divergence correction scheme. The objective
function that is minimised during the optimisation is effectively the ensemble average
of the ‘turbulent kinetic energy’ that is added to the experimentally measured velocity
field, i.e. k̃ =∑3

i=1〈(ũi − ui)
2〉, which was computed to be k̃1/2/U∞ = 0.029, which

is comparable to the experimental error as estimated by the method of Herpin et al.
(2008). The extent of the divergence of the final, corrected velocity field is presented
in figure 2 which shows the joint p.d.f. between ∂ ũ/∂x and −(∂ṽ/∂y + ∂w̃/∂z).
Henceforth, for convenience, all velocity fields will be computed from the divergence
corrected data and thus the ·̃ notation is dropped.

3. Phase averaging and the triple decomposition

Since the data were acquired at a rate that is significantly slower than the
characteristic shedding frequency of the cylinder it is necessary to compute the
coherent velocity fluctuations, uφi in (1.5), by computing/approximating a phase
average. Whilst Baj et al. (2015) shows that this is inadequate for a multi-scale flow it
has proven to be satisfactory for a single cylinder flow (Cantwell & Coles 1983). The
determination of the phase of the instantaneous velocity fields was achieved through
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FIGURE 3. Proportion of total kinetic energy content within the first 10 POD modes.

the use of proper orthogonal decomposition (POD) (Berkooz, Holmes & Lumley
1993). POD is a linear procedure for extracting a basis for modal decomposition
of an ensemble of velocity fields, such as that acquired during the tomographic
PIV experiments. These modes, Ψj where 1 6 j 6 N, are ranked according to their
kinetic energy content. The first mode is steady, and corresponds to the base (or
time-averaged mean) flow. van Oudheusden et al. (2005) showed that the next two
most energetic modes correspond to the vortex shedding of the cylinder and that a
low-order model of the flow consisting of the base flow, Ψ2 and Ψ3 is practically
equivalent to the phase-averaged result. Figure 3 shows the proportion of total kinetic
energy in the first 10 modes. It can be seen that after the base flow, mode 1, the
majority of the energy is contained within modes 2 and 3 as is expected in the flow
downstream of a cylinder (Perrin et al. 2007).

Despite the fidelity of a lower-order model consisting of the base flow (u) and
modes Ψ2 and Ψ3 we choose to use a phase bin-averaging procedure similar to the
approach taken by Perrin et al. (2008), which is shown to more faithfully reproduce
the coherent motions. Each POD mode, Ψj, has a corresponding time varying mode
coefficient aj. Since modes Ψ2 and Ψ3 are orthogonal to one another a phase angle
may be defined from the a2–a3 plane. The scatter plot of a2/

√
2ξ2 versus a3/

√
2ξ3,

in which ξj is the corresponding eigenvalue to Ψj (not shown for brevity), shows a
pattern scattered around a unit circle with its centre at the origin as expected (van
Oudheusden et al. 2005). Each instantaneous velocity field is then assigned a phase
angle such that

tan φ = a3

a2

√
ξ2

ξ3
. (3.1)

The phase space is discretised into 18 phase bins centred on φ0m (1 6 m 6 18) of
size 1φ = 20◦. All velocity fields for which the phase angle φ ∈ (φ0m ±1φ/2) were
ensemble averaged in order to compute uφi and subsequently u′′i as below

uφi (m)= 〈Ui(φ)− ui〉 ∀ (φ0m −1φ/2 6 φ 6 φ0m +1φ/2) (3.2)

u′′i =Ui − ui − uφi (m). (3.3)

Note that the variable uφi (m) is discrete since the phase averaging is conducted over
bins of size 1φ = 20◦, however for convenience this discrete notation is dropped for
the remainder of the manuscript and the coherent velocity fluctuation is henceforth
simply referred to as uφi . The r.m.s. fields of both uφ and u′′ are presented in figure 4.
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FIGURE 4. (Colour online) The r.m.s. fields of the coherent (a) and stochastic (b)
component of the streamwise velocity fluctuation. (c) Streamwise profiles of r.m.s. of
{u′, uφ, u′′} along the centreline (solid lines) and along the shear layers (dashed lines),
defined as the locations, y(x), at which the r.m.s. is locally a maximum.

Both the uφ(x) and u′′(x) fields were numerically differentiated with the same
fourth-order accurate scheme as described in § 2.2 and the divergence of both was
computed. Whilst the scatter for both ∂uφi /∂xi and ∂u′′i /∂xi was higher than for ∂u′i/∂xi
(illustrated in figure 2) both were more than acceptable in comparison to previously
published data (e.g. Ganapathisubramani, Lakshminarasimhan & Clemens 2007).

The ensemble-averaged turbulent kinetic energy is given by

k= 1
2

3∑
i=1

〈u′i2〉 =
1
2

3∑
i=1

(〈uφi 2〉 + 〈u′′i 2〉 + 2〈uφi u′′i 〉) (3.4)

and thus for the triple decomposition to be energy preserving, such that the total
turbulent kinetic energy is equal to the sum of that of the coherent and stochastic
velocity fluctuation fields, the correlation 〈uφi u′′i 〉 must be zero. Within the field of view
〈uφi u′′i 〉/U∞2 was computed to be 1.4× 10−4, which is zero to within the experimental
uncertainty. Nevertheless, this small positive value is a potential explanation for the
slightly less strictly observed divergence-free condition in the uφ(x) and u′′(x) fields,
since differentiation is known to amplify any noise present.

4. Results and discussion

The various fluctuating velocity fields, u′(x), uφ(x) and u′′(x) were differentiated
spatially according to the fourth-order accurate scheme described in § 2.2 and the
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FIGURE 5. (Colour online) Streamwise profile of 〈Qω〉 along the centreline (solid lines)
and along the shear layers (dashed lines). The vertical lines indicate the streamwise
locations for the joint p.d.f.s of figure 6.

various invariants of the velocity-gradient tensor were computed. The spatial evolution
of the joint p.d.f.s of these invariants was computed along two streamwise traverses,
the centreline of the flow (y = 0) and along the shear layers. At a given x location
the y profiles of the r.m.s. of u′ have two local maxima, as indicated in figure 1(b),
and thus the shear layers were defined as the locations, y(x), of these maxima. Due
to symmetry it was possible to produce statistics that were averaged over both shear
layers to aid with convergence. However, due to the typically observed intermittent
distribution of the velocity gradients some spatial averaging was performed, in which
a square window of size 0.13D× 0.13D was centred on the point of interest (i.e. on
the centreline or the shear layer) in order to better converge the statistics. A sensitivity
study was conducted to assess the size of this window on the ability to faithfully
reproduce the Q–R joint p.d.f. and it was found to be optimal in the sense that it
was the minimal window size that generated relatively noise-free statistics that were
insensitive to modest increases/decreases in window size.

Joint p.d.f.s were then produced of the various Q–R invariants, computed from the
{aij, aφij, a′′ij} fields, at the streamwise locations indicated by the coloured vertical lines
of figure 5. In order to make a direct comparison between the joint p.d.f.s computed
from the various fields of velocity gradients we wished to choose a contour level that
encompasses an equivalent proportion of the overall data available, i.e.∫∫

A
fQR(Q, R) dR dQ=Σ = const. (4.1)

The choice of Σ is arbitrary, but we wished to choose a contour level defining A
that was sufficiently rare to ensure that we captured a broad range of Q–R states
but sufficiently common to ensure a reasonably smooth contour from sufficiently
converged statistics. We chose a contour level of Σ = 0.683, which is equivalent
to the proportion of data bounded by ±σ (one standard deviation) for a univariate
Gaussian distribution. The invariants themselves are all normalised by the local value
of 〈Qω〉, computed from the relevant velocity-gradient field such that the joint p.d.f.s
of figure 6(c), for example, are normalised by 〈Qω〉 calculated from the aφij field at
the centreline and appropriate x-location etc. as illustrated in figure 5.

It can be seen that the classical ‘tear drop’ shape for the joint p.d.f. is recovered
when calculated from the aij field. This in itself is a surprising result since the
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FIGURE 6. (Colour online) Joint p.d.f.s between Q and R along the centreline (a,c,e) and
the shear layer (b,d, f ) for the aij (a,b), aφij (c,d) and a′′ij (e, f ) velocity-gradient fields. The
contour colours correspond to the streamwise locations depicted in figure 5.

‘tear drop’ shape of the Q–R joint p.d.f. is considered to be associated with fully
developed turbulent flows. Although there is no clear definition of such a flow they
may be generally considered to be close to homogeneous and isotropic (requiring
the integral length scale to be smaller than a relevant homogeneity length scale),
in the small scales at least, with mean velocity profiles that may be collapsed
when scaled by a relevant flow variable such as the centreline velocity for a wake.
Evidently these criteria are far from being met in the near-field flow behind a square
cylinder. It is clear from inspection of figure 1 that throughout the field of view, but
particularly for the cases of x/D 6 2, the flow is far from homogeneous. Further,
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Invariants of the velocity-gradient tensor in a spatially developing flow 11

the ‘tear drop’-shaped contours are equally visible, and quantitatively similar (with
the exception of the x/D = 3.5 cases) on both the centreline and the shear layers
in figure 6(a,b). This is despite the fact that the flow physics for both of these
regions differ significantly. Figure 1 shows that along the centreline the shape of
the Q–R joint p.d.f. contours are similar regardless of whether the data are extracted
from the mean circulation region (for the centreline) or downstream of this in the
turbulence decay region (x/D = 2). Perversely, x/D = 3.5 is perhaps the location
where one might assume that the criteria for a fully developed turbulent flow, for
which the ‘tear drop’-shaped joint p.d.f. is considered to be a universal feature, are
more stringently met than any of the streamwise locations further upstream. Despite
this, the joint p.d.f.s from this location are the only ones not to collapse when
normalised by 〈Qω〉. The clearly defined ‘tear drop’-shaped contours of the joint
p.d.f.s of figure 6(a,b) are in contrast to the spatially developing fractal square grid
flow of (Gomes-Fernandes et al. 2014), in which the ‘tear drop’ shape was observed
to unfold as the flow develops downstream, in particular the ‘Vieillefosse tail’ and
contribution of sector I became increasingly significant whereas the contribution of
sector II was reduced.

Comparison of figure 6(a,b) shows that the collapse of the contours of fQR(Q, R)
when scaled with the local quantity 〈Qω〉 is marginally better along the shear layer
than the centreline, excluding the data from x/D = 3.5. There is significant energy
content in coherent motions in the shear layers, as illustrated in figure 4(a), whereas
along the centreline there is virtually none with a significant contribution to the
total turbulent kinetic energy from the u′′i fluctuations. It is thus a surprising result
that the collapse of the contours of fQR(Q, R) is better where there is a significant
contribution from coherent motions as opposed to primarily the stochastic fluctuations.
Nevertheless, the similarity between the contours of figure 6(a,b) is stark, despite
the fact that they are computed from regions with very different flow physics to one
another. The streamwise location at which the joint p.d.f. most resembles that for
fully developed turbulence, with an enhanced contribution from sector I and elongated
‘Vieillefosse tail’ is at the location of peak turbulence intensity, x/D= 1.104.

Figure 6(c,d) shows the equivalent joint p.d.f.s between Q and R computed from the
coherent velocity-gradient field, aφij , along the centreline and shear layer, respectively
whilst (e) and ( f ) show those computed from the stochastic velocity-gradient field, a′′ij.
It is clear that the contours of fQR(Q, R) computed from the aφij field do not exhibit
anything remotely akin to a ‘tear drop’ shape, whilst those computed from the a′′ij field
do, and are indeed quantitatively very similar to those computed from the aij field. If
anything, it may be commented that the contours show a better collapse with the local
〈Qω〉 scaling for the joint p.d.f. computed from the a′′ij field than from the aij field.
Again, however, the notable exception is the contour extracted from the data at the
furthest downstream location, x/D= 3.5, at which we may have expected the flow to
best approximate a ‘fully developed flow’.

We may thus conclude from figure 6 that in this spatially developing inhomogeneous
flow the ‘tear drop’ shape of the contours of the joint p.d.f. between Q and R is
almost entirely due to the stochastic turbulent fluctuations. Even though figure 5
shows that the coherent motions have a non-negligible 〈Qω〉, indicative of the average
magnitude of the aφij tensor, it does not contribute to the kinematics of the overall
velocity-gradient tensor through the Q–R joint p.d.f. It thus appears that the ‘tear
drop’ is more ubiquitous than first thought since it appears in flows with significantly
varied physics (fully developed/spatially developing/recirculation/separated shear
layers etc.) in an observation that is comparable to the ‘embarrassment of success’
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of Kolmogorov’s 1941 theory (Kraichnan 1974). Kolmogorov (1941) predicts the
existence of a −5/3 slope of the energy spectrum in homogeneous, isotropic
turbulence for which the Reynolds number is sufficiently high to support an inertial
range of scales separating the dissipative and large-scale motions. Equation (1.4)
shows that the invariant R is the local excess of strain-rate production over enstrophy
amplification, ωisijωj. The amplification of enstrophy, through its interaction with
the strain-rate field, is the only known inertial mechanism by which enstrophy
(and turbulent kinetic energy) are transferred (on average) to smaller scales through
the turbulent cascade. Contrastingly, equation (1.3) shows that the invariant Q is
representative of the localised topology of the flow, whether rotationally or strain-rate
dominated. Numerous studies (e.g. Ruetsch & Maxey 1991) have painted a consistent
topological picture of developed, fine-scale turbulence in which sheets of dissipation
(high magnitude strain rate) are wrapped around ‘worms’ of intense enstrophy. Yet
figure 6 clearly shows ‘tear drop’-shaped distributions of Q and R in a flow that
is highly inhomogeneous/anisotropic with wildly varying flow topologies, mirroring
the finding of a −5/3 slope in flows at modest Reynolds numbers that are also far
from homogeneous/isotropic (e.g. Valente & Vassilicos 2012; Gomes-Fernandes et al.
2015; Laizet, Nedić & Vassilicos 2015).

Figure 6 illustrates contours of the joint p.d.f.s between the invariants Q and R at
several illustrative downstream locations. However, the nature of the tomographic PIV
data that have been acquired allows a closer inspection of the spatial development of
the statistical distribution of these invariants. This may be quantified by computing
the proportions of the total data located within various sectors of the joint p.d.f. The
majority of the total data are locally swirling, i.e. ∆> 0, and thus for simplicity we
focus on the proportion of total data located in sectors I, primarily responsible for
enstrophy amplification, and II for which there is mean enstrophy attenuation (Buxton
& Ganapathisubramani 2010) as follows

RI =
∫ ∞
−∞

∫ 0

−∞
fQR(Q, R) dR dQ−

∫ 0

−∞

∫ 0

−(−4Q3/27)1/2
fQR(Q, R) dR dQ (4.2)

RII =
∫ ∞
−∞

∫ ∞
0

fQR(Q, R) dR dQ−
∫ 0

−∞

∫ (−4Q3/27)1/2

0
fQR(Q, R) dR dQ. (4.3)

Figure 7 shows the spatial evolution of the ratios RI and RII , as defined in (4.2) and
(4.3) respectively, from fQR(Q, R) computed from 0.13D× 0.13D square windows as
before along the centreline (a,c,e) and the shear layer (b,d, f ).

Firstly, it is observed that for a particular velocity-gradient field {aij, aφij, a′′ij} there
is little spatial variation in the ratios RI, RII . This reinforces the observation drawn
from figure 6 that despite the rapid changes in flow physics in the near-field flow
past a square cylinder the statistical distribution of the VGT invariants remains
remarkably constant. For all six panels it is also observed that RI and RII are
approximately equal to one another, indicating that the volume of space occupied
by enstrophy amplification and enstrophy attenuation are similar, although Buxton &
Ganapathisubramani (2010) shows that the magnitude of enstrophy amplification is
greater in sector I than that for attenuation in sector II. It is observed that there is an
extremely high correlation between the spatial variation of RI and RII computed from
the aij field and the a′′ij field, along both the shear layers and the centreline, reinforcing
the conclusion that we may draw from figure 6, namely that the kinematics of the
VGT invariants are driven by the stochastic velocity fluctuations. Whilst the variation
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FIGURE 7. Proportion of total data within sector I, RI and II, RII , within the joint p.d.f.s
of figure 6. The panels (a–f ) directly correspond to those in figure 6.

in magnitude may be small for the spatial variation of RI between the centreline and
shear layers in figure 7(c,d) it can be seen that they are inversely correlated to one
another. Up until x/D = 2 RI increases along the centreline, at the expense of RI
decreasing along the shear layer. Since sector I is the sector primarily responsible for
enstrophy production this suggests that enstrophy associated with coherent motions
is increasingly produced along the centreline at the expense of its production along
the shear layers. Evidently, the coherent motions originate from the shear layers and
hence the vortex stretching process responsible for the mean cascade of enstrophy
acts to homogenise the enstrophy transported in coherent motions across the flow.

We may conclude, qualitatively from figure 6 and quantitatively from figure 7,
that the statistical behaviour of the invariants of the VGT does not vary significantly
in space along either the centreline or the shear layer despite the rapidly changing
flow physics. To quantitatively illustrate the spatially developing nature of the flow
physics, specific to the VGT itself, figure 8 presents the joint p.d.f.s of the constituent
components of the invariant Q; Qω is the first term on the right-hand side of (1.3)
and QS is the second term on the right-hand side of (1.3). The various joint p.d.f.s
are again normalised by the local (and field-specific) values of 〈Qω〉 and the data are
extracted along the centreline and shear layers at the same x locations as with the
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FIGURE 8. (Colour online) Joint p.d.f.s between Qω and −Qs along the centreline (a,c,e)
and the shear layer (b,d, f ) for the aij (a,b), aφij (c,d) and a′′ij (e, f ) velocity-gradient fields.
The contour colours correspond to the streamwise locations depicted in figure 5.

joint p.d.f.s of figure 6. All contour lines presented again encompass 68.3 % of the
total available data within the 0.13D× 0.13D interrogation windows from which the
statistics are computed.

The topology of the fine-scale turbulent motions can be inferred from such joint
p.d.f.s. The −Qs ∼ sijsij axis represents points with a locally high rate of dissipation
of turbulent kinetic energy which are known to be arranged in sheet-like structures
(e.g. Ganapathisubramani, Lakshminarasimhan & Clemens 2008) whereas the Qω ∼
ωiωi axis is associated with points with a locally high enstrophy which are arranged
in tube-like structures in turbulent flows (e.g. Jiménez et al. 1993). The 45◦ line of
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−Qs=Qω represents a balance of enstrophy and dissipation and these points may be
somewhat vaguely described as vortex sheets. Nevertheless, it has been shown that a
very large proportion of the data for fully developed turbulent mixing layers lies along
this line (Soria et al. 1994). Indeed of all the contours of figure 8(e, f ) those extracted
from the location of peak turbulence intensity, x/D=1.104 (the red contours), look the
most similar to those computed from fully developed turbulence. Despite the similarity
of the flow topology for all of the VGT fields, as illustrated in figure 8, the joint
p.d.f.s of figure 6(c,d) are vastly different to the classical ‘tear drop’ shape for the
joint p.d.f. between Q and R.

A particularly clear preference for high enstrophy, tube-like, topology exists in the
downstream locations of the aφij field, both along the shear layers and the centreline
(where admittedly the energy content of uφ(x) is low). This tendency develops with x
since the topology of aφij shows a tendency for vortex sheets further upstream. In this
instance the very different flow physics/topologies at the various downstream locations
presented in figure 8(d) do translate into quantitatively different joint p.d.f.s between
Q and R in figure 6(d), which are far from ‘tear drop’ shaped. Contrastingly, it may
be observed that (with the exception of x/D= 3.5) the joint p.d.f.s between Q and R
computed from the aij field, figure 6(a,b), collapse onto self-similar ‘tear drop’ shapes
despite the fact that no such collapse is observed in the joint p.d.f.s between Qω and
−Qs in figure 8(a,b). This is true along the centreline of the flow, in which there is
initially a recirculation region before spatially developing into a turbulent wake flow,
as well as along the shear layers. Along the shear layers there is a clear preference for
high enstrophy structures to develop with increasing x, whereas along the centreline
there are very different distributions as the flow transitions from a mean recirculation
to a vortex street. Nevertheless, all of these regions produce ‘tear drop’-shaped joint
p.d.f.s between Q and R.

We may exhaustively write out the invariants Q and R, in terms of the components
aij, as follows

Q = −(a2
11 + a2

22 + a11a22)− (a12a21 + a13a31 + a23a32) (4.4)
R = (a11a22 − a12a21)(a11 + a22)

+ (a11a23a32 + a22a13a31)− (a12a23a31 + a13a32a21). (4.5)

We may thus write Q and R as

Q=Qφ +Q′′ +QX (4.6)
R= Rφ + R′′ + RX, (4.7)

in which Qφ and R′′ are invariants computed from the aφij and a′′ij fields etc. and QX

and RX are cross-terms that involve contributions from both the aφij and a′′ij fields. In
general these are defined as

QX = 2(aφ11a′′11 + aφ22a′′22)+ a′′11aφ22 + aφ11a′′22 − a′′12aφ21 − aφ12a′′21

− a′′13aφ31 − aφ13a′′31 − a′′23aφ32 − aφ23a′′32 (4.8)

RX = (a′′11aφ22 + aφ11a′′22 − a′′12aφ21 − aφ12a′′21)(a
φ

11 + a′′11 + aφ22 + a′′22)

+ ( aφ11[a′′23aφ32 + a′′23a′′32 + aφ23a′′32] + a′′11[aφ23aφ32 + aφ23a′′32 + a′′23aφ32]
+ aφ22[a′′13aφ31 + a′′13a′′31 + aφ13a′′31] + a′′22[aφ13aφ31 + aφ13a′′31 + a′′13aφ31] )
− ( aφ12[a′′23aφ31 + a′′23a′′31 + aφ23a′′31] + a′′12[aφ23aφ31 + aφ23a′′31 + a′′23aφ31]
+ aφ13[a′′32aφ21 + a′′32a′′21 + aφ32a′′21] + a′′13[aφ32aφ21 + aφ32a′′21 + a′′32aφ21] ) . (4.9)
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FIGURE 9. (Colour online) Joint p.d.f.s between QX and RX , as defined in (4.8) and (4.9),
(a) along the centreline and (b) along the shear layers. The contour colours correspond to
the streamwise locations depicted in figure 5.

Our particular flow is well approximated as being statistically two-dimensional
meaning that there are no gradients of the coherent motions in the z-direction nor a
velocity component wφ hence (4.8) and (4.9) may be simplified to

QX
2D = 2(aφ11a′′11 + aφ22a′′22)+ a′′11aφ22 + aφ11a′′22 − a′′12aφ21 − aφ12a′′21 (4.10)

RX
2D = (a′′11aφ22 + aφ11a′′22 − a′′12aφ21 − aφ12a′′21)(a

φ

11 + a′′11 + aφ22 + a′′22)

+ aφ11a′′23a′′32 − aφ12a′′23a′′31 − aφ21a′′13a′′32 + aφ22a′′13a′′31. (4.11)

Nevertheless, to avoid further assumptions we shall persist with the definitions of QX

and RX from (4.8) and (4.9), cognisant of the fact that terms such as aφ13 ≈ 0.
Figure 9 illustrates the joint p.d.f.s between QX and RX , as defined in (4.8) and

(4.9) respectively, at the various streamwise locations highlighted in figure 5 along
the centreline (a) and the shear layer (b). The joint p.d.f.s are computed from the
same 0.13D × 0.13D interrogation windows as before, the contour levels are again
chosen such that Σ = 0.683 and the axes are normalised by 〈Qω〉(x). Whilst the
shape of the contours does not exactly resemble the classical ‘tear drop’ shape of
fQR(Q,R), in particular the Vieillefosse tail is absent, some features are present. These
include the predominance of states for which ∆ > 0 (swirling), the enhancement of
sector I (primarily responsible for enstrophy amplification) and the narrowed sector
II (primarily responsible for enstrophy attenuation). Further, it can be seen that all of
the contour levels collapse well with each other, particularly from the rear face of the
cylinder up until the location of the peak turbulence intensity.

The shape of the joint p.d.f. contours of figure 9 look remarkably similar
to fQR(Q, R) extracted from the closest location to the turbulence generating
grid of Gomes-Fernandes et al. (2014). It was in this region of the flow that
Gomes-Fernandes et al. (2015) observed an inverse cascade of turbulent kinetic
energy, along a particular axis, which was partly attributed to the multi-scale nature
of the flow generated by their particular space-filling fractal square grid. This region
of the flow was termed the turbulence production region since u′rms was an increasing
function of x. In such a flow the coherent dynamics of the bars of various length
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FIGURE 10. (Colour online) Joint p.d.f.s between −sijsjkski, the strain self-amplification
rate, and ωisijωj, the enstrophy amplification rate along the centreline of the flow computed
from the aφij field (a) and the a′′ij field (b). The dashed line marks ωisijωj =−4/3sijsjkski
and thus data from below the line correspond to R < 0 whilst the data above the line
correspond to R> 0. The contour colours correspond to the streamwise locations depicted
in figure 5.

scales interacted with each other, and the background incoherent turbulence. It may
thus be hypothesised that the cross-terms, QX and RX , were important in this region
of the flow which perhaps explains the resemblance of fQR(Q, R) to figure 9.

In the transport equations for ω2 and sijsij the inviscid source terms are ωisijωj
(in the enstrophy equation) and −sijsjkski and −ωisijωj (in the strain-rate equation).
Clearly ωisijωj is thus a source of enstrophy and a sink for dissipation, and these two
terms are the constituents of R as outlined in (1.4). Figure 10 shows joint p.d.f.s, again
with contour levels set such that Σ = 0.683, between ωisijωj and −sijsjkski computed
along the centreline from the aφij field (a) and the a′′ij field (b). The remarkable collapse
of the joint p.d.f.s of figure 6 can perhaps be explained by the self-preserving nature
of the statistical distributions of these inviscid source/sink terms, which drive the
evolution of enstrophy and dissipation. With the exception of the contour taken
immediately downstream of the cylinder for the coherent velocity-gradient tensor
field, in which 〈Qω〉 is small, the contours collapse onto one another. There is a
clear qualitative difference in the distributions for both. There is a preference for
the production of enstrophy alongside mild (inviscid) production of dissipation in
the field of stochastic velocity fluctuations. Intuitively, this would be required for an
inhomogeneous flow to evolve into a ‘fully developed’ flow, in which the fine-scale
structure is observed to consist of tubes of intense enstrophy surrounded by more
extensive sheets of dissipation. The opposite trend is observed in the field of coherent
fluctuations, in which the inviscid production of dissipation is favoured, which again
one might expect considering the decreasing significance of the coherent motions
with streamwise distance in a turbulent shear flow.

5. Conclusions
Tomographic PIV experiments were performed in the near field of the turbulent

flow around a square cylinder generating a 3D3C data set. The velocity field was
decomposed, according to (1.5), into a time invariant base flow, a coherent fluctuation
and a residual/stochastic fluctuation. This was conducted by means of phase bin
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averaging in which the phase angle of each instantaneously acquired 3D3C velocity
field was calculated from the time-varying mode coefficients of the second and third
modes obtained from a proper orthogonal decomposition of the flow field. These two
modes correspond to the vortex shedding downstream of the cylinder. From these three
separate velocity fields the invariants of the velocity-gradient tensor were computed
and their statistics compared to one another. Since the flow is spatially developing and
inhomogeneous these statistics were computed both upstream, including from within
the mean recirculation region, and downstream of the location of peak turbulence
intensity along the centreline of the flow. Additionally, the statistics were extracted
from the shear layer region of the flow; so defined as the local maximum in turbulence
intensity at a given downstream, x, location.

Joint p.d.f.s between the rotating and straining constituents of the invariant Q, Qω

and Qs respectively, highlighted the very different flow physics and topologies of the
various velocity-gradient fields at the various spatial interrogation locations. Despite
the differing flow physics and topologies of the various fields of velocity gradients the
joint p.d.f.s between the second and third invariants, Q and R resembled the classical
‘tear drop’ shapes associated with fully developed turbulence when computed from the
total and stochastic velocity gradients. In fact the contours of the joint p.d.f.s were
found to collapse in a self-similar fashion when appropriately normalised by the local
ensemble average of Qω. Such self-similar ‘tear drop’ shapes were found along the
centreline and the shear layer at all but the farthest downstream locations. Observation
of the relative magnitudes of the rotationally dominated sectors I and II showed that
these tended to be in balance with one another and only very slowly variant in space,
although their values did change according to which velocity-gradient field they were
computed from. The statistics of the inviscid source/sink terms in the evolution of
the enstrophy and dissipation are observed to also collapse remarkably well with the
local value of 〈Qω〉, offering a potential explanation for the collapse of the ‘tear drop’-
shaped joint p.d.f.s. As expected the joint p.d.f.s computed from the coherent velocity
gradients did not resemble those from fully developed turbulence.

It thus seems that the ubiquitous ‘tear drop’-shaped statistical distribution of the
invariants of the velocity-gradient tensor is even more ubiquitous than first thought.
Not only does it appear in a manner of (homogeneous) fully developed turbulent flows,
but this manuscript also shows that it exists in inhomogeneous flows with rapidly
spatially varying flow physics. Whilst fully developed flows have a flat spectrum of
turbulent kinetic energy at the low wavenumbers the flow past a square cylinder has
a clear spike at the vortex shedding wavenumber. From this perspective we should
thus consider the ‘tear drop’-shaped joint p.d.f. between the invariants of the velocity-
gradient tensor not as a universal feature of fully developed turbulence (Chacin &
Cantwell 2000; Elsinga & Marusic 2010) but as a universal feature of turbulent flows.
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