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Abstract

We realize the multiplihedron geometrically as the moduli space of stable quilted disks.
This generalizes the geometric realization of the associahedron as the moduli space of
stable disks. We show that this moduli space is the non-negative real part of a complex
moduli space of stable scaled marked curves.

1. Introduction

The Stasheff polytopes, also known as associahedra, have had many incarnations since their
original appearance in Stasheff’s work on homotopy associativity [Sta63]. A particular realization
of the associahedra as the compactified moduli space of nodal disks with markings is described
by Fukaya and Oh [FO97]. The natural cell decomposition arising from this compactification
is dual to the cell decomposition arising from the compactification of a space of metric trees
studied by Boardman and Vogt [BV73]. In this paper we describe analogous constructions for a
related family of polytopes Jn, called the multiplihedra, which appeared in [Sta63] when defining
A∞ maps between A∞ spaces, see also Iwase and Mimura [IM89]. The multiplihedra have a
realization as metric trees with levels as found in [BV73], which in a certain sense dualizes the
CW structure in Stasheff. We consider a moduli space Qn of marked quilted disks, which are disks
with n+ 1 marked points z0, . . . , zn on the boundary, and an interior circle passing through the
marked point z0. This moduli space has a compactification Qn by allowing nodal disks as in
the definition of the moduli space of stable marked disks. Our first main result is the following
theorem.

Theorem 1.1. The moduli space of stable (n+ 1)-marked quilted disks Qn is isomorphic as a
CW-complex to the multiplihedron Jn.

Another geometric realization of the multiplihedron, which gives a different CW structure,
appears in Fukaya et al. [FOOO09]. The authors of [FOOO09] denote them by M

w
n for

n= 1, 2, . . . and use them to define A∞ maps. The geometric description of Mw
n is similar

to the space of quilted disks, in that it is a moduli space of stable marked nodal disks with
some additional structure. The main difference is that their complex has the structure of a
manifold-with-corners, whereas the moduli space of quilted disks has real toric singularities on
its boundary.

Using our geometric realization, we introduce a natural complexification of the multiplihe-
dron. The moduli space of quilted disks Qn can be naturally identified with the moduli space of
n points on the real line modulo translation only. As such, it sits inside the moduli space Qn(C)
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Geometric realizations of the multiplihedra

of n points on the complex plane modulo translation. A natural compactification Qn(C) of this
space was constructed in Ziltener’s thesis [Zil06], as the moduli space of symplectic vortices on
the affine line with trivial target. Our second main result concerns the structure of Ziltener’s
compactification Qn(C), and its relationship with the multiplihedron.

Theorem 1.2. The moduli space of stable scaled marked curves Qn(C) admits the structure
of a complex projective variety with toric singularities that contains the multiplihedron Qn as a
fundamental domain of the action of the symmetric group Sn on its real locus.

This result is analogous to that for the Grothendieck–Knudsen moduli space of genus zero
marked stable curves, which contains the associahedron as a fundamental domain for the action
of the symmetric group on its real locus. In [NW09] this moduli space Qn(C) is used to define a
new notion of morphism of cohomological field theories.

2. Background on the associahedra

Let n > 2 be an integer. The nth associahedron Kn is a CW-complex of dimension n− 2 whose
vertices correspond to the possible ways of maximally parenthesizing n variables x1, . . . , xn.
Each facet of Kn is the image of an embedding

φi,e :Kn−e+1 ×Ke→Kn, 2 6 e 6 n (1)

corresponding to the expression x1 . . . xi(xi+1 . . . xi+e)xi+e+1 . . . xn. The associahedra have
geometric realizations as moduli spaces of genus zero nodal disks with markings.

Definition 2.1. A marked nodal disk consists of a collection of disks, a collection of nodal
points, and a collection of markings (z0, z1, . . . , zn) disjoint from the nodes, in counterclockwise
order around the boundary, see [FO97]. The combinatorial type of the nodal disk is the ribbon
tree obtained by replacing each disk with a vertex, each nodal point with a finite edge between
the vertices corresponding to the two disk components, and each marking with a semi-infinite
edge. A marked nodal disk is stable if each disk component contains at least three nodes or
markings. A morphism between nodal disks is a collection of holomorphic isomorphisms between
the disk components, preserving the nodal points and markings.

Any combinatorial type has a distinguished edge defined by the component containing the
zeroth marking z0. Thus the combinatorial type of a nodal disk with markings is a rooted tree.
Let Pn,T denote the set of isomorphism classes of stable nodal marked disks of combinatorial
type T , and Pn =

⋃
T Pn,T . There is a unique tree T∗ with one vertex, and we write Pn := Pn,T∗ .

The set Pn can be identified with a part of the real locus of the Grothendieck–Knudsen moduli
space M0,n+1 of stable genus zero marked complex curves. The topology on M0,n+1 has an
explicit description in terms of cross-ratios [MS04, Appendix D], hence so does the topology
on Pn. The cross-ratio of four distinct points w1, w2, w3, w4 ∈ C is

ρ4(w1, w2, w3, w4) =
(w2 − w3)(w4 − w1)
(w1 − w2)(w3 − w4)

and this represents the image of w4 under the fractional linear transformation that sends w1

to 0, w2 to 1, and w3 to ∞. The cross-ratio ρ4 is invariant under the action of SL(2, C) on C
by fractional linear transformations. By identifying P1(C)→ C ∪ {∞} and using invariance we
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S. Ma’u and C. Woodward

Figure 1. Cross-ratios by combinatorial type: for the first type ρijkl(S) =−∞, for the second
type ρijkl(S) ∈ (−∞, 0), and for the third type ρijkl(S) = 0.

obtain an extension of ρ4 to P1(C), that is, a map

ρ4 : {(w1, w2, w3, w4) ∈ (P1(C))4, i 6= j =⇒ wi 6= wj}→ C\{0, 1}.

ρ4 naturally extends to the geometric invariant theory quotient

(P1(C))4//SL(2, C) = {(w1, w2, w3, w4), no more than two points equal}/SL(2, C)

by setting

ρ4(w1, w2, w3, w4) =


0 if w2 = w3 or w1 = w4

1 if w1 = w3 or w2 = w4

∞ if w1 = w2 or w3 = w4

(2)

and defines an isomorphism from (P1(C))4//SL(2, C) to P1(C). Let R4
+ ⊂ R4 denote the subset

of distinct points (w1, w2, w3, w4) ∈ R4 in cyclic order. The restriction of ρ4 to R4
+ takes values

in (−∞, 0) and is invariant under the action of SL(2, R) by fractional linear transformations.
Hence it descends to a map (R4)+/SL(2, R)→ (−∞, 0). Let D denote the unit disk, and
identify D\{−1} with the half-plane H by z 7→ 1/(z + 1). Using invariance one constructs an
extension ρ4 : (∂D)4+/SL(2, R) = P3→ (−∞, 0) where (∂D)4+ is the set of distinct points on ∂D
in counterclockwise cyclic order. ρ4 admits an extension to P 3 via (2) and so defines an
isomorphism ρ4 : P 3→ [−∞, 0]. For any distinct indices i, j, k, l in cyclic order the cross-ratio
ρijkl is the function

ρijkl : Pn→ R, [w0, . . . , wn] 7→ ρ4(wi, wj , wk, wl).

Extend ρijkl to Pn as follows. Let T (ijkl)⊂ T be the subtree whose ending edges are the semi-
infinite edges i, j, k, l. The subtree T (ijkl) is one of the three types in Figure 1.

In the first case (respectively third case), we define ρijkl(S) =−∞ (respectively 0). In the
second case, let wi, wj , wk, wl be the points on the component where the four branches meet and
define ρijkl(S) = ρ4(wi, wj , wk, wl). The following properties of ρijkl then follow from elementary
facts about cross-ratios [MS04, Appendix D].

Proposition 2.2. The cross-ratios ρijkl have the following properties:

(i) (Invariance): for all marked nodal disks S, and for all φ ∈ SL(2, R), ρijkl(φ(S)) = ρijkl(S).
(ii) (Symmetry): ρjikl = ρijlk = 1− ρijkl and ρikjl = ρijkl(ρijkl − 1).

(iii) (Normalization): ρijkl =


∞ if i= j or k = l,

1 if i= k or j = l,

0 if i= l or j = k.
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(iv) (Recursion): as long as the set {1,∞, ρijkl, ρijkm} contains three distinct numbers,
then ρjklm = (ρijkm − 1)/(ρijkm − ρijkl) for any five pairwise distinct integers i, j, k, l, m ∈
{0, 1, . . . , d}.

The collection of functions ρijkl, i < j < k < l, defines a map of sets

ρn : Pn 7→ [−∞, 0]N , N =
(
n+ 1

4

)
, (3)

which is the restriction of the corresponding map ρn :M0,n+1→ (P1(C))N defined by cross-
ratios.

Theorem 2.3 [MS04, Theorem D.4.5]. The map ρn :M0,n+1→ (P1(C))N is injective, and its
image is closed.

Corollary 2.4. The map ρn : Pn 7→ [−∞, 0]N is an embedding, and its image is closed.

The topology on Pn is defined by pulling back the topology on [−∞, 0]N . With respect to this
topology, Pn is compact and Hausdorff. Explicit coordinate charts which give Pn the structure
of an (n− 2)-dimensional manifold-with-corners can be defined with cross-ratios. There is a
canonical partial order on the combinatorial types, and we write T0 6 T1 to mean that T0 is
obtained from T1 by contracting a subset of finite edges of T1. Let

Pn,6T1 :=
⋃

T06T1

Pn,T0 ⊂ Pn.

Definition 2.5. A cross-ratio chart for a combinatorial type T is a map

ψT : Pn,6T → (0,∞)n−2−|E| × [0,∞)|E|

where |E| is the number of interior edges of T , given by:

(i) n− 2− |E| coordinates taking values in (0,∞), obtained by choosing m− 3 coordinates
−ρijkl for each disk component with m markings or nodal points;

(ii) |E| coordinates with values in [0,∞), obtained by choosing a coordinate −ρijkl = 0 for each
internal edge such that a ρijkl = 0 for any combinatorial type modeled on that edge.

Theorem 2.6 [MS04, Theorem D.5.1]. For any combinatorial type T , suppose that n− 2 cross-
ratios have been chosen as prescribed by (i), (ii) above. Then, in the open set Pn,6T , all
cross-ratios are smooth functions of those chosen. Hence Pn is a smooth manifold-with-corners
of real dimension n− 2.

The associahedra have another geometric realization as metric trees, introduced in Boardman
and Vogt [BV73].

Definition 2.7. A rooted metric ribbon tree consists of:

(i) a finite tree T = (V (T ), E(T )) where E(T ) is the union of a set E(T ) of finite edges incident
to two vertices and a set E∞(T ) = {e0, . . . , en} of semi-infinite edges, each of which is
incident to a single vertex;

(ii) a cyclic ordering on the edges {e ∈ E(T ), v ∈ e} at each vertex v ∈ V (T ) that determines a
planar embedding of T for which e0, . . . , en are in cyclic order;
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Figure 2. Vertices of J3.

(iii) a distinguished edge e0 ∈ E∞(T ), called the root; the other semi-infinite edges are called
leaves;

(iv) a metric λ : E(T )→ (0,∞).

A tree is stable if each vertex has valence at least 3.

Given a stable rooted ribbon tree T we denote by Wn,T the set of all metrics λ : E(T )→ R+.
The space of all stable rooted metric ribbon trees with n leaves is denoted by

Wn =
⋃
T

Wn,T .

There is a natural topology on Wn, which allows the collapse of edges whose lengths approach
zero in a sequence. The closure of Wn,T in Wn is given by

WT =
⋃
T ′6T

Wn,T ′ .

Each cell Wn,T is compactified by allowing the edge lengths to be infinite. We denote the induced
compactification of Wn by Wn. The following theorem is well-known (see, for instance, [FO97]).

Theorem 2.8. There exists a homeomorphism Θ : Wn→ Pn such that, for any combinatorial
type T , Θ(Wn,T ) intersects Pn,T in a single point.

In other words, the realization as metric trees is dual, in a CW-sense, to the realization as
marked disks. We prove the corresponding statement for the multiplihedra in the next section.

3. The multiplihedra

Stasheff [Sta70, p. 53] alluded to a family of CW-complexes called the multiplihedra, which play
the same role for maps of loop spaces as the associahedra do in the recognition principle for loop
spaces. The nth multiplihedron Jn is a complex of dimension n− 1 whose vertices correspond to
ways of maximally parenthesizing n variables x1, . . . , xn and applying an operation, say f . The
multiplihedron J3 is the hexagon shown in Figure 2.
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Figure 3. Tree for (f(x1)f(x2x3))f(x4).

Figure 4. Triangulation corresponding to f(x1x2)f(x3).

The facets of Jn are of two types. First, there are the images of the inclusions

Ji1 × · · · × Jij ×Kj → Jn

for partitions i1 + · · ·+ ij = n, and secondly the images of the inclusions

Jn−e+1 ×Ke→ Jn

for 2 6 e 6 n. One constructs the multiplihedron inductively starting by setting J2 and K3 equal
to closed intervals.

Each vertex corresponds to a rooted tree with two types of vertices, the first a trivalent vertex
corresponding to a bracketing of two variables and the second a bivalent vertex corresponding to
an application of f ; see Figure 3. Dualizing the rooted tree gives a triangulation of the (n+ 1)-
gon together with a partition of the two-cells into two types, depending on whether they occur
before or after a bivalent vertex in a path from the root; see Figure 4.

The edges of Jn are of two types:

(a) a change in bracketing · · · xi−1(xixi+1) · · · 7→ (xi−1xi)xi+1 or vice versa;

(b) a move of the form · · · f(xixi+1) · · · 7→ f(xi)f(xi+1) · · · or vice versa, which corresponds
to moving one of the bivalent vertices past a trivalent vertex, after which it becomes a pair
of bivalent vertices, or vice versa; see Figure 5.
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Figure 5. Splitting of bivalent vertices.

4. Quilted disks

Definition 4.1. A quilted disk is a closed disk D ⊂ C together with a circle C ⊂D (the seam of
the quilt) tangent to a unique point in the boundary. Thus C divides the interior of D into two
components. Given quilted disks (D0, C0) and (D1, C1), a isomorphism from (D0, C0) to (D1, C1)
is a holomorphic isomorphism D0→D1 mapping C0 to C1. Any quilted disk is isomorphic to
the pair (D, C) where D is the unit disk in the complex plane and C the circle of radius 1/2
passing through 1 and 0. Thus the automorphism group of (D, C) is canonically isomorphic to
the group T ⊂ SL(2, R) of translations by real numbers.

Let n > 1 be an integer. A quilted disk with n+ 1 markings on the boundary consists of a
disk D ⊂ C (which we may take to be the unit disk), distinct points z0, . . . , zn ∈ ∂D and
a circle C ⊂D tangent to z0, of radius between 0 and 1. A morphism of quilted disks from
(D0, C0; z0, . . . , zn)→ (D1, C1; w0, . . . , wn) is a holomorphic isomorphism D0→D1 mapping
C0 to C1 and zj to wj for j = 0, . . . , n.

Let Qn be the set of isomorphism classes of (n+ 1)-marked quilted disks. We compactify Qn
by allowing nodal quilted disks whose combinatorial type is described as follows.

Definition 4.2. A colored, rooted ribbon tree is a ribbon tree T = (E(T ), V (T )) together with
a distinguished subset Vcol(T )⊂ V (T ) of colored vertices, such that, in any non-self-crossing path
from a leaf ei to the root e0, exactly one vertex is a colored vertex.

For example, for colored trees with two leaves there are three possible combinatorial types;
see Figure 7.

Definition 4.3. A nodal (d+ 1)-quilted disk S is a collection of quilted and unquilted marked
disks, identified at pairs of points on the boundary. The combinatorial type of S is a colored
rooted ribbon tree T , where the colored vertices represent quilted disks, and the remaining
vertices represent unquilted disks. A nodal quilted disk is stable if and only if:

(i) each quilted disk component contains at least two singular or marked points;

(ii) each unquilted disk component contains at least three singular or marked points.

Thus the automorphism group of any disk component of a stable disk is trivial, and from this
one may derive that the automorphism group of any stable (n+ 1)-marked nodal quilted disk is
also trivial.

The appearance of the two kinds of disks can be explained in the language of bubbling as in
[MS04, Appendix D]. Suppose that Sα is a sequence of quilted disks. We identify the complement
of z0 with the upper half-space H, so that the circle Cα becomes a horizontal line Lα ⊂H. After
a sequence of automorphisms ϕα, we may assume that z1,α − zn,α is constant. If the line Lα
approaches the real axis, or two points zi,α, zj,α converge, then we re-scale so that the distances
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Figure 6. Q3.

Figure 7. Combinatorial types for Q2.

remain finite and encode the limit of the re-scaled data as a bubble. There are three different
types of bubbles: either Lα→ ∂H in the limit, in which case we say that the resulting bubble is
unquilted, or Lα approaches a fixed line L∞, in which case the bubble is a quilted disk, or Lα
goes to ∞, in which case the bubble is also unquilted. Thus the limiting sequence is a bubble
tree, whose bubbles are of the types discussed above.

Let Qn denote the set of isomorphism classes of stable (n+ 1)-marked nodal quilted disks.
For example Q3 is a hexagon; see Figure 6.

5. The canonical embedding

Qn admits a canonical embedding into a product of closed intervals via a natural generalization
of cross-ratios. Let D denote the unit disk, C a circle in D passing through a unique point z0
and z1, z2 ∈D points in ∂D such that z0, z1, z2 are distinct. Let w be a point in C not equal
to z0. Define ρ3,1(D, C, z1, z2) = Im(ρ4(z0, z1, z2, w)), the imaginary part of ρ4(z0, z1, z2, w). ρ3,1

is independent of the choice of w and invariant under the group of automorphisms of the disk
and so defines a map ρ3,1 :Q2→ (0,∞). We extend ρ3,1 to Q2 by setting ρ3,1(S) = 0 if S is the
3-marked quilted nodal disk with three components, and ρ3,1(S) =∞ if S is the 3-marked nodal
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disk with two components. Thus ρ3,1 extends to a bijection

ρ3,1 :Q2→ [0,∞].

More generally, given n > 3 and a pair i, j of distinct, non-zero vertices, let Tij denote the
minimal connected subtree of T containing the semi-infinite edges corresponding to zi, zj , z0.
There are three possibilities for Tij , depending on whether the quilted vertex appears closer or
further away than the trivalent vertex from z0, or equals the trivalent vertex. In the first case
(respectively third case) define ρij(S) = 0 (respectively∞). In the second case, let (D, C) denote
the disk component corresponding to the trivalent vertex, wi, wj ∈ ∂D the points corresponding
to the images in ∂D of the marked points zi, zj , and define

ρij(S) = ρ3,1(D, C, wi, wj).

The ρij have properties very similar to the ρijkl.

Proposition 5.1. For all quilted disks S:

(i) (Invariance): for all φ ∈ SL(2, R), ρij(φ(S)) = ρij(S);

(ii) (Symmetry): ρij(S) =−ρji(S);

(iii) (Normalization): ρij(S) =
{
∞ if i 6= j and L= R + i∞,
0 if i 6= j and L= R + i0;

(iv) (Relations): ρjk =−ρij/ρijk0, ρik = ρij/(1− ρijk0).

By the invariance property, ρij descends to a map

Qn→ [0,∞].

In addition, for any four distinct indices i, j, k, l we have the cross-ratio ρijkl :Qn→ [0,∞]
defined in the previous section, obtained by treating the quilted disk component as an ordinary
component.

Theorem 5.2. The map

ρn,1 :Qn→ [−∞, 0]N × [0,∞]n(n−1)/2, N =
(
d+ 1

4

)
obtained from all the cross-ratios is injective, and its image is closed.

Proof. The proof is similar that of Theorem 2.3. In fact, it is a corollary of Theorem 10.3 proved
in § 10, which deals with a complex space Qn(C) in which Qn sits as a part of the real locus. 2

We define the topology on Qn by pulling back the topology on the codomain. Since the
codomain is Hausdorff and compact, we have the following corollary.

Corollary 5.3. Qn is Hausdorff and compact.

Remark 5.4. The maps Qn→ P 3, Qn→Q2 are special cases of forgetful morphisms: for any
subset I ⊂ {0, . . . , n} of size k we have a map Qn 7→ P k−1 obtained by forgetting the positions
of zi, i /∈ I, and the position of the circle and collapsing all unstable components. Similarly, for
any subset J ⊂ {1, . . . , n} of size l we have a map Qn 7→Ql obtained by forgetting the positions
of zj , j /∈ J , and collapsing all unstable disk components. The topology on Qn is the minimal
topology such that all forgetful morphisms are continuous and the topology on Q2

∼= [0,∞],
P 3
∼= [0,∞] is induced by the cross-ratio.
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The full collection of cross-ratios contains a large amount of redundant information. In the
remainder of this section we discuss certain ‘minimal sets’ of cross-ratios, to be used later. Let T
be a combinatorial type in Qn.

Definition 5.5. A cross-ratio chart associated to T is a map ψT :Qn,6T → (0,∞)p × [0,∞)q

for some p, q > 0 given by:

(i) p coordinates taking values in (0,∞), obtained by taking m− 3 coordinates of the form
−ρabcd or ρab for each disk component that has m special features, where a special feature
is either a marked point, a nodal point, or an inner circle of radius 0< r < 1;

(ii) q coordinates taking values in [0,∞), obtained by choosing (a) a coordinate −ρabcd for each
finite edge in T , such that a combinatorial type has that edge if and only if ρabcd = 0; (b) a
coordinate ρab for each finite edge in T that is incident to a bivalent colored vertex from
above, such that ρab = 0 for every combinatorial type modeled on that edge; (c) a coordinate
1/ρab for each finite edge in T that is incident to a bivalent colored vertex from below, such
that 1/ρab = 0 for every combinatorial type modeled on that edge.

Proposition 5.6. Let ψT be as above. On Qn,6T all cross-ratios ρijkl and ρij are compositions
of smooth functions with ψT .

Proof. First we prove that all cross-ratios of the form ρijkl are smooth functions of those in the
chart associated to T . Let T ′ be the combinatorial type in Pn obtained by forgetting colored
vertices. Taking all cross-ratios of the form ρijkl in the chart associated to T is almost a chart
for T ′ in the sense of Definition 2.5, the only chart coordinates that might be missing correspond
to edges whose pre-image in T had a bivalent colored vertex. For each bivalent vertex in T , we can
assume that the lower edge has coordinate ρij =∞ and the upper edge is either ρjk = 0 or ρhi = 0.
Assuming the first case, using (Relations) of Proposition 5.1 we can write ρijk0 =−ρij/ρjk,
which expresses ρijk0 as a smooth function of the chart coordinates, and ρijk0 is a valid chart
coordinate for the edge in T ′. The other case is very similar. Thus we get a chart for T ′, so by
Theorem 2.6 all cross-ratios of the form ρabcd are smooth functions of these coordinates. Finally,
all cross-ratios ρab are smooth functions of the cross-ratios ρij in the chart and the appropriate
ρijk0, again using (Relations). 2

6. Local structure

In general,Qn is not CW-isomorphic to a manifold-with-corners, but rather has more complicated
singularities that we now describe. Quilted disks in the interior Qn can be identified with
configurations of n distinct points −∞< z1 < z2 < · · ·< zn <∞ in R⊂ C, together with a
horizontal line L in H. Isomorphisms are transformations of the form z 7→ az + b for a, b ∈ R
such that a > 0, i.e. dilation and translation. For such configurations define coordinates
(x1, x2, . . . , xn, y) by xi = zi+1 − zi, and y = dist(L, R). A transformation z 7→ az + b for a, b ∈ R
sends (x1, x2, . . . , xn−1, y) 7→ (ax1, ax2, . . . , axn−1, ay), so (x1 : x2 : · · · : xn−1 : y) are projective
coordinates on Qn.

Let T be a maximal colored rooted ribbon tree; hence its colored vertices are bivalent, and
all other vertices trivalent. We construct a simple-ratio chart

φT :Qn,6T →Hom(E(T ), R>0), [S] 7→ (φT,e(S))e∈E(T ) (4)
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Figure 8. A cross-ratio chart and a simple-ratio chart for the same maximal colored tree.

as follows. Let [S] ∈Qn,6T . For each 1 6 i 6 n− 1, there is a unique vertex of T at which the paths
from the leaf i and the leaf i+ 1 back to the root intersect; we label this vertex vi. Every trivalent
vertex of T can be labelled this way, so all remaining vertices are colored. The interior edges of T
are of two types: edges that connect two vertices vi and vj , and edges that connect a vertex vi
to a colored vertex. Suppose that e ∈ E(T ) connects the vertex vi with the vertex vj , with vj
closer to the root (i.e., vj is above vi). The vertex vi labels the unique component of the nodal
disk S on which the markings corresponding to the leaves zj , zj+1 and z0 are distinct. On this
component, choose a parametrization that sends z0 to ∞, then label the edge between vi and vj
with φT,e = (zi+1 − zi)/(zj+1 − zj) = xi/xj . Note that the label φT,e is therefore independent
of the choice of parametrization. If the edge e connects the vertex vi with a colored vertex
immediately above it, choose the unique component at which zi+1 is distinct from zi, and label e
with φT,e = xi/y; if the edge e connects the vertex vi with a colored vertex immediately below it,
label e with the value φT,e = y/xi. We claim that the map φT is defined for all [S] ∈Qn,6T with
all the ratios φT,e(S) landing in [0,∞), and with the property that φT,e(S) = 0 if and only if the
combinatorial type of S has the edge e. To see this, recall that if [S] ∈Qn,6T , its combinatorial
type TS must be obtained from T by contracting a subset of edges (that is, TS 6 T ). In particular,
every edge in TS corresponds to a unique edge in T . Hence, if e ∈ E(T ) connects a vertex vi with
a vertex vj above it, then in TS either vi = vj if e is contracted, or the edge e remains. If vi = vj
in TS , this implies that the disk component of S on which zj 6= zj+1 is also the disk component on
which zi 6= zi+1; hence xi > 0 and xj > 0 and the ratio φT,e(S) = xi/xj > 0. If the edge e remains
in TS , this means that with respect to the markings on the disk component where zj 6= zj+1, we
have zi = zi+1 and so φT,e(S) = 0/xj = 0.

Now if e ∈ E(T ) connects vertex vi with a colored vertex above it, then in TS either vi becomes
a colored vertex, or e is an edge. In the first case, this implies that the unique component
where zi 6= zi+1 is a quilted component, so parametrizing the component such that z0 =∞, the
inner circle is a line of height y > 0, and φT,e(S) = xi/y > 0. In the second case, the unique
component where zi 6= zi+1 is unquilted and corresponds to having the line at height y =∞,
so φT,e(S) = xi/∞= 0. The case of a colored vertex below vi is similar. This completes the
construction of φT . Figure 9 illustrates the construction of φT for a nodal quilted disk in Q7.

Definition 6.1. Let T be a colored tree. A labelling ϕ : E(T )→ R>0 is balanced if it satisfies
the following condition: denote by V−(T ) the set of vertices on the root side of the colored
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Figure 9. Identifying a nodal quilted disk in Q7,6T with a balanced labelling of T , using simple
ratios.

vertices, that is, connected to the root by a path not crossing a colored vertex. For each vertex
v0 ∈ V (T ) and any colored vertex v connected by a path of edges not crossing the root, let
π(v0, v) denote the product of the values of ϕ along the unique path of edges from v0 to v.
Then ϕ is balanced if π(v0, v) is independent of the choice of colored vertex v. Let X(T ) denote
the set of balanced labellings:

X(T ) := {ϕ : E(T )→ R>0 | ∀v0 ∈ V−(T ), π(v0, v) is independent of v ∈ Vcol(T )}.

We denote by G(T )⊂X(T ) the subset of non-zero labellings.

Proposition 6.2. Let T be a maximal colored tree. Then φT is a homeomorphism from Qn,6T
onto X(T ), mapping Qn onto G(T ).

Thus, in particular, the simple ratios and cross-ratios define the same topology on Qn,6T .

Proof. It follows from the definition that φT takes values in balanced labellings, with products
y/xi where i is the top vertex. The construction of φT also makes it clear how to construct
a pointed nodal quilted disk from a balanced labelling of T , showing that φT is onto X(T ).
To make the relationship between the coordinates in the balanced labelling and the cross-ratio
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Figure 10. Comparing cross-ratios with simple ratios.

coordinates in a chart for Qn,6T explicit, let ρ= (ρe)e∈E(T ) be the cross-ratios in a chart covering
Qn,6T . Without loss of generality, assume that all chart cross-ratios of the form ρijkl are either of
the form ρe = ρijk0 or ρe = ρ0ijk, chosen so as to take values in (−∞, 0] on Qn,6T , with ρe(S) = 0
if and only if the combinatorial type of S has the edge e. Let ζ = (φT,e)e∈E(T ) denote the simple
ratios in a balanced labelling of T . We claim that ρe = φT,ef(ζ) for every edge e ∈ E(T ), where
f(ζ) is a smooth function on the interior of Qn,6T which is continuous up to the boundary, and
f(ζ) 6= 0 on Qn,6T . This claim would imply ρe = 0 ⇐⇒ φT,e = 0. First we prove the claim for the
cross-ratios ρijk0 in the chart. By symmetry it suffices to consider the edge pictured in Figure 10
(left), where an edge e joins vertices vr and vs, with vr above vs, so φT,e = xs/xr, and a chart
cross-ratio for e is ρijk0. Parametrizing so that z0 =∞,

ρijk0 = −zj − zk
zj − zi

=−xs
xr

(
xj/xs + xj+1/xs + · · ·+ 1 + · · ·+ xk−1/xs

xi/xr + · · ·+ 1 + · · ·+ xj−1/xr

)
= φT,ef(ζ).

The ratios in the bracketed function are products of ratios labelling edges below vr and vs. The
bracketed function is thus a smooth function of the simple ratios in the chart, continuous as
the simple ratios in the chart go to zero, and never zero; therefore, ρijk0 = 0 if and only if
φT,e = xs/xr = 0. Now we prove the claim for a cross-ratio ρij in the chart. Parametrizing so
that z0 =∞ and using y to denote the height of the line with respect to this parametrization,
consider an edge such as the one pictured in Figure 10 (right), where the cross-ratio labelling e
in a cross-ratio chart is ρij , and the simple ratio φT,e = y/xr. Then

ρij =
y

zj − zi
=

y

xr

(
1

xi/xr + · · ·+ 1 + · · ·+ xj−1/xr

)
= φT,ef(ζ)

where the ratios appearing in the big bracket are products of simple ratios labelling edges
below vr. The function f(ζ) is smooth and never 0 for all non-negative ratios and it is continuous
as the ratios go to 0. Moreover, ρij = 0 if and only if y/xr = 0. The case of a colored vertex above
a regular vertex is very similar so we omit it. This proves that the transition from a simple-ratio
chart to a cross-ratio chart is a smooth change of coordinates on Qn,6T . 2

One sees from this description that Qn is not a manifold-with-corners. We say that a point
[S] ∈Qn is a singularity if Qn is not CW-isomorphic to a manifold-with-corners near [S].
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Figure 11. Q4, sometimes called the ‘Chinese lantern’. The singular point on the boundary,
which has four edges coming out of it, corresponds to the nodal quilted disk at right.

Example 6.3. The first singular point occurs for n= 4. The expression (f(x1)f(x2))(f(x3)
f(x4)) is adjacent to f(x1x2)(f(x3)f(x4)), (f(x1)f(x2))f(x3x4), f(x1)(f(x2)(f(x3)f(x4))), and ((f(x1)
f(x2))f(x3))f(x4), and hence there are four edges coming out of the corresponding vertex. On
the other hand, the dimension of Q4 is three; see Figure 11. Thus Q4 cannot be a manifold with
corners (and, therefore, not a simplicial polytope).

Lemma 6.4. Any morphism of trees f : T0→ T1 induces a morphism of balanced labellings
X(f) :X(T0)→X(T1).

Proof. Let f : T0→ T1 be a morphism of trees. Given a balanced labelling ϕm : E(T0)→ R>0 we
obtain a balanced labelling ϕ1 : E(T1)→ R>0 by setting ϕ1(e1) =

∏
ϕ0(e0) where the product is

over edges e0 above e1 that are collapsed under f . One can easily see that the resulting labelling
of T1 is balanced. 2

Corollary 6.5. Let T be a colored tree. There exists a CW-isomorphism of Qn,T ×X(T ) onto
a neighborhood of Qn,T in Qn.

Proof. Let Tm be a maximal tree such that there exists a morphism of trees f : Tm→ T . For
each vertex v ∈ V (T ), let Tmv ⊂ T be the subtree whose vertices map to v. Given a labelling
ϕm ∈X(Tm), we obtain by restriction labellings ϕv ∈X(Tmv ) for each v ∈ V (T ), and from
Lemma 6.4 a labelling ϕ ∈X(T ). Thus we obtain a map

X(Tm)→
( ∏
v∈V (T )

X(Tmv )
)
×X(T ).

It is straightforward to verify that this map induces an isomorphism of {ϕ ∈X(Tm) | ϕ(e) 6=
0 ∀e ∈ E(T )} onto (

∏
v∈V (T ) X(Tmv )∗)×X(T ). The former is the image ofQn,6T under φ−1

T . Since
each tree Tmv is maximal, Proposition 6.2 gives an isomorphism of Qn,6T onto Qn,T ×X(T ). 2

For later use, we describe subsets of the edges whose labels determine all others.

Definition 6.6. Let T be a maximal colored tree. Let e be an interior edge of T that is incident
to a pair of trivalent vertices. Contraction of e produces a 4-valent vertex, and we say that
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flop

splitting

fusion

Figure 12. Basic moves on edges in a colored tree.

Figure 13. The top four types of edge have associated basic moves; the lower two types do not.

the tree obtained by a flop of e is that which corresponds to the alternative resolution of the
4-valent vertex. A fusion move through an interior vertex vi is one by which two colored vertices
immediately below vi become a single colored vertex immediately above vi; we call the reverse
move a splitting move. We say that two maximal colored trees T and T ′ differ by a basic move
if they differ by a single flop, fusion, or splitting move; see Figure 12.

Any maximal colored tree can be obtained from a fixed maximal colored tree by a sequence
of basic moves. Let T be a maximal colored tree. The simple-ratio chart covering the open
set Qn,6T assigns a simple-ratio coordinate to each interior edge of T ; however, on a given chart,
some of those ratios may be functions of other ratios in the chart. There are six possibilities for
an interior edge e of T , pictured in Figure 13. Note that the edges in the top four cases have a
basic move associated to them, but not the two lower cases.

Lemma 6.7. All simple ratios in φT are determined by the simple ratios labelling edges which
have an associated basic move.

Proof. The simple ratios for the other edges are redundant: if an edge e does not have an
associated basic move, it must be one of the lower two types in Figure 13. Let v be the vertex
directly above e. Observe that there must exist a path from v to another colored vertex below
it, such that every edge in the path is one of the top four types in Figure 13. Thus the simple
ratios labelling the edges in that path appear in the reduced chart, and the relations imply that
the product of the simple ratios in that path is equal to the simple ratio labelling e. 2

Definition 6.8. A reduced simple-ratio chart is given by restricting φT to the edges that have
an associated basic move; we call these edges reduced chart edges.
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Figure 14. A colored ribbon tree. The relations on λ1, . . . , λ8 imply that λ3 = λ4 = λ5, λ3 +
λ2 = λ6, and λ6 + λ1 = λ7.

Example 6.9. In Figure 8, the reduced simple-ratio chart has y/x1, x1/x2, x3/x2, x5/x3, y/x5,
and x4/y. The simple ratio y/x3 is redundant.

7. Colored metric ribbon trees

The multiplihedra have another geometric realization as colored metric ribbon trees. Colored
trees were introduced in [BV73], and the definition of level trees [BV73, Definition 4.3] is close to
that of colored metric ribbon trees, but the conditions imposed on the edge lengths are different.

Definition 7.1. A colored rooted metric ribbon tree is a colored rooted ribbon tree with a metric
λ : E(T )→ (0,∞) such that the sum of the edge lengths in any non-self-crossing path from a
colored vertex v ∈ Vcol(T ) back to the root is independent of v ∈ Vcol(T ). A colored rooted metric
ribbon tree is stable if each colored (respectively non-colored) vertex has valency at least two
(respectively three).

Example 7.2. For the tree in Figure 14, an edge length map is subject to the relations
λ1 + λ2 + λ3 = λ1 + λ2 + λ4 = λ1 + λ2 + λ5 = λ1 + λ6 = λ7.

For each stable colored tree T , we denote by Wn,1,T the set of all maps of λ colored metric
trees with underlying colored tree λ and by Wn the union

Wn,1 =
⋃
T

Wn,1,T .

We define a topology on Wn,1,T as follows. Assume that a sequence Ti = (T, {λi}i∈N) of
metric trees converges for each interior edge e to a non-negative real number. In other words,
λi(e)→ λ∞(e) ∈ [0,∞) for every e ∈ E(T ). We say that the corresponding colored metric trees
Ti converge to T∞ if:

(i) T∞ is the tree obtained from T by collapsing edges e for which λ∞(e) := limi→∞ λi(e) = 0;
this defines a surjective morphism of colored rooted ribbon trees, f : T → T∞;

(ii) Vcol(T∞) = f(Vcol(T ));
(iii) λ∞(e) = limi→∞ λi(f−1(e)), if this limit is non-zero.

1017

https://doi.org/10.1112/S0010437X0900462X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X0900462X


S. Ma’u and C. Woodward

Figure 15. The images of the cones of W3,1 in the moduli space Q3.

Proposition 7.3. Wn,1,T is a polyhedral cone in Rn, where n= |E(T )| − |Vcol(T )|+ 1.

Proof. There is an R+ action on Wn,1,T , given by (δ · λ)(e) := δλ(e), so it is clearly a cone. The
dimension follows from the fact that there are |E(T )| variables and |Vcol(T )| − 1 relations.
The polyhedral structure can be seen by writing |Vcol(T )| − 1 variables as linear combinations of n
independent variables. Then the condition that all λ(e) > 0 means that Wn,T is an intersection
of half-spaces. 2

Example 7.4. In the example of Figure 14, |E(T )|= 8, and |Vcol(T )|= 5. We can choose
independent variables to be λ1, λ2, λ3, and λ8, and express the remaining variables as λ4 =
λ3, λ5 = λ3, λ6 = λ2 + λ3, and λ7 = λ1 + λ2 + λ3. Thus the space of admissible edge lengths is
parametrized by points in the polyhedral cone that is the intersection of R4

+ (for the independent
variables being non-negative) with the half-spaces λ4 > 0, λ5 > 0, λ6 > 0 and λ7 > 0.

Exponentiating the labellings of the edges gives a map

Θ : Wn,1→Qn, Θ(λ)(e) = e−λ(e).

Since λ > 0, the image of a cone Wn,1,T is identified directly with the subset of Qn,6T consisting
of balanced labellings with φT,e ∈ (0, 1] for every e ∈ E(T ).

Example 7.5. Consider the case n= 3, where we have fixed the parametrization of the elements
of Qn so that the interior circle is identified with a line of height L in half-space. Let x= z2 − z1
and y = z3 − z2. The images of W3,1,T subdivide R2

>0 into six regions, see Figure 15, each of
which corresponds to a cone in R2 via the homeomorphism (x, y) 7→ (log x, log y).

There is a natural compactification Wn,1 of Wn,1 by allowing edges to have length ∞. The
map Θ extends to the compactifications by taking limits in appropriate charts.

Theorem 7.6. The map Θ : Wn,1→Qn is a homeomorphism, with the property that, for any
combinatorial type T , Θ(Wn,1,T ) intersects Qn,T in a single point.

This is the colored analog of Theorem 2.8.

1018

https://doi.org/10.1112/S0010437X0900462X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X0900462X


Geometric realizations of the multiplihedra

Proof. As λ(e)→∞, the identification λ(e)→ φT,e = e−λ implies φT,e→ 0. Thus the image of a
compactified cone Wn,1,T is identified with the subset of Qn,6T consisting of balanced labellings
with φT,e ∈ [0, 1] for every e ∈ E(T ). The image of Wn,1,T intersects Qn,T precisely when all edges
in T have length ∞. 2

8. Toric varieties and moment polytopes

In this section we show the following theorem.

Theorem 8.1. Qn is homeomorphic to the non-negative part of an embedded toric variety V
in Pk(C), where k is the number of maximal colored trees with n leaves.

In particular, Qn is isomorphic as a CW-complex to a convex polytope; this reproduces the
result of Forcey [For08]. Using this we prove the main Theorem 1.1. First we define the toric
variety V . Recall from § 6 that a point in Qn can be identified with a projective coordinate
x= (x1 : x2 : · · · : xn−1 : y), by parametrizing such that z0 =∞, and setting xi = zi+1 − zi and y
to be the height of the line. Let T be a maximal colored tree. Adapting the algorithm of Forcey in
[For08], we associate a weight vector µT ∈ Zn to the tree T as follows. A pair of adjacent leaves
in T , say i and i+ 1, determines a unique vertex in T , which we label vi. Let ai be the number
of leaves on the left-hand side of vi, and let bi be the number of leaves on the right-hand side of
vi. Let

δi =
{

0 if vi is below the level of the colored vertices, and
1 if vi is above the colored vertices.

Set

µT :=
(
a1b1(1 + δ1), . . . , aibi(1 + δi), . . . , an−1bn−1(1 + δn−1),−

∑
i

δiaibi

)
.

Example 8.2. The weight vector for the tree in Figure 16 is (2, 16, 6, 1, 4,−14), so the monomial
is x2

1x
16
2 x

6
3x4x

4
5y
−14.

Fix some ordering of the k maximal colored trees with n leaves, T1, . . . , Tk. The projective
toric variety V ⊂ Pk−1(C) is the closure of the image of the embedding

(x1 : · · · : xn−1 : y) 7→ (xµT1 : · · · : xµTk ). (5)

The entries in the weight vectors always sum to n(n− 1)/2, so the map is well-defined on the
homogeneous coordinates.

Lemma 8.3. Suppose that two maximal colored trees T and T ′ differ by a single basic move
involving an edge e ∈ E(T ). Let φT,e denote the simple ratio labelling the edge e in the chart
determined by T . Then

xµT ′

xµT
= φmT,e

for an integer m> 0. In general, for two maximal trees T and T ′,

xµT ′

xµT
= φm1

T,e1
φm2
T,e2

. . . φmr
T,er

for some edges e1, . . . , er of T and positive integers m1, . . . , mr.
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Figure 16. A maximal colored tree, whose weight vector is (2, 16, 6, 1, 4,−14).

Figure 17. The effect of a flop on weight vectors.

Proof. First let us consider the case of a single flop. Without loss of generality, consider the
situation in Figure 17. Say T is on the left and T ′ is on the right, and the affected edges are in
bold.

The weight vectors µT and µT ′ are the same in all entries except for entries i and j,
where

(µT )i = aibi, (µT )j = ajbj = (ai + bi)bj , (µT ′)i = ai(bi + bj), (µT ′)j = bibj .
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Therefore,

xµT ′

xµT
=
x
ai(bi+bj)
i x

bibj
j

xaibi
i x

(ai+bi)bj
j

=
x
aibj
i

x
aibj
j

=
(
xi
xj

)aibj

and observe that φT,e = xi/xj is the ratio labelling that edge of T , and aibj > 1.

For the other kinds of basic move it suffices to consider fusion, in which a pair of colored
vertices are below vi in T and above vi in T ′. The weight vectors of T and T ′ are identical in
all entries except for the ith entry, which corresponds to the exponent of xi, and the (n+ 1)th
entry, which corresponds to the exponent of y:

(µT )i = 2aibi, µT ′ = aibi, (µT ′)n+1 − (µT )n+1 =−(0)− (−aibi).

Therefore,

xµT ′

xµT
=

xaibi
i y0

x2aibi
i y−aibi

=
yaibi

xaibi
i

=
(
y

xi

)aibi

where φT,e = y/xi is the ratio labelling the two edges below vi of T , and aibj > 1.

The vertices are partially ordered by their positions in the tree; the effects of basic moves
on the partial ordering are individual changes (vi 6 vj)↔ (vj 6 vi), or (vcol 6 vi)↔ (vi 6 vcol),
between adjacent vertices. In general, every maximal tree is obtained from a fixed tree T by
a sequence of independent basic moves: by independent we just mean that each one involves a
different pair of vertices. We prove the general case by induction on the number of independent
basic moves needed to get from a fixed maximal tree T to any other maximal tree T ′. Having
proved the base case, now consider a tree T ′ obtained after a sequence of k + 1 flops. Write T̃
for a tree which is k independent moves away from T and one move away from T ′. Suppose
that the final move between T̃ and T ′ is described by the (vi 6 vj)→ (vj 6 vi). By the inductive
hypothesis and the base step,

xµT ′

xµT
=
xµT ′

xµT̃

xµT̃

xµT
=
(
xi
xj

)m
φm1
T,e1

φm2
T,e2

. . . φmr
T,er

for some positive integers m1, . . . , mr and m, and some edges e1, . . . , er of T . Since none of
the previous flops involved the pair vi and vj , the partial order in the original tree T must have
also had vi 6 vj , although they were possibly not adjacent in T . In any case, the ratio xi/xj is a
product of the ratios in the chart φT labelling the edges from vi to vj . The case where the final
move is one of (vcol, vi)↔ (vi, vcol) is similarly straightforward. This completes the inductive
step. 2

Proof of Theorem 8.1. We use Lemma 8.3 to identify the simple ratios in a reduced chart for
each maximal colored tree Ti, with the non-negative part of the affine slice V ∩ Ai. Consider T1.
The affine piece V ∩ A1 consists of all points(

1 :
xµT2

xµT1
: · · · : x

µTk

xµT1

)
where the entries may be 0. Now let φT1,e1 , . . . , φT1,el

be the simple-ratio coordinates in a
reduced chart for the open set Qn,6T1 ⊂Qn (Definition 6.8). By construction, the edges e1, . . . , el
of T1 have associated basic moves. Thus they determine a set T1(e1), . . . , T1(el) of maximal
colored trees, where each T1(ei) is obtained from T1 by the basic move associated to the
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edge ei. Without loss of generality, assume that the l maximal trees T2, . . . , Tl+1 are respectively
T1(e1), . . . , T1(el). By Lemma 8.3, we identify the non-negative part of V ∩ A1 with the chart
φT1 by the map

Qn,T1
−→ V ∩ A1 (φT1,e1 , . . . , φT1,el

) 7→ (1 : φm1
T1,e1

: φm2
T1,e2

: · · · : φml
T1,el

: ∗ : · · · : ∗)

where m1, . . . , ml are positive integers depending on the combinatorics of T1, and the entries
labelled ∗ are higher products of φT1,e1 , . . . , φT1,el

. This map is well-defined, one-to-one and onto
for φT1,ei and φmi

T1,ei
which are all in the non-negative range [0,∞). 2

Corollary 8.4. Qn is CW-isomorphic to the convex hull of the weight vectors in Rn, and thus
CW-isomorphic to a (n− 1)-dimensional polytope.

Proof. The non-negative part of a projective toric variety constructed with weight vectors is
homeomorphic, via the moment map, to the convex hull of the weight vectors (see, for example,
[Ful93, Sot03]). 2

Proof of Theorem 1.1. The proof is by induction on n. The one-dimensional spaces Q2, P 3, J2

and K3 are all compact and connected, and so CW-isomorphic. It suffices, therefore, to show that
Qn is the cone on its boundary. This is true since it is homeomorphic to a convex polytope. 2

9. Stable weighted disks

Fukaya et al. [FOOO09] introduced another geometric realization of the multiplihedron, although
the CW-structure is slightly different. A weighted stable (n+ 1)-marked disk consists of

(i) a stable nodal disk (Σ = (Σ1, . . . , Σm), z = (z0, . . . , zn)),
(ii) for each component Σ1, . . . , Σm of Σ, a weight xi ∈ [0, 1]

with the following property: if Σi is adjacent to Σj , and Σj is closer to the root marking z0,
then xi 6 xj . An isomorphism of rooted stable disks is an isomorphism of stable disks
intertwining with the weights. Let Mw

n+1 denote the moduli space of stable weighted marked
disks, equipped with the natural extension of the Gromov topology in which a sequence
(Σi, zi, λi) converges to (Σ, z, λ) if (Σi, zi) Gromov converges to (Σ, z) and the weights on the
limit curve are pulled back from those on Σ via the morphism of trees appearing in the limit.

For example, Mw
3 is an interval and Mw

4 is a hexagon consisting of a square and two triangles,
joined along two edges; see Figure 18. Each triangle is defined by the inequality 0 6 x2 6 x1 6 1.
The moduli space Mw

5 has 23 cells of dimension two on the boundary (two projecting onto the
two-cell of P 5, 10 projecting onto the one-cells of P 5, and 11 projecting onto the vertices of P 5).
On the other hand, the multiplihedron Q4 has 13 cells of dimension two on the boundary; see
Figure 11.

10. Stable scaled affine lines

In this section we re-interpret the moduli space of quilted disks as a moduli space of stable scaled
lines. This construction has the advantage that it works for any field. Working over k = C gives
a moduli space introduced in Ziltener’s study [Zil06] of gauged pseudoholomorphic maps from
the complex plane; we show that it is a projective variety with toric singularities.

Definition 10.1. Let k be a field. A scaled marked line is a datum (A, z, φ), where A is an
affine line over k, z = (z1, . . . , zn) ∈ A are distinct points, and φ ∈ Ω1(A, k)k is a translationally
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Figure 18. Moduli of weighted 4-marked disks.

invariant area form. An isomorphism of scaled marked lines is an isomorphism ψ : A→ A that
intertwines the area forms and markings. A scaled line is stable if the automorphism group is
finite, that is, it has at least one marking. Denote by Qn(k) the corresponding moduli space of
stable, scaled marked lines.

In the case when k = R, Qn(R) has as a component (given by requiring that the markings
appear in order) the moduli space Qn of the previous section, through identifying (z1, . . . , zn, φ)
with (z0 =∞, z1, . . . , zn, Lφ), where Lφ ⊂ A is a line of height 1/φ(1). Qn(k) has a natural
compactification, obtained by allowing the points to come together and the volume form φ to
scale. For any nodal curve C with markings z0, . . . , zn, and component Cα of C, we write zαi
for the special point in Cα that is either the marking zi, or the node closest to zi.

Definition 10.2. A (genus zero) nodal scaled marked line is a datum (C, z, φ), where C is a
(genus zero) projective nodal curve, z = (z0, . . . , zn) is a collection of markings disjoint from
the nodes, and for each component Cα of C, the affine line Cα := Cα\{zα0} is equipped with a
(possibly zero or infinite) translationally invariant volume form φi ∈ Ω1(Cα, k)k. We call a volume
form φi degenerate if it is zero or infinite. An automorphism of a stable nodal scaled curve is an
automorphism of the nodal curve preserving the volume forms and the markings. A nodal scaled
marked curve is stable if it has finite automorphism group, or equivalently, if each component
with non-degenerate (respectively degenerate) volume form has at least two (respectively three)
special points.

The affine structure on Cα is unique up to dilation, so that Ω1(Cα, k)k is well-defined. The
combinatorial type of a nodal scaled marked affine line is a rooted colored tree: vertices represent
components of the nodal curve, edges represent nodes, labelled semi-infinite edges represent the
markings, with the root always labelled by z0. Every path from a leaf back to the root must pass
through exactly one colored vertex.

Now we specialize to the case when k = C. Qn(C) contains as a subspace those scaled
marked curves such that all markings lie on the projective real line, RP := R ∪ {∞}; these
are naturally identified with marked disks. More accurately, Qn(C) admits an antiholomorphic
involution induced by the antiholomorphic involution of P1(C). The involution extends to an
antiholomorphic involution of Qn(C). The multiplihedron Qn can be identified with the subset
of the fixed point set such that the points are in the required order.

We introduce coordinates on Qn(C) in the same way as we did for Qn. Define two types of
coordinates, the first of the form ρijkl where i, j, k, l are distinct indices in 0, 1, . . . , n, and the
second of the form ρij , where i, j are distinct indices in 1, . . . , n. The ρijkl are defined as before,
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and the ρij are defined as follows: given a representative (z1, z2, . . . , zn, φ),

ρij([z1, . . . , zn, φ]) := (φ(1)(zj − zi))−1.

The coordinates extend to the compactification Qn(C). For the coordinates ρijkl, we evaluate
the cross-ratio at a component Cα in the bubble tree for which at least three of zαi, zαj , zαk,
and zαl are distinct, normalizing by

ρijkl =


∞ if zαi = zαj or zαk = zαl,
1 if zαi = zαk or zαj = zαl,
0 if zαi = zαl or zαj = zαk.

(6)

For the coordinates ρij , we evaluate them at the unique component Cα at which zα0, zαi,
and zαj are distinct, normalizing by

ρij =
{

0 if Cα has infinite scaling,
∞ if Cα has zero scaling.

The same arguments as in the real case show that the product of forgetful morphisms defines an
embedding

ρn,1 :Qn(C)→ (P1(C))(n+1)n(n−1)(n−2)/4!+n(n−1)/2.

The coordinates ρijkl and ρij satisfy the relations (Symmetry), (Recursion) and (Relations)
of Propositions 2.2 and 5.1. Let An,1(C) denote the closure of the algebraic variety defined by
the two types of cross-ratio coordinate and these relations.

Theorem 10.3. The map ρn,1 :Qn(C)→An,1(C) is a bijection.

The proof of the bijection is an extension of the corresponding result for genus zero stable
nodal (n+ 1)-pointed curves, M0,n+1. In this case the cross-ratios ρijkl satisfy the relations
in (Recursion). Let An(C) denote the closure of the algebraic variety defined by the cross-
ratio coordinates and these relations. The image of the canonical embedding ρn(M0,n+1) with
cross-ratios is contained in An(C), and the map ρn :M0,n+1→An(C) is a bijection [MS04,
Theorem D.4.5].

Proof of Theorem 10.3. First we show that ρn,1 is injective. Given a nodal stable scaled marked
line (C, z, φ), by construction the combinatorial type uniquely determines which cross-ratios ρijkl
are 0, 1, or ∞, and which cross-ratios ρij are 0 and ∞. In addition, the isomorphism class of
each component of C is determined by the cross-ratios ρijkl with values in P1(C)\{0, 1,∞} and
ρij with values in P1(C)\{0,∞}, so the map ρn,1 is injective. To show that ρn,1 is surjective, let
ρ ∈An,1(C). By the result for stable curves [MS04, D.4.5], there is a unique stable, nodal (n+ 1)-
marked genus zero curve of combinatorial type given by a rooted tree T (the root corresponds
to the marking z0), which realizes the cross-ratios of the form ρijkl.

Lemma 10.4. Let α ∈ V (T ), and suppose that, for some 1 6 i < j 6 n, zαi , zαj , zα0 are distinct
at α.

(i) If ρij = 0, then for every vertex β ∈ V (T ) in a path from α to the root (including α itself),
ρkl = 0 for every distinct triple zβk

, zβl
, zβ0 .

(ii) If ρij =∞, then for every vertex β ∈ V (T ) in a path from α away from the root (including
α itself), ρkl =∞ for every distinct triple zβk

, zβl
, zβ0 .
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(iii) If 0< |ρij |<∞, then:

(a) for every other distinct triple zαk
, zαl

, zα0 on α, ρkl /∈ {0,∞};
(b) for every vertex β ∈ V (T ) adjacent to α towards the root, if zβk

, zβl
and zβ0 are distinct,

then ρkl = 0;
(c) for every vertex β ∈ V (T ) adjacent to α away from the root, if zβk

, zβl
and zβ0 are

distinct, then ρkl =∞.

Proof. We make repeated use of (Relations).
(i) First, we show that ρkl = 0 for every k, l such that zαk

, zαl
, zα0 are distinct. Without

loss of generality, suppose that zαk
is distinct from zαj and zα0 . Then ρijk0 6= 0 and so

ρjk =−ρij/ρijk0 = 0. Now, without loss of generality, suppose that zαl
is distinct from zαk

and zα0 . Then ρjkl0 6= 0 so ρkl =−ρjk/ρjkl0 = 0/ρjkl0 = 0. Now consider the vertex β that is
immediately adjacent to α in the direction of the root. Without loss of generality, suppose that
zβk

is distinct from zβi
= zβj

. The combinatorics of T at α and β imply that ρijk0 =∞, and hence
ρjk =−ρij/ρijk0 = 0/∞= 0. The same argument shows that ρkl = 0 for all k, l with zβk

, zβl
, zβ0

distinct. The result (i) follows by induction on the number of vertices in the path from α to the
root.

(ii) First, we show that ρkl =∞ for every k, l such that zαk
, zαl

, zα0 are distinct. Without
loss of generality, suppose that zαk

is distinct from zαj and zα0 . Then ρijk0 6=∞, and hence
ρjk =−ρij/ρijk0 =∞/ρijk0 =∞. Now, without loss of generality, suppose that zαl

is distinct
from zαk

and zα0 . Then ρjkl0 6=∞, and hence ρkl =−ρjk/ρjkl0 =∞/ρjkl0 =∞. Now consider
a vertex β that is immediately adjacent to α away from the root. It is now enough to show
that ρmn =∞ for some m, n such that zβm , zβn and zβ0 are distinct. Pick k and l such that
zαk

, zαl
, zα0 are distinct (hence by the previous argument ρkl =∞), and such that β is adjacent

to α through a node that identifies zαl
with zβ0 . Now let zβm be distinct from zβl

and zβ0 .
Then ρklm0 6=∞, so ρlm =−ρkl/ρklm0 =∞/ρklm0 =∞. The result (ii) follows by induction on
the number of vertices in a path from α away from the root.

(iii) Proof of (a): if zαk
is distinct from zαi , zαj , and zα0 , then ρijk0 /∈ {0, 1,∞} so ρjk =

−ρij/ρijk0 and hence 0< |ρjk|<∞. Repeating this argument implies that 0< |ρkl|<∞ for any
k and l such that zαk

, zαl
, and zα0 are distinct.

Proof of (b): in light of (i) and the proof of (iii)(a), it is enough to prove that, for any k such
that zβj

, zβk
and zβ0 are distinct, so that ρjk = 0. Note that since β is closer to the root than α,

we have that zβi
= zβj

. Hence, ρijk0 =∞, so ρjk =−ρij/ρijk0 = 0.
Proof of (c): in light of (ii) and (iii)(a), it is enough to prove the following case. If α is

incident to β in such a way that zβi
= zβ0 is distinct from zβj

and zβk
, then ρjk =∞. In this

case, ρijk0 = 0, so ρjk =−ρij/ρijk0 =∞. 2

By Lemma 10.4, the vertices of the tree T can be partitioned into subsets for which the
cross-ratios ρij defined on them are 0, ∞, or finite non-zero. Let

V0 := {α ∈ V (T ) | zαi , zαj , zα0 are distinct and ρij = 0 for some i, j},
V1 := {α ∈ V (T ) | zαi , zαj , zα0 are distinct and 0< |ρij |<∞ for some i, j},
V2 := {α ∈ V (T ) | zαi , zαj , zα0 are distinct and ρij =∞ for some i, j}.

If V0 is empty, turn the marked point z0 into a nodal point and attach it to the nodal point ζ of
a scaled curve (C ′, z0, ζ, φ). If V0 is non-empty, by Lemma 10.4 it must be a connected sub-tree
which includes the component containing the root z0. If a marked point zi, i= 1, . . . , n, is on a
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Figure 19. A cross-ratio chart in Q4(C). The relation is xy = zw, which gives a toric singularity.

component labelled by α ∈ V0, turn the marked point zi into a nodal point zαi and attach it to
the nodal point ζ of a scaled curve (C, ζ, zi, v). If α ∈ Vf then by Lemma 10.4 it is attached by
a node to V0. Suppose that zαi , zαj , and zα0 are distinct and 0< |ρij |<∞. Identify this sphere
component and its markings with a stable marked curve with the same markings, and a volume
form φ determined by parametrizing zα0 =∞, zαi = 0, zαj = 1 and putting 1/φ(1) = ρij . Finally,
suppose that α ∈ V∞ is connected by a nodal point zα0 to a nodal point zβi

of V0. Then insert
a stable marked curve (C, ζ0, ζ1, φ) such that the node identifications are ζ0 with zβi

, and ζ1
with zα0 .

At the end of this process one obtains a stable nodal, marked scaled curve in Qn(C), whose
combinatorial type is a colored tree refining the tree T , and whose image under the cross-ratio
embedding is the same as the original point ρ ∈An,1(C). 2

Given the combinatorial type of a stable scaled curve, one can choose a local chart of cross-
ratios according to the same prescription as in the real case (Definition 5.5).

Let T be a maximal colored tree. As in Definition 6.1, let X(T ) denote the sent of balanced
labellings on the edges of T , where the labellings are now allowed to be complex. The subset
G(T ) =X(T ) ∩Hom(E(T ), C∗) of points with non-zero labels is the kernel of the homomorphism
Hom(E(T ), C∗)→Hom(Vert−(T ), C∗) given by taking the product of labels from the given vertex
to the colored vertex above it, and it is therefore an algebraic torus. The torus G(T ) acts on
X(T ) by multiplication with a dense orbit. Choose a planar structure on T . Let

φT :Qn,6T (C)→X(T )

denote the map given by the simple ratios as in (4), now allowed to be complex. After re-
labelling it suffices to consider the case that the ordering is the standard ordering. We denote
by X∗(T ) the Zariski open subset of X(T ) defined by the equations 1 + xi+1/xi + · · ·+ xj/xi =
(zi − zj)/(zi − zi+1) = 0, for 1 6 i < j 6 n.

Theorem 10.5. φT is an isomorphism of Qn,6T (C) onto X∗(T ).
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Proof. Let T be a maximal colored tree and consider the map Qn,6T →X(T ) given by the simple
ratios. The same argument as in the real case shows that any λ ∈X(T ) is in the image of some
quilted disk unless at some stage the reconstruction procedure assigns the same position to
two markings i, j in different branches; in this case we have λ ∈X∗(T ). The set of exceptional
points in X(T ) is an affine subvariety of X(T ) disjoint from 0 ∈X(T ); hence the theorem is
proved. 2

Corollary 10.6. Let T be a colored tree. There exists an isomorphism of a Zariski open
neighborhood of Qn,T (C)× {0} in Qn,T (C)×X(T ) with a Zariski open neighborhood of Qn,T (C)
in Qn(C). Thus Qn(C) is a projective variety with at most toric singularities.

The proof is similar to the real case in Corollary 6.5 and is left to the reader. Figure 19
illustrates a toric singularity in Q4(C). This completes the proof of Theorem 1.2 in the
introduction.
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