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Abstract

Let G be a locally compact Hausdorff abelian group and X be a complex Banach space. Let C(G, X)
denote the space of all continuous functions f : G -*• X, with the topology of uniform convergence
on compact sets. Let X' denote the dual of X with the weak* topology. Let MC(G, X') denote the
space of all X'-valued compactly supported regular measures of finite variation on G. For a function
/ e C(G, X) and ft e MC(G, X'), we define the notion of convolution / * /*. A function/ e C(G, X)
is called mean-periodic if there exists a non-trivial measure fi s MC(G, X') such that / * \i = 0. For
H 6 MC(G, X'), let MP(n) = [f € C(G, X) : f * n = 0} and let M P{G, X) = (JM « W In
this paper we analyse the following questions: Is MP(G,X) / 0? Is MP{G,X) ^ C(G,X)f Is
MP(G,X) dense in C(G,X)1 Is MP(n) generated by 'exponential monomials' in it? We answer these
questions for the groups G = R, the real line, and G = T, the circle group. Problems of spectral analysis
and spectral synthesis for C(R, X) and C(T, X) are also analysed.

2000 Mathematics subject classification: primary 43A45; secondary 42A75.
Keywords and phrases: Convolution of vector valued functions, spectrum, vector valued mean-periodic
functions, spectral synthesis.

1. Introduction

The notion of mean-periodic functions was introduced in 1935 by Delsarte [5]. It
is well known that every solution of a constant coefficient homogeneous ordinary
differential equation is a finite linear combination of solutions of the type tkelkl, where
k € C, and it € 2+. Delsarte was interested in knowing whether this result is still true
for convolution equation of the following type

(1) / / 0 - t)k{t)dt = 0, VseIR,
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where k is a continuous function which is zero out side some interval. For r > 0,
periodic continuous functions of period r are solutions of the convolution equation

1 fs+r/2
(2) - / / (0 dt = 0, V s e R.

r JS-T/2

For this reason Delsarte called the continuous functions which are solutions of equation
(1) as mean-periodic. In [35], Schwartz observed that the mean-periodicity of a
continuous function does not depend upon the function k, and he extended Delsarte's
definition as follows:

DEFINITION 1.1. A continuous function/ : R ->• C is said to be mean-periodic if
there exists a non-trivial regular measure \x of compact support and finite variation
such that (f * ix)(s) = / „ / (s - t) dfx(t) = 0 , V s e R .

Schwartz also gave an intrinsic characterization of mean-periodic functions. Let
C(R) denote the vector space of complex valued continuous functions on IR with the
topology of uniform convergence on compact sets (u.c.c). Let Afc(R) denote the space
of all regular measures of compact support and finite variation on R. For / € C(R),
let r ( / ) denote the closed translation invariant subspace of C(R) generated by / .
Schwartz in [35] showed that/ e C(R) is mean-periodic if and only if x(f) ^ C(K).
Further, if / * /j, = 0 for some non-zero fi e MC(R), then / is a limit of finite linear
combination of exponential monomials tkelkt which satisfy tketkt • ix = 0. More
generally, convolution equation of the type

(3) f * H = g ,

where \x € MC(R) and g € C(K) are given, can be analysed as in the case of ordinary
differential equations. If p is a particular solution of the equation (3), then every other
solution is of the form h + p, where h is a solution of the homogeneous equation
f * H = 0. In general, equation (3) need not have any solution in C(R). For
instance, let fi be such that d[i(t) = <f>(t) dt, where <f> e C~(R), space of all infinitely
differentiable functions on R, and g is a nowhere differentiable continuous function
on R. Some particular cases of (3) were analysed in [31,32]. In general, no necessary
and sufficient conditions for the existence of solutions of equation (3) are known. A
variant of the above problem is the following: Consider the following convolution
equation

(4) / i • At, = -f2 * H2,

where fiit fx2 € MC(IR) are given. Equation (4) can be written as a convolution equation
for vector valued functions: let/ = (/i, / 2 ) : R ->• C2 and fi = (Mi,M2) : <^R -*• C2.
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Then equation (4) is a homogeneous equation / * /x = 0. This leads to consideration
of vector valued mean-periodic functions, the main content of this paper. We consider
such equations in a more general setting and analyse their solutions.

Let G be a locally compact abelian group. Let X be a complex Banach space and
X' denote the weak*-dual of X. We denote by 38 G the a-algebra of Borel subsets of
G. We recall some results on integration of functions f : G -*• X with respect to
X'-valued measures on 3SG, denoted by M(G, X'). For details one may refer Schmets
[34]. Let /x € M(G, X') and for every x, let \ix denote the scalar measure on 38G

defined by fix(E) :— (x, /x(£)) for every E e 38 G. The measure fu, is said to be
regular if /xx is regular for every x € X. For E e 38 G, if E = U"_, £, for some
EuE2,...,En€&G such that £, f] Ej = 0 for i £ j , we call {Eu E2,... , £„} a
measurable partition of E. Let &(E) denote the set of all measurable partitions of
E. Let

, • • • , En] e

The scalar measure VM is called the variation of /x. We say /x has finite variation if
VM(E) < +00 for every E € ^ G . Let M(G, X') denote the set of all regular Borel
measures /x on G such that /x has finite variation. For /x € M(G,X') the smallest
closed set 5 with /x(E) = 0 for every E e &G with E n 5 = 0 is called the support of
/x. We write 5 = supp(ju.) if S is the support of /x. Let MC(G, X') denote the set of all
fi e M(G, X') such that support of /x is compact. Let C(G, X) denote the space of
all X -valued continuous functions on G with the topology of uniform convergence on
compact sets. Let / e C(G, X) and /x € MC(G, X') with supp(/x) c K, a compact
set. Then there exists a sequence ^k(K) := {B£, fi£,... , fl£} of measurable
partitions of £ with the following property : for arbitrary choice of r, 6 Bk., the
sequence {D"=1 (/('*), (i(B£)))k>l is convergent and is independent of the choice
of t[s. This limit is called the integral of / with respect to /x and is denoted by
/ / d/x. For/ e C(G, X) and /x e MC(G, X') the scalar valued function

(f*H)(g)-=[f(g-h)dn(h), VgeG
JG

is called the convolution of/ with /x, that is, (/ * £t)(g) = M(/«) = (^. /«). where
/«W =f(g + h) and </x, / ) = /x</) = fGf(-g)dn(g) is the duality pairing of
MC(G, A") with C(G, X).

DEFINITION 1.2. We say/ € C(G,X) is mean-periodic if there exists a non-trivial
M e MC(G, X') such that </ * (i)(g) = fGf(g-h) dfi(h) = 0,VgeG.

The aim of this paper is to answer the following questions: let MP(G, X) denote
the space of all X-valued mean-periodic functions on G.
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• Is MP(G, X) ^ 0? That is, when does there exist non-zero mean-periodic
functions?

• Is MP(G, X) ^ C(G, X)? That is, do there exist continuous functions which
are not mean-periodic?

• Is MP(G,X) dense in C{G,X)7 That is, how large is MP(G,X) as a
subspace of C(G, X)?

We answer these questions for the particular cases G — K, in Section 2 and G — T,
circle group, in Section 3. Analysis of such questions for more general groups remain
open.

The problem of analysing mean-periodic functions is also related to the problem
of 'spectral analysis' and 'spectral synthesis'. In order to carry-out the analysis, we
define next vector valued exponential monomials and exponential polynomials.

An additive function on a locally compact abelian group is a complex valued
continuous function a on G such that a(g\ + g2) — a(gi) + a(g2) for all gi and g2

in G. A polynomial on G is a function of the form p(ait a2, • •. , am), where p is a
polynomial in m variables and ax, a2,... , am are additive functions on G. A monomial
on G is a function of the form p (a i, a2, . . . , am), where p is a monomial in m variables
and a\, a2,... , am are additive functions on G. An exponential on G is a non-zero
continuous complex valued function co such that (o(gx + g2) = co(gi)co(g2) for all gi
and g2 in G. An exponential monomial is a point-wise product of a monomial and an
exponential. An exponential polynomial is a point-wise product of a polynomial and
an exponential. The set of all exponentials is denoted by Q. Note that Q C C(G).

We define exponential polynomials in C{G, X) as follows:

DEFINITION 1.3. (i) We ca l l / e C{G,X) an X- valued exponential if for every
g G G, / (g) = <y (g)x for some co 6 £2 and x e l

(ii) We call / e C(G, X) an X-valued exponential monomial if for every g e G,
/ (g) = p(g)co(g)x for some j ; e X , p a monomial in C(G) and co an exponential in
C(G).

(iii) We ca l l / e C(G, X) an X-\alued exponential polynomial if for every g € G,
/ (g) = p(g)co(g)x for some x e X, p a. polynomial in C{G) and w an exponential
in C(G).

EXAMPLE 1. (1) L e t / e C(R, X). T h e n / is an exponential if and only if for
every t e K , / ( ( ) = e'x'x for some k e € and JC € X. / is an exponential monomial if
and only if for every t € K, / (/) = tke'x'x for some A. e C, & e N and x e X. Finally,
/ is an exponential polynomial if and only if for every t e R, f (t) = p(t)ea'x
for some X € C, polynomial p(r) and x e X. Thus the exponentials, exponential
monomials and exponential polynomials are the scalar multiples of the ones defined
by Schwartz [35].
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(2) A function / € C(l, X) is an exponential if and only if for every t € R,
/ (e") = e'"'x for some non-negative integer n and x e X.

REMARK. We shall use the following convention: When X = C we choose the x e
X appearing in the exponential, exponential monomial and exponential polynomial to
be the scalar constant 1. The generality is not lost due to this choice, since if a closed
translation invariant subspace contains an exponential or exponential monomial or
exponential polynomial if and only if it contains their scalar multiples.

DEFINITION 1.4. Let V be a closed translation invariant subspace of C(G, X). We
say

(i) spectral analysis holds for V if V contains an exponential;
(ii) spectral synthesis holds for V if the linear span of the set of all exponential

monomials in V is dense in V;
(iii) if spectral analysis (synthesis) holds for every closed translation invariant sub-

space V of C(G, X), then we say that spectral analysis (synthesis) holds in C(G, X).

DEFINITION 1.5. Let V be a closed translation invariant subspace of C(G, X) and
/ € C(G, X) be mean-periodic. Let z(f) denote the closed translation invariant
subspace of C(G,X) generated by / .

(i) The spectrum of V is defined to be the set of all exponential monomials in V
and is denoted by spec( V) or a( V).

(ii) The spectrum of/ is defined to be spec(r(/)) and is denoted by spec(/) or
o{f).

Some of the known results for spectral analysis and spectral synthesis for G = W
are as follows: Let £(R") be the space of all infinitely differentiable functions on R"
in the topology of compact convergence of functions and their derivatives. Then its
dual E(R")' is the space of all compactly supported distributions on R". Schwartz
[35] proved the following theorem:

THEOREM 1.6 ([35]). In E(R), every closed translation invariant subspace is the
closure of finite linear combinations of the exponential monomials in it.

As a consequence of this theorem, the linear span of exponential monomials in
every closed translation invariant subspace V of C(R) is dense in V. That is, spectral
analysis and spectral synthesis hold in C(R). Using this Schwartz [35] described
mean-periodic functions on R.

Let V be the closed translation invariant subspace of E(R") generated by the solu-
tions of the homogeneous constant coefficient partial differential equation p(D)f = 0.
Malgrange [28] proved that spectral synthesis holds for V.
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In 1975 Gurevich [17] proved that Theorem 1.6 cannot be extended for K", n > 1.
Though Theorem 1.6 fails for K", n > 1, spectral analysis and spectral synthesis hold
in C{G) for certain groups, for example, for G = ln (see [26]) and for discrete abelian
groups (see [12, 13]). Consider the following example from [15].

EXAMPLE 2 ([10, 15]). Define fu f2: R2 ->• C by

fi(xi,x2) := 1 and f2(xux2) := xx + x2, V (jr,,.^) e R2.

Let V be the closed translation invariant subspace of C(U.2) generated by fi and f2.
Then the spectrum of V is {/t}. But the closed linear span of the spectrum of V is a
proper subspace of V. Thus spectral synthesis fails in C(R2) and spectral synthesis
fails for V even if V is finite dimensional.

However, for certain closed translation invariant subspaces V c C(IR2) the linear
span of all exponential polynomials in V is dense in V. These subspaces are described
in the following three theorems.

THEOREM 1.7 ([4]). Let V be a closed translation and rotation invariant subspace
ofC(R2). Then the linear span of exponential polynomials in V is dense in V.

THEOREM 1.8 ([16]). Let [i e MC(K"). Then the linear span of exponential poly-
nomials in T^ := {/ € C(R") : / • \i = 0} is dense in rM.

THEOREM 1.9 ([14]). Let V be a finite dimensional translation invariant subspace
of C(R"). Then every element of V is a finite linear combination of exponential
polynomials.

The following question is raised in [15] and the answer is not known: Let V be
closed translation invariant subspace of C(K2).

• Does there exist an exponential in V?

In Section 4, we answer this question affirmatively when V is either finite dimensional
or rotation invariant or V = rM := {/ e C(R2) : f * /x = 0} for some \i e MC(R2).

Let V be a closed translation invariant subspace of C(G, X). Then the problems of
spectral analysis and synthesis are the following:

• Is every exponential monomial in C(G, X) mean-periodic?
• Are exponential monomials dense in C(G, X)?
• When does there exist an exponential monomial in V ?
• When is the linear span of exponential monomials in V dense V?
• Does there exist an exponential monomial solution for the convolution equation

/ * ti = 0 for a given /x e MC(G, X')l

We analyse these problems for G = R in Section 2 and G = T in Section 3.
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2. Mean-periodic functions on G = R

For G = R and X = C, it is known (see Schwartz [35]) that/ € C(R, C) is mean-
periodic if and only if r(f), the closed translation invariant subspace of C(R, C) is
proper. We first extend this result to X, arbitrary Banach space.

THEOREM 2.1. The following are equivalent:

(i) / is mean-periodic;
(ii) r</)

PROOF. We use the fact that C(R, X) is a locally convex space and its dual is
MC(K;X'). To show that (i) implies (ii): let fi € MC(R, X') be non-trivial such
that / • n = 0. Then fi(g) = 0 for every g e r(f). Hence r ( / ) ^ C(R, A"),
for otherwise /x(g) = 0 for every g e C(R, X), which is not possible, since fi is
non-trivial. The implication (ii) implies (i) follows from the Hahn-Banach theorem
for locally convex spaces and the fact that r (/) is a proper closed translation invariant
subspace of C(R, X). •

We show next that there exist nontrivial X-valued mean-periodic functions on K.

PROPOSITION 2.2. MP(R, X) ^ 0.

PROOF. Let 0 7̂  x € X and 0 ^ x' e X'. Choose g e WP(R), scalar valued
function mean-periodic with respect to some it € MC(W). Define v : &K —> X' by
v(E) := (i(E)x' and define / : K ->• C by f (t) := g(t)x. Then /x is a X'-valued
measure and / is a continuous X-valued function with / ' * v = (g * fi)(x, x') = 0.
Thus / is mean-periodic with respect to v. O

We prove next that existence of functions which are not mean-periodic is related to
the X being separable.

THEOREM 2.3. MP(R, X) is a proper subset of C(R, X) if and only ifX is sepa-
rable.

PROOF. Suppose that X is a non-separable complex Banach space and/ e C(K, X).
Since/ continuous, / (K) is separable and hence [f (R)] is separable. Since, for every
g € r ( / ) , g(R) C 1/(R)], r ( / ) ^ C(R, X). Hence/ is mean-periodic.

Conversely, suppose that X is separable. We show that MP(R, X) ^ C(R, X).
For every n € N, let

(5) /„(*) := y^an,-e'^', r € R,
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where XnJ and anj satisfy the following conditions:

(i) 0 ^ anJ e C.
(ii) Xnj 6 [a, p] for some a < fi.

(iii) [knj :j € N) n {Xmj : j e N) = 0 for w ^ n and for every n, {knj }°°=1 has a
limit Xn 6 R.

(iv) The convergence in (5) is uniform on compact sets with each /„ bounded by 1.

(V) E n = l £ , = l K I <<*>•
Let {JCI, x2,...} be a dense subset of X. Define / : 1 ->• X by

We show that/ is not mean-periodic. Since {e'Xlv'}~ =1 is an equicontinuous family,
[fn}^Li is an equicontinuous family. Therefore, for (i e MC(R, X'),

f * M = E 2-(1 + l k J ) ^ » ) *M

Thus / • /i = 0 if and only if

that is, for every f € R,

Let 5p,(0 = E L i E ' - i «^ 'a^Ax.(^)/2"(l + IkJI). Notice that 5M is almost
periodic and its Fourier coefficients a(Spq; X) satisfy the following:

(8) a(Spq;X) =
0 otherwise.

Since the convergence in (6) is uniform, the convergence in (7) also is uniform.
Therefore 5P, converges to 0 uniformly asp, q -+ oo. Further, the Fourier coefficients
a(Sp,;X)convergesto0asp, q -*• oo([27]). In view of (8), a(Spq;X) = 0 for every X.
Moreover, (lXn (Xnj;) = 0 for every n andj. Since {Xnj }°1, has limit point, this implies
/xXn = 0 for all n. Therefore, /x = 0. Hence / is not mean-periodic. •

Le t / e C(R, X) and let x' e X'. Then x' of e C(IR). It is natural to ask the
following question: Is x' of mean-periodic for every x' ^ 0 if / is mean-periodic?
We analyse this in the following theorem.
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THEOREM 2.4. For f € C(R, X) and x', y' e X' with x' ^ y' the following
hold:

(i) Ifx' o f is mean-periodic, then f is mean periodic.
(ii) Ifx' of =y'of, then f is mean-periodic.

(iii) IfX = C , n > 1, then f is a finite sum of mean-periodic functions.
(iv) There exists f € MP(R, C ) such that x' o / is not mean-periodic for any

PROOF, (i) By Theorem 2.1, it suffices to show that x(f) £ C(R). For this,
let g e C(R), g # Obe such that g £ r(x' of). Choose v e X such that
(x1, v) -fc 0 and define /i : R —> X by /i(f) = g(t)v/(x', v). Then A is continuous and
(*' o h)(t) = g(t). We show that h is not in x(f). If possible let, h e r(f). Then
there exists £ c,/(i ->• h, which implies JC' (E c,/fj) —• *' o /i = g, a contradiction.

(ii) Choose g e C(R, X) such that x'(g) jL y'(g). We show that g i r(f).
If possible, let g e r(f). Since £>, / , , -*• g => x'(£,Cjftl) -*• x'(g) and
y'CLcif,,) - • y'te), and also since *'</) = y'(f), x'fcdf*) = /(E<?</*).
This implies x'(g) = y'(^)» a contradiction.

(iii) Let/ = (/i, f2,... , fn) • Obviously (0 , . . . , 0, / j , 0 , . . . , 0) is mean-periodic
for every i with respect to \x = 0*i,. . . , fin) where 0 ^ /*,• e Afc(R) are arbitrary
and fory = i, /i7- = 0. Hence/ is a finite sum of mean-periodic functions.

(iv) Choose a non zero, compactly supported complex valued continuous function g.
Letf = (g,g,..., g). Then / is a O-valued continuous function on R. Clearly /
is mean-periodic with respect to fi = (yit —vt, 0 , . . . ,0), where 0 ^ Vi e Afc(R) is
arbitrary but x' of is not mean periodic for any 0 ^ x' e X'. •

REMARK. When X = C, MP(R, X) is a subspace of C(R, X). It follows from
Theorem 2.4 (iii) that sum of mean-periodic functions in C(R, X) need not be mean-
periodic and hence MP(R, X) in general need not be a vector subspace of C(R, X).
Moreover, the same argument works for separable complex Hilbert spaces.

THEOREM 2.5. MP(R, X) is dense in C(R, X).

PROOF. Case (i): X = C. It suffices to show that the annihilator of MP(R) is {0}.
Let fi e MC(R) be such that fi(MP(R)) = {0}. In particular fi(e'kt) = jx(X) = 0 for
every A. e C. Hence /J, = 0.

Case (ii): Let X be finite dimensional, X = C". Consider C(R) x C(R) x
• • • x C(R). This is a finite product of locally convex spaces. Hence it is a locally
convex space in the product topology. It is easy to see that C(R, X) is isomorphic to
C(R)x- --xC(R) as locally convex spaces. AlsoMP(R)xMP(R)x---xMP(R) c
MP(R, X) and MP(R) is dense in C(R). Thus it follows that MP(R, X) is dense in
C(R,X).
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Case (iii): X is not finite dimensional. Consider the set Exp(R, X) = {elX'x : k e
C, x e X}. We show that the linear span of Exp(R, X) is contained in MP(K, X) and
it is dense in C(R, X). L e t / (f) = e'x>'xi, g(t) = etk2'x2 € Exp(K, X) and a, P e C.
Choose 0 ^ x' e X' such that *'(jti) = x'(x2) = 0 and /x^ /x2 e MC(R) such that
elX>' • /x, = 0 = e'X2' * / i2 . Define (i(E) = (/x, • /i2)(E)*', for every E e ^ R .
Then (a / + £g) * /x = 0. To prove the denseness, let /x e MC(R, X') be such that
/x annihilates the linear span of Exp(K, X). Then /l^(A.) = 0, V X 6 C, V x e X. It
follows that fi = 0. This completes the proof. •

We analyse next the problem of spectral analysis and spectral synthesis in C(IR, X).
Let V be a closed translation invariant subspace of C(R, X). ForX = C, Schwartz [35]
proved that V contains exponential monomials and the linear span of exponential
monomials in V is dense in V. It is well known [17] that spectral synthesis fails
for W, n > 1. Further, it holds for certain locally compact abelian groups, namely
for Z" due to Lefranc [26] and discrete groups due to Gilbert [16, 15] and Elliott
[12, 13]. However, nothing is known for vector valued functions. In this section, we
extend Schwartz's result for finite dimensional closed translation invariant subspace
of C(IR, X), X an arbitrary Banach space. For this we need the following lemmas.

LEMMA 2.6. Let v\v2,... , v" € X", v' = (v\, v'2,... , v'n), be linearly indepen-
dent. Then there exist x[, x'2,... , x'n € X' which satisfy

*;<»?) +x2(v
H

2) + ••• +x'n(v
n
n) = 0.

PROOF. Let Y be the linear span of {v2, v*,... , v"}. Then Y being a finite di-
mensional subspace of X" is closed. Since vl, v2,... ,v" are linearly independent,
v1 <£ Y. Thus by Hahn-Banach theorem, there exists A e (X")' such that A(Y) = {0}
and A(u') = 1. Clearly A can be written as A = (x[,x'2,... ,x'n), where x\ e X'
satisfy A(xux2 xn) = *',(*i) + x'2(x2) -\ (- x'n(xn). Therefore,

x[(v\) + x'2(v
l
2) + •••+ x'n(v

l
n) = A(v{, 0 , . . . , 0) + • • • + A ( 0 , . . . , 0, wj)

= M(v\,v1
2,...,v

1
n)) = l.

For every i, 2 < i < n,

x[{v\) +x'1(v
i
2) + ...+x'n(v'n) = A(v[, 0 , . . . , 0) + • • • + A ( 0 , . . . , 0, v'n)

= A((v\,vl
2,...,v

i
n)) = 0.

This completes the proof of the lemma. •
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For sets A and B, let J?(A, B) denote the set of all functions from A to B. For a 
set E c V, a vector space, let LS(E) denote the linear span of E. 

LEMMA 2.7. Let S be any set containing at-least n points and V be a vector 
space over C. Let {/,,/2, . . . , / „ } C &(S, V). Then {/,,/2, . . . , / „ } is linearly 
independent in J?(S, V) if and only if there exists n distinct points t\, t2,... , t„ e S 
such that {f\,f2, • • • ,/„} is linearly independent in &({t\, t2,... , t„], V). 

PROOF. We prove the straight implication by induction. Suppose that [f\,f2,... , 
/«} is a linearly independent set in &{S, V). As \f\) is linearly independent, there 
exists tx € S such that/i(/|) £ 0. Then {/i} is linearly independent on {fi}. Thus the 
lemma is true when n = 1. If/i(/i) = af2 (h), for some nonzero a e C, choosey e S 
such that f\(t2) ^ af2(t2), which is possible, since / i , / 2 , . . . , /„ are linearly inde
pendent on S. Then it is easy to check that {/i,/2} is linearly independent on [tu t2). 
^ / l ( ' i ) 7̂  oif2(ti) for any non zero scalar and/2(fi) ^ 0, then choose any t2^t\. It 
•s easy to see that [fx, f2] is linearly independent on [tu t2}. If /2(fi) = 0, then choose 
h such that /2(/2) ^ 0. In this case also one can easily verify that {/i,/2} is linearly 
independent on {tu h). Assume that [f\,f2,... ,fn-i] is linearly independent on 

{'i-'2 tn-\\. If {/i,/2,... , / „ - i , / n } is linearly independent on [tut2,... ,/„_,} 
then choose any t„ which is different from t\,t2,... , tn-\. If {/i,/2 fn-\,fn) 
•s linearly dependent, then there exist unique scalars ct\,a2 a„_i such that 
a i / i + «2/2 + . . . + «„_,/„-! = /„ on {tut2 ?„_,}. Since {/,,/2 /„) 
's linearly independent on 5, there exists tn € 5 such that a\fi(tn) + a2f2(tn) + 
••• -f £*„_!/„_,(O ^ /„(/„). It follows from this that [fx,f2,... ,/„} is linearly 
independent on [tu t2 /„}. This proves the required claim. 

The converse is trivial. • 

Using these lemmas we prove that every finite dimensional translation invariant 
subspace V of C(K, X) includes an exponential and every element in V is a finite sum 
of exponential monomials. 

THEOREM 2.8. Let V be an n-dimensional translation invariant subspace of 
C(K, X). Then the following hold: 

(i) There existX\,X2 Xq € Candniu m2,... , mq e M with m\ +m2-\ (-
*nq = n, and W\, w2,... , wq 6 X, not all zero, such that ea'.'u>j € V, for 1 < j < q. 

(ii) There exist \\,\2 Xq € C, mu m2 mq 6 N with mt + m2 + (-
mq = n andx\, x2,... ,x„ & X such that every f € V is of the form f = ^T"=1 gixi, 
*>here each g, e LS{tke'k'' : 0 < k < ms• - 1, 1 < j < q}. 

(iii) There exist X\, k2,... , A., e Candnix, m2,... , mq € N withni\-\-m2-\ h 
"i, = n such that every f e V is of the form f — £ J = 1 Ylk"Lo otkjt

keai'ykj, where 
otkj e C and ykj e X for 0 < k < mt•, - 1, \<j<q. 
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PROOF. Fixabasis{/ , , / 2 , . . . ,/„}of V. Since V is translation invariant, (/,), e V 
for every 5 € R. Therefore there exist unique scalars or,, e C such that (/,)* * 
E"=i «!/(*)/;•• Let/ denote the n x 1 matrix/ = f/1,/2,. . . , / „ ] ' and A(5) denote 
the n x n matrix (a,y (5)). Then 

(9) fs = A(s)[fuf2,...,fn]' = A(s)f. 

Now 

(10) a , - / ) A = ((A(5)-A(0))/«)/ . 

CLAIM, S H* A (5) is continuous. We give two proofs of this claim. 
PROOF 1. By the Lemma 2.7 there exist n distinct points [t\,t2,... ,tn} C ™ 

such that {f\,fi,... ,/„} is linearly independent on {tx, t2,... , tn}. In view of (9). 
/ ( i + 0 ) = A (*)/(/,-) fori = 1,2 n. ThatisC/Ti(*+//))?J-„, = A(s)(/,(',-))7j-i-
Let u' = (/ ,(/ ,) , / ,(/2), . . . , / ,0 , ) ) , 1 < 1 < n. Then {u1, v2 , . . . , v") is a linearly 
independent subset of X". By the Lemma 2.6 there exists .x̂  € X' such that 

^ ( / i ( f c ) . -**, > = &v . where Sy = 

Thus we have 

1 if i=j\ 

0 i f / ^ y . 

(/<(* + ';)):.;=.(4)"y=. = ^(WiO) ))•; = , (4)";=i = ^ ) ( ^ ) " , = . = *(*)• 

The entries of the matrix obtained by multiplying the matrices on the left side of the 
above equation are continuous. This shows that s H A(S) is continuous from R t° 
BL(C). 

PROOF 2. For every / e R, define an operator T, : V -> V by 

(r,/)(s) : = / ( * +5) , V / e V , s e R . 

Then 7", € BL( V) and satisfies the following properties: For every s , / e R 
(i) Ts o T, = Ts+,\ 

(ii) ro = /; 
(iii) Ts o T, = T, o Ts. 

Let [t\, t2,... , t„] be as given by Lemma 2.7. Let [Kn}n>i be compact subsets of R 
such that U~=I ATm = R with {tut2 t„) c K{ £ K2 c. ••. .To show the required 
claim we have to show that t H» T, is continuous in BL( V). We shall show first that 
/ h-> 7, is continuous point-wise. Let s„ —• s as n -» 00. Now TSii(f) = fs„

 a n " 
Ts(f) = /.,, for every f e V. Since / is uniformly continuous on compact sets, 
fSn -> / s in C(R, X). Therefore TSit -> 7j point-wise. To show that TSit —>• 7̂  in 

fiL(V), it is sufficient to show that for every m, \\TSn — T„\\Km -> Oasn -*• 00, where 
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II7* - T,\\Km = suP | | / | |^5 l \\Ts„(f) - T,(f)\\Km. Let e > 0. Since [fuf2 /„} is 
a basis of V, for every / e V, there exist unique scalars a\,a2,... ,a„ e C such that 
/" = «i/i + "2/2 H r- anf„. Also since {/i,/2 /„} is linearly independent 
on Km, {(a,, a2 a„) e C" : | |a,/i + or2/2 H h «»/n||*r« < 1} is bounded in 
C , that is, there exists M > 0 such that ||ai/i + CK2/2 H h an/«||*:„ < 1 implies 
that ||(a,,a2 «„)|| < M. Since [f\,f2,... ,/«} is equicontinuous, there exists 
a S > 0, with 5 < 1, such that whenever tu h& s + Km + [0, 1] with |fi - t2\ < S, 
WfjOi) -f](h)\\ < e/M, for every; = 1,2 n. Choose N e H such that 
\s„ - s\ < S, whenever n > N. Then for every / e V with | | / H^ < 1, for every 
t 6 Km, and n > N, we have 

11/J0-/,(0ll = 11/(*.+')-/fc+OII 
= ll(«i/i+ •••+««/-)(*.+ ')-(«i/ i + ---+«»/«)(*+Oil 
< I « I I I I / I ( * . + 0 - / I ( * + 0 I H - - - + I«1 , I I I / . (J .+0- / . ( *+0I I 

Thus ||5",. - Ts\\Km -+ 0 as n -+ 00 for every w and hence Ts„ -> 7, in BL(V) as 
« -*• 00. This completes the second proof of the claim. 

Thus A (s) satisfies the following properties: 

(i) s \-+ A(s) is continuous, 
(ii) A(0) = Z. 

(Hi) A(s + t) = A(s)A(t) = A(t)A(s). 

Therefore, s h+ A(s) is differentiable (refer [18]) and 

(11) A(s) = esA'(0). 

By virtue of equations (10) and (11), 

(12) / ' = A'<0)/. 

This equation can be solved ([21]) and the solution is given by 

f(t) = e'A'm[xux2 *„]'. 

Let A.i, A.2 A., e C be the eigen values of A'(0) with multiplicities nt\, m2,... , 
mq, respectively. Let the Jordan canonical form of A'(0) be given by 

BA'(0)B~] = 

LAI 
El 

El 
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where J\,... , Jq are the Jordan blocks of A' (0), B is an invertible matrix. This gives 

e'A'(0) = B-l 

' Bx 

B2 

•. 

Bq\ 

B, 

where each Bk is an mk x mk matrix given by 

0 
Bt = 

•e'hi te'ht e'k"tmt-l/(mt - 1)!" 
elktT>-2/(mk - 2)! 

0 0 Aki 

Thus f{t) = C[xux2 *„]', where C = (c,y) and each c0 € LS{tkelk>' : 0 < 
k < ntj -1,1 < j < q], that is, for every i, /,(*) = 5Z"=i S</(*)•*/, where gu e 
LS{tke'ki' : 0 < k < nij - I, I < j < q). Hence every element h of V is of the form 
h(t) = EJ=i gjiOxj, where each & € LS{tkelk'' : 0 < k < ntj - 1,1 < j < q). 
This proves (ii). 

(iii) By the discussion above, each ft can be expressed as follows: 

q mj-\ 

7 = 1 i=0 

Every h € V is of the form 

n n q mj-\ 

A = £^< = £ £ £ ' V V < * 4 4 
i = l 1=1 y = l * = 0 

q mj-l 1 n \ q mj-\ 

- £ £ 'v v £«^4 = £ £ <^ v 
j = | *=0 \ i ' = l / y = l *=0 

This proves (iii). For (i), / , = £ J = 1 YlULo tke'k''y'kj. For every j choose largest k 
such that y'kj ^ 0, let it be kj. We will show that e^'y^j e V. To prove this, let 
IM e MC(R, X') be such that n( V) = (0). Then/ *^ = 0 for every/ e V, since V is 
translation invariant. Hence fi*fi = 0, for every i. As// •/* is a finite sum of complex 
valued exponential monomials and /L; (A./) is the coefficient of e'x>', /Li (A.,) = 0. 
This implies that e'^'y^. e V. D 

COROLLARY 2.9. Letf e C(K, X). Then r(f) is finite dimensional if and only if 
f is a finite linear combination of exponential monomials in C(R, X). 
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PROOF. Suppose that r(f) is finite dimensional. Then it follows from the above 
theorem that / is a finite linear combination of exponential monomials. Con
versely, suppose / is a finite linear combination of exponential monomials. Let 
/ = EJ=, YZ? «iktWxik. Then x(f) C LS[tk-'e*>'xJk :0<l<k,0<k< 
Wj — 1. 1 < j < q}- Therefore x(f) is finite dimensional. • 

REMARK. (i) Some authors (see [14, 25]) define exponential polynomials to 
be functions of the form YJ-i fj. where fj are exponential polynomials defined as 
in Definition 1.3. With this definition, our result states that every finite dimensional 
translation invariant subspace V of C(R, X) is generated by exponential polynomials 
in V. 

(ii) Anselone and Korevaar [1] have proved that when X = C, V C C(R) is 
finite dimensional if and only if V is the solution space of a homogeneous constant 
coefficient ordinary differential equation. This result is not true for arbitrary X which 
can be seen by the following examples. 

EXAMPLE 3. Let X be a separable infinite dimensional complex Hilbert space. Let 
[e„} be a complete orthonormal basis. Consider the homogeneous ordinary differential 
equation with constant coefficient. 

(13) a0f + a , / ' + ..- + anf
M=0. 

LetA.1, A.2,... , kg with multiplicities m x, m2. ••• ,w, be the roots of the characteristic 
polynomial p (r). Then for every n e H,0 < k < mJtl <j < q, tkea>'en is a solution 
of the differential equation (13). Thus the solution space is not finite dimensional. 

EXAMPLE 4. Let X be a complex Banach space. Fix A e BL(X). Consider the 
following differential equation du/dt = Au. Then the solution space {« e C(R, X): 
du/dt = Au] = {e'Ax : x € X) is a closed translation invariant subspace of C( l , X). 
Further, it is finite dimensional if and only if X is finite dimensional. 

Let n 6 MC(R, X'). In the case when X — C it is known [35] that for a given \L the 
linear span of exponential monomial solutions of the convolution equation/ *\i = 0 
is dense in the space of all solutions. We extend this for X — C as follows: 

THEOREM 2.10. Letf = ( / i , / 2 /„) e C(R, C") satisfies thefollowing: 

(i) fj is mean-periodic, for every 1 <j <n\ 
(ii) a(fj) na(fk) = 0 for j ? k. 

Then r ( /) contains exponential monomials and the linear span of exponential mono
mials inxif) is dense inr(f). 
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PROOF. Clearly r(f) c r(f{) x r(/2) x • • • x T ( / „ ) . We show that these two 
sets are equal. Let g e r(fi) n r( / 2 ) . Then r(g) C r ( / , ) D r(/2) and hence by 
Schwartz's theorem, r ( / , ) D r(/2) = (0). Thus T ( / , ) D r( / ; ) = (0) for / 7̂  j . Let 
it eM((R, AT') be such that A*(T (/)) = {0}. Let/t = (/ i , , / i2 , . . . , /t„). Since T ( / ) is 
translation invariant, / • p. = J™=1 fj * fij = 0. Let e'y', telkl,... , /""-Vx' e r(f\) 
and tm'etkl & t(fi). By Hahn-Banach theorem there exists a measure Vi 6 MC(R) 
such that ViCrC/-,)) = {0} for every / ^ 1 and vx(e'u) £ 0. Therefore/, • v{ = 0, for 
/ 56 1. Now/, */xi * V\ = (f * (i) * Hi = 0. Therefore (p,iv{)(k) = (/iiOi)'(A.) = 
••• = (AiVi)(<",-I)(X) = 0. As /i,(A.)0|(A.) = 0 and 0,(A.) ^ 0, /z,(A.) = 0. Also 
(AiVi)'(X) = 0 implies /t',(A-)(i)i)(>.) + AiM^IM = 0- This implies /t',(A.) = 0. 
Similarly we can show that £"(A.) = • • • = /t(1

m'_1,(A,) = 0. Thus A. is a zero of jXi 
with multiplicity at-least m\. This shows that f\*H\ = 0. Similarly, / , * /t, = 0 
for every j . Thus n(x(f\) x r(/2) x • • • x r(/„)) = 0. It follows that x(f) = 
T ( / I ) x r(/2) x • • • x r(/„). This completes the proof. • 

COROLLARY2.11. Let X = C". L*// = (/,,/2 /„) e C(R,X) and p, e 
MC(R, X'). Suppose that each fj is mean-periodic and o(fj)f\o(fk) = 0forj •£ k. 
Iff * /j, = 0, then f is a finite linear combination of exponential monomials solutions. 

PROOF. Since spectral synthesis holds for R, L S(a (fj)) is dense in r (/,), for every 
y. It is easy to see that o{fx) x o(f2) x • • • x o(fn) c LS(E), where £ = {**<?'*'* : 
* £ 0, f**a';c * it = 0}. Thus LS(E) = T(ft) x r(/2) x • • • x r(f„). The required 
result follows from the Theorem 2.10. D 

EXAMPLE 5. (1) When G = R and X = C, the notion of mean-periodic functions 
was introduced by Delsarte in 1935 [5]. In [35] Schwartz gave an intrinsic charac
terization of mean-periodic functions: / € C(R, C) is mean-periodic if and only if 
T ( / ), the closed translation invariant subspace of C(R, C) is proper. Clearly, for every 
A. 6 C, fk(t) = elU, t e R, is mean-periodic, / * p = 0 for p = S0 — e'kSu where 5, 
denote the Dirac measure on R at x 6 R. Schwartz [35] showed that if/ e C(R, C) 
is mean-periodic with / • p = 0, then / is a limit of finite linear combinations of 
functions of the type f^(t) — tke,u, such that fx * p = 0. In Laird [22] it is shown 
that if / e C(R, C) is mean-periodic and g is an exponential polynomial, that is, 
g(t) = p(t)elU, where p(t) is a polynomial, then fg is mean-periodic. 
(2) Let G be a compact abelian group. Then every character of G is mean-periodic, 

as observed in Rana [33]. 
(3) For X=C, mean-periodic functions on various locally compact groups have been 

analysed by various authors (see [2, 3, 5, 7, 10, 11, 17, 19, 20, 23, 24, 22, 29, 30, 36, 
38, 37, 39]). 
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In general setting, even when G = R and X is an arbitrary Banach space, nothing 
seem to be known. 

NOTE. The following questions still remain unanswered: 

(1) Let V be a closed translation invariant subspace of C(R, X). Does V always 
include a monomial exponential? Is V the closed linear span of the monomial 
exponentials in it? 
(2) The problem of finding solutions for/ • \x, — g, for a given fx and g, seems to be 

much more difficult even for the case G = K and X = C: Some particular situations 
are analysed in [31] and [32]. Another particular case is given in the next theorem. 

THEOREM 2.12. For a given fi € A/C(R) and g a finite sum of exponential polyno
mials in C(R), there exists f € C(R) such thatf */j. = g. 

PROOF. First suppose that g is an exponential polynomial. Let g(.t)=etX'YX=Q °ktk-
Let Z(/t) = {X 6 C : jl(k) = 0). We say 

(i) k e Z(A) is of multiplicity 0 if /i(A.) £ 0. 
(ii) k 6 Z(p,) of multiplicity raeN, if /t(A.) = 0, £'(>.) = 0 , . . . , /^"""(X) = 0 

and£( m )M # 0 . 

Let m be the multiplicity of A. 6 Z(£). Define / (0 := 2 X „ 6*r+*e'x', where 

c:;)M(m+i)w" (0™ 
tfn-i 

(0 m+1 
(0" 

( m + : - . ) A ( m , w 

*>0 = 

(0m (3^*0(1) 
(0m +n o(m)w 

A simple computation of / * fi gives f * n = g. In the general case, suppose that 
8 = Ey-i ft. where & (0 = pj (t)ea>', for every ; and kk # kj for *?* . / . Let / y 

be the exponential polynomial function corresponding to gj obtained as in the first 
case, that is, /y * /z = g;. Then / = ^T^, f} is a solution of the given convolution 
equation. • 

3. Mean-periodic functions on G = T 

We shall consider integrals of X-valued functions with respect to scalar measures in 
the sense of Bochner integral, and the integrals of scalar valued continuous functions 
with respect to X'-valued measures in the sense similar to that of Bochner discussed 
in the last section. 
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DEFINITION 3.1. Le t / e C(T, X) and /x e M(T, X'). For every n e I, 

f(n):= [ z-"f(z)dz and £(«) := / V " 

are called the nth-Fourier coefficient off and /x, respectively. 

rf/*(z) 

• For/ € C(T, X), let z(f) denote the closed translation invariant subspace gener
ated by / . 

PROPOSITION 3.2. / € C(T, X) w mean-periodic if and only ifr(f) # C(T, X). 

PROOF. Follows from the fact that the dual of C(T, X) is M(T, X'). 0 

LEMMA 3.3. Forf e C(T, X) and /x € M(T, X'), the following hold: 

(i) / • ££ « a uniformly continuous function on J; 

(ii) </ */x) = (A»). £00). 

PROOF, (i) Follows from the facts that / is uniformly continuous, /x has finite 
variation and that \(f * n)(z) - (f * n)(w)\ < fT \\f(zs) -/(utt)||«/V„(*). 

(ii) Since T is compact, / is uniformly continuous on T. Let €k > 0 be such that 
ek -*• 0 as k -*• oo. Since the metric on T is invariant under rotation, there exist 
finite Borel partitions Pk of T = uBki such that if zki, wki e Bki, then \\f (zkiw) -
f(wkiw)\\ < ek whenever |io| = 1. Now 

(14) {f */x)(/i) = f(f *n){z)z-"dz = f f f (zW)dn(»>)z~"dz 

= /t!l™ (5Z^( z l s«) . H(BV))\ z~"dz. 

Since/ is continuous on T, / (T) c B(0, r) = rfi(0, 1) for some r > 0. We have 

^2(f(zwZ), MBV)) < £ l ( / " ^ ) , li(Bv))\ 
j 

< ^ r ^ ( ^ ) < r V M ( i r ) < r C . 

Applying dominated convergence theorem in (14) for the functions 

z^J^{f{zwk-),^{Bkj))z-n 
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we obtain 

(f*fif(n)= lim fy^l/izWi), niB^z'"dz 
k-*°°Jij 

= Mm J ] / {«""/U«5«). /*(**)) <*Z-

Now apply change of variable formula for the function z H-> (Z - " / (zuJ/y"), li(Bkj)), 
to get 

(/ * /x)A(n) = lim 
k-*oo 

-&I:(J[(^)"*/W*.M(«,)) 

= Hm£(tSjr"(/-"(»i), (i<Bt/)) 

= / / («) , Um J ] ( u i S r W v ) ) = (An). £("))• D 

COROLLARY 3.4. For/ e C(T, X) and n e M(T, X'), f * 11 = 0 //a/id on/y 1/ 
(/(/i), fi(n))=0forallnel. 

PROOF. Follows from Lemma 3.3 and the uniqueness of Fourier-Stieltjes coeffi
cients of scalar valued functions on T. • 

PROPOSITION 3.5. Letf e C(T. X). Then a(f) = {az"f(n) : f\ri) ^OandO^ 
a e Q. 

PROOF. First we show that [az"f\n) : / ( H ) £ 0} c a(f). Let n e M(T, X') be 
such that fi(r(f)) = 0. Then/ *n = 0, since r (/) is translation invariant. Hence by 
Corollary 3.4, (/(it), /i(n)> = 0 for every n. ThusM(az"/(n)) = <*(/(«)• £(")> = 0, 
and by Corollary 3.4, aznf\n) ez(f). Hence az"f(n) e a(f). 

On the other hand, let zmx e o{f). To show that x = af(m) for some scalar a. 
Let*' € X' be such that;c'(/(m)) = 0. Let dv(z) = zmx'dz. Then 

«. . I*' ifrc = m; 
M(") = 1 

0 i fn^m. 
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Thus by Corollary 3.4, / • v = 0. Therefore zmx • v = 0 and hence {x, 0(m)) = 0, 
that is, (*,*') = 0. Thus for*' € X', {f(m),x') = 0 implies (x,x') - 0. Therefore 
x = af (m) for some a e C. This completes the proof. D 

PROPOSITION 3.6. Letf e C(T, X). Then a(f) = 0 if and only iff = 0. 

PROOF. By Proposition 3.5, it suffices to show that / («) = 0, for every n e Z if 
and only if / = 0 . Using the uniqueness of Fourier coefficients for scalar valued 
functions we obtain, for every n e Z and x' e X', 

f\n)=0&(x\f\n))=0<&lx',jf(z)z-ndz\ = 0&[{x',f(z))z-ndz = 0 

<&(x'ofnn)=0<#x'of=0&f=0. D 

THEOREM 3.7. For a complex Banach space X ^ C the following hold: 

(i) MP(T,X) = C(T,X). 
(ii) For every 0 jfe fi € M(T, X'), {0} ̂  M P M ^ C(T, X). 

PROOF, (i) Let / : T -* X be a non zero continuous function. Then / (n0) ^ 0 
for some n0. Chose x' e X' such that x' ^ 0 and (*',/(no)) = 0. Define /z(£) := 
HE z""dz) x'< f o r e v e r v E G ^ T - Then /A e M(T, X') and 

(*' ifn = n0; 

[0 i f « ^ n 0 . 

Thus (f * /i)(n) = (/(n), £(n)) = 0. for every n e Z. Hence it follows from 
Corollary 3.4, / * fi = 0. 

(ii) Let 0 ^ /i € M(T, X'). Then /t(n0) ^ 0 for some n0- Let 0 ^ x e X be such 
that (p,(n0),x) = 0, and y 6 X be such that (£(n0), y> ^ 0. Define/, g : T -+ X, 
by / (z) = Z"°JC and g(z) = z"°y. Then 

* if n = n0; [y ifn = n0; 
and g(n) = < 

0 if n ^ n0 yOifn^: n0. 

Therefore, (/(«), p,(n)) = Oforalln e Zand(g*M)(«o) = <l(«o), A("o)) 5̂  0. Thus 
/ is mean-periodic with respect to /x and g is not mean-periodic with respect fi. • 

REMARK. (1) Theorem 3.7 (i) is not true when X = C. For instance, the function 
/ : T -»• C defined by / (z) := £~oo a„zn, z e T, where an € C, an ^ 0 for every n 
and J2™oo la»l < °° *s n o t mean-periodic. 

fin) = 

https://doi.org/10.1017/S1446788700036788 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036788


[21] Mean-periodic functions on groups 383 

(2) Let G be a locally compact abelian group and X a complex Banach space. A 
function / e C(G, X) is said to be almost periodic if the set of all translates of/ is 
relatively compact in C(G, X). Every/ e C(T, X) is almost periodic and if X ^ C, 
then every / e C(T, X) is mean-periodic. When X = C, there are complex valued 
continuous functions on the circle group T which are not mean-periodic. 

We have the following result for spectral analysis and spectral synthesis for T. 

THEOREM 3.8. The following hold: 

(i) Let x 6 X, x j£ 0, andno e 1, Then T(Z"°;C), the closed translation invariant 
subspace generated by z"°x, does not contain any non-zero proper closed translation 
invariant subspace ofC(J, X). 

(ii) Every non-zero closed translation invariant subspace V of C(T, X) contains 
an exponential, that is, spectral analysis holds in C(T, X). 

(iii) The linear span of the exponentials in every closed translation invariant sub-
space V cfC(J, X) is dense in V, that is, spectral synthesis holds in C(T, X). 

PROOF, (i) Let VI be a non-zero closed translation invariant subspace of C(T, X) 
such that V, c r(z"°;c). Then for / e x(znax), / (n 0 ) = ex for some O ^ c e C 
and /(n) = 0 if n £ n0. To show V, = xWx), let fi € M(T, X') be such 
that n(Vi) = {0}. Then (£(n),*) for every n. In particular (£(«<,), *) and hence 
H(V) = {0}. Hence V, = T(Z""X). 

(ii) Choose n0el and / 6 V such that / ( n 0 ) ^0 . We will show that zn°f (n0)e V. 
For, let p. e M(T, X') be such that (i( V) = {0}. Since V is translation invariant and 
U-iV) = {0J, / * ii = 0. This implies (f(n0), £(n0)) = 0. Thus zn"f\nQ) * \i = 0. 
Hence z"0/(«0) e V. 

(iii) Let V be closed translation invariant subspace of C(T, X). Let V0 be the closed 
linear span of z"f(n),f e V. Then by (ii), V0 c V. Let / e V. Let /* e A/(T,X') 
such that M( Vb) = 0. Then (f(n), /t(«)) = 0, for every n e 1. Thus / • /i = 0. 
Therefore,/x(/) = 0. • 

COROLLARY 3.9. For f e C(T, X) and [i g M(T, X'), the following are equiva
lent: 

(i) f*n = 0. 
(ii) / is a limit of finite linear combinations of functions z"x which satisfy the 

equation z"x * /x = 0. 

PROOF. First observe that for a given fx, MP(n) = [f e C(T, X) : f * fi = 
0} is a closed translation invariant subspace of C(T, X). The result follows from 
Theorem 3.8 (iii). • 
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4. Some results for general groups 

As mentioned earlier, problem of analysing mean-periodic functions, the problem of 
spectral analysis and spectral synthesis seems difficult to answer for general groups. 
However, it is not difficult to show that if G is compact and X = C then every 
nontrivial closed translation invariant subspace V of C(K, C) includes exponentials 
and the linear span of exponentials in V is dense in it. Hence every mean-periodic 
(scalar valued) function on a compact group is a limit of finite linear combination of 
exponentials. 

For G arbitrary locally compact abelian, and X = C we have the following: recall. 
SI = [co: G -*• C* : co e C(G) and co(gi + g2) = o>(g\)co(g2)}. 

THEOREM 4.1. (i) Every co eQis mean-periodic. 
(ii) Let G be an infinite locally compact T\ abelian group. Then every exponential 

polynomial on G is mean-periodic. 
(iii) Let MP(G) be the set of all mean-periodic functions on G. Then MP(G) is 

dense in C(G) if and only if G is not finite. 

PROOF, (i) Clearly, every translate cog of co is a constant multiple of co, and hence 
every finite linear combination of translates of co is a constant multiple'of co. Therefore 
the closed translation invariant subspace r(co) is a one dimensional subspace of C(G)-
Thus t(co) jL C(G), if G is non-trivial. 

(ii) Let / be an exponential polynomial on G, 

f(8)-=\Tlcaai(gr'a2(gr--.am(g)a"')co(g), 

where a = (c*i,... , an), or, e M, ca are complex constants and ait... , am are additive 
functions. Let V = LS{al(g)f)la2(g))h • • • am(g)*-<o(g) : ft e Z+, ft < a, for 1 6 
j < m}. It is easy to see that/ e V and V is a finite dimensional translation invariant 
subspace of C(G). Since V is finite dimensional, it is closed and it follows that 
r ( / ) £ V. But C(G) is infinite dimensional as G is not finite. Hence r ( / ) ^ C(G)-

(iii) Suppose that G is finite, G = {g\,g2 g„}. Let/ € C(G) and /z e MC(G)-
Let M(gi) = Cj. Then / • n = 0 for a non-trivial n if and only if 

f(gi-gi) f(g\-gi) ••• f(g\-gn) 
f(g2~g\) f(g2-gl) ••• f(g2~gn) 

= 0. 

/ (gn ~ gl) fign-gl) ••• f (gn ~ gn) 

The columns of the above matrix are permutations of [f(gi),f(g2) f (gn)]-
Thus / is mean-periodic if and only if (/ (gi), f (g2),... ,f (g„)) is a root of some 
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fixed polynomial P in the variables z\,Zi,... ,z„. The roots of this polynomial P 
form a closed set Z(P) in C of 2«-dimensional Lebesgue measure zero. Therefore 
Z(P) is not dense in C But MP(G) = Z(P). Hence MP(G) is not dense in C(G). 

Conversely, suppose that G is not finite. Let EP(G) be the set of all exponential 
polynomials in C(G). By (ii), EP(G) c MP(G), that is, T c fl c EP(G) C 
MP(G). Moreover ft separates points of G. Since the pointwise product of finite 
number of exponentials is again an exponential, it is easy to see that product of two 
exponential polynomials/ and g is a finite sum of exponential polynomials and hence 
T ( / # ) is finite dimensional. Therefore the algebra A(EP(G)), generated by EP(G), 
is contained in MP(G), that is, A(EP(G)) c MP(G). Hence by Stone Weierstrass 
theorem ([9]) A(EP(G)) is dense in C(G). Since A(EP(G)) c MP(G), MP(G) 
is dense in C(G). D 

COROLLARY 4.2. IfG is a finite 7i topological abelian group, then {0} ^ MP(G) 
•* C(G). 

LEMMA 4.3. Let G be a locally compact abelian group having no nontrivial 
compact subgroups. Let G be the dual group of G. Then for fi € MC(G), 
kr({y g r : A(y) = 0}) = o. 

PROOF. Refer [6]. • 

THEOREM 4.4. IfG does not have compact elements, then {0} £ MP(G) £ C(G). 

PROOF. Le t / e C(G) be compactly supported. By Lemma 4.3, / is not mean-
periodic. Thus MP{G) j * C(G). D 

As we have pointed earlier, the problem of spectral synthesis does not hold for every 
closed translation invariant subspace V of C(R2, C). However, with some conditions 
on V this is true. First we prove the following lemma. 

LEMMA 4.5. The following hold: 

(i) Let A.J, A.2,... , K °e distinct complex numbers and m\,mz,... ,m„ e N. 
Then the set [e,x'', teai' tm'elX>' : 1 < ; < n) C C(R) is linearly independent 
over C. 

(ii) Let A.i, A.2)... , A.„; n\, rji,... , n„ be complex numbers and for 1 < j,k,l < 
n, ay, 0kr be non-negative integers. Then [t°" t%" e,(k"t+'"tl) : 1 < /,;' < n) is a linearly 
independent subset ofC(R2) over C if (kj,nj) ^ (kk, rjk) or (a,j, fi,j) jk (a,k,fi,k). 

PROOF, (i) Without loss of generality, we may assume that 

Im(X„) = max Im(A.<), 
1 <J <n 
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where Im denotes the imaginary part of a complex number. ThenIm(A.„)-Im(A;) > 0 
for 1 < j < n — 1. Now for ay e C, 

n 

J2 (aojea>' + aljte'x>' + --- + amjjt
m<e'x>') = 0 = • 

n - l 

] T K «•*' "x"" + <*u t<?(h """" + ••• + fl«;y ^ <?'Uj -x"") + P„ (0 = 0, 

where pn{i) = an0 + anXt + ••• + anmjm" = anmn(t - £\){t - & ) • • • ( * - flj, f o r 

some A, ft ft„ <= C. Now as t -*• -oo , f**'̂ -*"* -> 0 for every,/ ^ n. This 
implies a„m„ = 0, since as t —• —oo, p„(0 A 0 if anmn ^ 0. Similarly by repeating 
the same argument one can easily show that a^ = 0 for all i, j . 

(ii) Case (i): A.i, k2,... ,kn are distinct. For al} e C, 

J2 J2 («</ *V 4" e'a"'+""2)) = 0 = * ]T £ ((«„ 4" e^)t1" ea«>) = 0. 
7=1 j = \ /=1 J = l 

By (i), this implies ay = 0 for all i, j . 
Case (ii): A.; = kj for some / and j . In this case rearrange the terms of the above 

expression by collecting the distinct exponential monomials in t\. By the hypothesis, 
the coefficients of the exponential monomial in ti are finite linear combination of 
exponential monomials in t2. By applying (i) twice, namely, first t\ variable and then 
t2 variable we get ay = 0 for all /, j . • 

THEOREM 4.6. Let V be a closed translation invariant subspace ofC(R2) satisfying 
any one of the following conditions: 

(i) V is finite dimensional. 
(ii) V is rotation invariant. 

(iii) V = xli:={f e C(R2) : / * n = 0} for some n e MC(R2). 

Then V contains an exponential. 

PROOF. Case(i): V is finite dimensional. Let / 6 Vand/ ^ 0. By Theorem 1.9, 
/ is of the form / = £"_, Pi (*i < h)e'(k> 'l+'"h), where pj is a non-zero polynomial in 
tlt h and (kj, nj) £ (kk, nk) for; £ k. Let \x e MC(K2) be such that (i(V) = {0}. 
We show that fi(e'

lXi'[+'"'2)) = 0. Since V is translation invariant, / * fi = 0. Write 
/ as a linear combination of elements in {t°* t2"el(X'h+'u'i) : 1 < IJ < n). Let 
cklt°

0tilei{k'"+'»'i\ CiC2t""t2
3k2e,ikJ'<+'»*\ ... , ctj^t^e'^'^'^ be the terms contain

ing e,{-xi'i+r"h) and the largest degree term of fi, namely t"°, where ckl, ckl,... , ckm are 
non-zero scalars. Also, f * fi has the same representation and the terms contain
ing *«v»j*+<«/« are cklfi(kj, nj)t"0t2

k,e'^"+"J"\ chp,(kj, n^Ct^e'^"^'^ 
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CkMh'ljKt^e'^"^'^. Since / * fi = 0 and ckj jL 0, jKkj, rjj) = 0, by 
Lemma 4.5. Therefore ix{e^'h+,»h)) = 0 . Thus g^Vi+iy*) e v. 

Cases (ii) and (iii): V is rotation invariant, or V = rM. By Theorem 1.7 and 
Theorem 1.8, V contains an exponential polynomial. It follows easily from the proof 
of (i) that V contains an exponential. • 

References 

[1] P. M. Anselone and J. Korevaar, 'Translation invariant subspaces of finite dimension', Proc. Amer. 
Math. Soc. 15 (1964), 747-752. 

[2] S. C. Bagchi and A. Sitaram, 'Spherical mean-periodic functions on semi simple Lie groups', 
Pacific J. Math. 84 (1979), 241-250. 

[3] C. A. Berenstein and B. A. Taylor, 'Mean-periodic functions', Internat. J. Math. Math. Sci. 3 
(1980), 199-235. 

[4] L. Brown, B. M. Schreiber and B. A. Taylor, 'Spectral synthesis and the Pompeiu problem', Ann. 
Inst. Fourier (Grenoble) 23 (1973), 125-154. 

[5] J. Delsarte, 'Les fonctions moyenne-periodiques',7. Math. PuresAppl. 14 (1935), 403-453. 
[6] P. Devaraj and I. K. Rana, 'Relation between Pompeiu groups and mean-periodic groups', preprint, 

2000. 
[7] D. G. Dickson, 'Analytic mean-periodic functions'. Trans. Amer. Math. Soc. 14 (1972), 361-374. 
[8] J. Diestel and J. J. Uhl Jr., Vector measures, Math. Surveys Monographs 15 (Amer. Math. Soc., 

Providence RI, 1977). 
[9] J. Dugunji, Topology (Prentice-Hall, New Delhi, 1975). 

[10] L. Ehrenpreis, 'Appendix to the paper 'Mean-periodic functions I", Amer. J. Math. 77 (1955), 
731-733. 

[11] , 'Mean-periodic functions, Part I. Varieties whose annihilator ideals are principal', Amer. 
J. Math. 77 (1955), 293-328. 

[12] R. J. Elliott, 'Some results in spectral synthesis', Proc. Camb. Phil. Soc. 61 (1965), 395-424. 
[13] , 'Two notes on spectral synthesis for discrete abelian groups', Proc. Camb. Phil. Soc. 61 

(1965), 617-620. 
[14] M. Engert, 'Finite dimensional translation invariant subspaces', Pacific J. Math. 32 (1970), 333-

343. 
[15] J. E. Gilbert, 'Spectral synthesis problems for invariant subspaces on groups II', in: Proc. Int. Sym. 

on Function Algebras at Tulane Univ. (1965) pp. 257-264. 
[ 16] , 'Spectral synthesis problems for invariant subspaces on groups I', Amer. J. Math. 88 (1966), 

626-635. 
[17] D. L. Gurevich, 'Counter examples to a problem of L. Schwartz', Funct. Anal. Appl. 9 (1975), 

116-120. 
[18] E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Pub!. 

21 (Amer. Math. Soc, Providence, RI, 1957). 
[19] J. P. Kahane, Lectures on mean-periodic Junctions (Tata Institute, 1957). 
[20] P. Koosis, 'On functions which are mean-periodic on a half-line', Comm. Pure Appl. Math. 10 

(1957), 133-149. 
[21] G. E. Ladas and V. Lakshmikantham, Differential equations in abstract spaces (Academic Press, 

New York, 1972). 

https://doi.org/10.1017/S1446788700036788 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036788


388 P. Devaraj and Inder K. Rana [26] 

[22] P. G. Laird, 'Some properties of mean-periodic functions', J. Austral. Math. Soc. 14 (1972), 
424-432. 

[23] , 'Functional differential equations and continuous mean-periodic functions', J. Math. Anal 
Appl. 47 (1974), 406-423. 

[24] , 'Entire mean-periodic functions', Canad. J. Math. 17 (1975), 805-818. 
[25] , 'On characterisations of exponential polynomials', Pacific J. Math. 80 (1979), 503-507. 
[26] M. Lefranc, *L' analysis harmonique dans Z"', C. R. Acad. Sci. Paris 246 (1958), 1951-1953. 
[27] B. M. Levitan and V. V. Zhikov, Almost periodic functions and differential equations (Cambridge 

University Press, Cambridge, 1982). 
[28] B. Malgrange, 'Sur quelques proprietes des equations des convolution', C. R. Acad. Sci. Paris 238 

(1954), 2219-2221. 
[29] A. Meril, 'Analytic functions with unbounded carriers and mean-periodic functions'. Trans. Amer. 

Math. Soc. 278 (1983), 115-136. 
[30] Y. Meyer, 'Harmonic analysis of mean-periodic functions', in: Studies in harmonic analysis, MAA 

Stud. Math. 13 (Math. Assoc. Amer., Washington D.C., 1976) pp. 151-160. 
[31] E. Novak and I. K. Rana, 'On the unsmoothing of functions on the real line', Proc. Nede. Acad-

Sci. Ser. A 89 (1986), 201-207. 
[32] I. K. Rana, 'Unsmoothing over balls via plane wave decomposition', Rend. Circ. Mat. Palermo (2) 

34 (1990), 217-234. 
[33] I. K. Rana and N. Gowri, 'Integrable mean-periodic functions on locally compact abelian groups', 

Proc. Amer. Math. Soc. 117 (1993), 405-410. 
[34] J. Schmets, Spaces of vector valued continuous functions. Lecture Notes in Math. 1003 (Springer, 

1983). 
[35] L. Schwartz, "Theorie generate des fonctions moyenne-periodiques', Ann. of Math. (2) 48 (1947), 

857-929. 
[36] H. S. Shapiro, 'The expansions of mean-periodic functions in series of exponentials', Comm. Pure 

Appl. Math. 11(1958), 1-21. 
[37] L. Szgkelyhidi, 'The Fourier transform of mean-periodic functions', Utilitas Math. 29 (1986). 

43-48. 
[38] , Convolution type functional equations on topological abelian groups (World Scientific 

Publishing, Singapore, 1991). 
[39] Y. Weit, 'On Schwartz theorem for the motion group', Ann. Inst. Fourier (Grenoble) 30 (1980), 

91-107. 

Department of Mathematics 
Indian Institute of Technology 
Powai 
Mumbai-76 
PIN-400076 
India 
e-mail: devaraj@math.iitb.ac.in, ikr@math.iitb.ac.in 

https://doi.org/10.1017/S1446788700036788 Published online by Cambridge University Press

mailto:devaraj@math.iitb.ac.in
mailto:ikr@math.iitb.ac.in
https://doi.org/10.1017/S1446788700036788

