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Abstract

We discuss expansions of solutions of the generalized heat equation which have a singularity at zero in
terms of two sequences of homogeneous solutions.
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1. Introduction.

A solution of the n -dimensional heat equation

a ^ a2

— u(x, t) = Au(x, t) = > —TU(X,1),
(1.1) °t ^ o /

x = (xu...,xn) e R n , t>0,

is called homogeneous of degree m if for all X > 0, x e R" and t > 0 we have

As part of a program outlining analogies between temperature functions and analytic
functions, Rosenbloom and Widder [9] introduced two sequences of temperature
functions homogeneous of integer degree. Their first sequence, the 'heat polynomials'
homogeneous of degree m, are defined by:

(1.3) vm(x,t) = (-2t
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14 E. Kochneff [2]

where Hm (x) is the mth Hermite polynomial orthogonal on R' with respect to e ~"2 /2 dx.
These may be considered as an analogue of [zm }^=0 for analytic functions.

The natural region of convergence for an expansion in terms of the {vm} is a time
strip \t\ < a. Furthermore, a temperature function u(x, t) has an expansion in terms
of the vm valid for |/| < a if and only if the Huygens property holds there: in other
words,

(1.4) u(x,t)=l k(x -y,t -t')u(y,t')dy, -a < t' < t < a
J-oo

where k{x, t) is the heat kernel:

(1.5) ^ 2 / 4) = ^ e .
s/Ant

The 'associated functions' homogeneous of degree — m — 1, are defined using the
Appell transform:

(1.6) wm{x,t) = srfvm(x,t) = k(x,t)vm{x/t,-\/t), m = 0, 1 , . . . .

Rosenbloom and Widder showed that a temperature function has an expansion in
terms of the [wm} valid for t > a if and only if it satisfies the Huygens principle for
t > a and satisfies an additional integrability condition.

On the other hand, the Appell transform maps solutions of the heat equation in
|/| < I /a into solutions of the heat equation in \t\ > a. In addition, a temperature
function satisfies the Huygens property in |r | < 1 / a if and only if its Appell transform
satisfies a Huygens property in |f | > a; that is,

(1.7) u(x, t)= f k(x-y,t- t')u(y, t') dy
JR

whenever t' < t < —a, a < t' < t or both t' > a and t < —a. Thus expansions
in terms of the {wm} are valid in time domains \t\ > a, and a function u(x, t) can be
expanded in terms of the {wm} if and only if u(x, t) satisfies the Huygens property in
\t\ > a: see [6].

In a continuation of Widder's program, two related papers [1,4] concerned expan-
sions in homogenous solutions of the generalized heat equation

9 ^ d2u n - I du
(1.8) —u(r,t) = Allu(r,t) = — + —, r > 0, /x > 1.

at or1 r dr

If /x = n is an integer, then AM is the Laplacian in radial coordinates in R".
Both authors considered expansions in terms of two basic sequences. The radial

heat polynomials homogeneous of degree 2m were defined by:

(1.9) R»(r,t) = ,
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[3] Homogeneous solutions of the generalized heat equation 15

where {L^"2)/2(x)} are the Laguerre polynomials orthogonal with respect to
xfr-2)/2e-x dx o n (0, 00).

The associated functions homogeneous of degree —2m — 1 are obtained using the
Appell transform:

(1.10) /?£(/-, t) = < / ?> , t) = k^r, t)R»(r/t, -1/0

where k^ is the 'fundamental source solution':

(1.11) Mr> 0 = (47rO"K/2e-r2/4'.

Expansion theory for {/?£} and {R%} mirrors expansion theory for {vm} and {wm}.
In this case the kernel in the Huygens principle is related to the radialization of

translations of the heat kernel in R". Let u(xl, x2,..., xn, t) be a function defined
on R" x (a, b) which is radial in x = (xu x2,..., xn), satisfies (1.1) and satisfies the
Huygens principle in R". In other words,

(1.12) u(x, t)=j u(y, t')k(x -y,t-t')dy, a < t' < t < b,

where k(x, t) is the heat kernel in R"

(U3) ^ ' ° ^ ' | 2 4

Let U(r, t) = u(xu x2,... ,xn,t),r = \x\. Then U(r, t) is a solution of (1.8) with
H = n, and switching to polar coordinates with \y\ = p, y' = y/p and £„_] the unit
sphere in R" we have

(1.14)
r°° / r \

'dp
U(r, t)= I ( [ U{p, t')k(x - py', t - t') dy') pn~x,

Jo XJT.*-! /

= / U(p,t')Kn(r,p,t-t')pn-ldp
Jo

where

(1.15) KH(r,p,t)= f k(x-py',t)dy'

~ It

and /v(z) is the Bessel function of complex argument of order v (see [1]).
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16 E. Kochneff [4]

Therefore, for arbitrary /x > 1, the Huygens property in (a, b) is defined by

/•OO

(1.16) U(r,t)= uipj^K^pj-t^p^dp, a<t'<t<b
Jo

where

,..17, ^ ( r , p , , )

In [1,4], it was shown that a function u(r,t) had an expansion in terms of R£ (r, t)
converging in a strip \t\ < a if and only if u(r,t) satisfied the Huygen's property in
that strip. Further, it was shown that a function had an expansion in terms of R£(r, t)
converging in a domain t > a if and only if it satisfied the Huygen's principle in
t > a and satisfied an additional integrability condition.

For n=\, {#£} and {&} reduce to the sequences {v2m)™=0, {W2m}™=0 in [8]
because of the connection between the Hermite and Laguerre polynomials. Thus [1,4]
included part of the theory of Rosenbloom and Widder.

On the other hand, many elementary solutions of (1.8) cannot be expanded in terms
of the radial heat polynomials or their associated functions. All such solutions were
entire funcions of A-2. This precludes expansions for solutions which have a singularity
at zero, for example, r2~M.

However, as we will see below, the approach used in [1] to derive the heat poly-
nomials leads to two other linearly independent sequences of homogenous solutions.
We define solutions homogeneous of degree 2m + 2 — fi by:

(1.18) V£(rj) = r2-»{4t)mm\LV-»)l2(—\, m = 0, 1,

where the L*2 M)/2 are the Laguerre polynomials of order (2 — /u.)/2. Note that for
/x > 4, these polynomials do not form an orthogonal system in the traditional sense.

The associated functions are obtained using the Appell transform:

(1.19) V?(r,t) = £/llV£(r,t)=kll(r,t)V£[-, — J, m = 0, 1 , . . . .

These are homogenous of degree — 2m — 2.
For fx = 1, the sequences {V£} and {V£} reduce to the sequences {u^+iJ^U.

{w^+i }~=0 of Rosenbloom and Widder ([8]).
We will show that the natural region of convergence for expansions of V£ are time

strips \t\ < a and that expandibility is equivalent to a certain Huygens principle. We
will also prove the corresponding results for the associated functions V£. Our main
difficulty is working with nonintegrable functions.
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[5] Homogeneous solutions of the generalized heat equation 17

Another aspect of Widder's program was a characterization of all homogeneous
solutions of integer degree. The underlying observation is that analytic functions
have two linearly independent solutions of degree n for each n, namely Re(z") and
Im(z"). This aspect was extended to (1.8) in [5], and this paper overlaps that one to
some extent. Specifically, if /z = 2, 3 , . . . , 2m + 2 — /x > 0, then our V£, V£ may
be expressed as linear combinations of solutions in [5]. However, we characterize
expansions in terms of a Huygens property, while the characterization in [5] is of a
function theoretic nature.

We organize the paper as follows. In Sections 2 - 4 we develop tools needed later
in the paper. In Sections 5 - 7 we derive our homogeneous solutions and discuss their
elementary properties including regions of convergence for expansions. Finally, in
Sections 8 - 10 we discuss Poisson integrals and characterize expansions in terms of
the Huygens property.

2. Hadamard's 'finite part' integral

To handle divergent integrals, we will use Hadamard's 'finite part' integral.

DEFINITION 2.1. ([3]) Let n be a positive integer, - ( « + 1) < v < -n. Let f(x)
be a given function, and suppose there exists a polynomial Pn_i (x) of degree at most
n — 1 so that

r°°
(2.1) / \f(x)-Pn.l(x)\xvdx<oo.

Jo
Then Hadamard's finite part (f.p.) integral is defined by

/

oo /»oo

f(x)xvdx= (f(x)-Pn.1(x))xvdx.
Jo

Clearly, if such a polynomial exists, then it is unique. Furthermore, for — (n +
1) < v < -n, if / ( * ) , / ' (* ) , • • •, fin)(x) are defined on [0, a] for some a > 0,
if f(n)(x) e L([0,a];xv+ndx) and if /(x) e L((a,oo)\xvdx) then Hadamard's
integral will exist with Pn_x the (n — l)st Taylor polynomial of / centered at 0. Note
that in general Hadamard's integral will not exist if v = —{n + 1) unless fin)(0) = 0.

For future reference, note that if the first integral below exists, then
f(x)xiv-l)/2dx = 2f.p. / f(x2)xvdx.

Jo
For v > — 1, we adopt the convention

/•OO /-OO

f .p . / f(x)xvdx= f{x)xvdx.
Jo Jo

Frequently one is able to replace Hadamard's integral with an ordinary integral.
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18 E. Kochneff [6]

LEMMA 2.2. Let n be a positive integer, —(« + 1) < v < — n and suppose f(x)
is n-times differentiable on [0, oo). Then if f € L((l, oo); xv dx) and / (n ) e
L((0, oo); xn+v dx) we have

(2.4) f.p. f0 f(x) xv dx = r ( ~ " ~V) ^ f(n\x) xv+n dx.
Jo ' \~v) Jo

PROOF. Let Pn_! denote the (n — l)st Taylor polynomial of / centered at 0. We
have

/

oo /»oo

/GO ?dy = I (f(y) - Pn-i(y)) yvdyi
l (—v) Jo

We now consider iterated integrals.

THEOREM 2.3. Let —(n + 1) < v < —n, a > 0. Suppose f{x, y) has continuous
mixed partials up to degree n in each variable in [0, a] x [0,a],

(2.5) f f \f(x,y)\(xyydxdy <oo,
J a J a

(2.6) [ \dJ
yf(x,0)\xvdx<oo, j=O,l,...,n-l,

Ja

and

(2.7) r\aif(0,y)\yvdy<oo, j = 0, 1,..., n - 1.

Suppose also that there existfunctions g(x) e L((a, oo); xv dx) andh{y) e L((a,oo);
yv dy), j — 0, 1 , . . . , n such that

(2.8) |3;/(*,:>0l <*(*) , forallye[0,a],

and

(2.9) \d"J(x,y)\<h(y), for all x € [0, a],
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[7] Homogeneous solutions of the generalized heat equation

Then the iterated integrals

(2.10) f.p.y Uvj f{x,y)xvdx\fdy

19

and

(2.11) f.p. j P (f.p. j f{x, y) f dy^ xv dx

both exist and are equal.

PROOF. Let

/=o ' • i=o

,=o j=o

and

M = m a x { | 3 ^ / ( ; c , y) | : 0 < y < a, 0 < x < a, 0 < j <n, 0 < / < « } .

By symmetry and Fubini's theorem, it suffices to show that

f.p.y f f.p.y f(x,y)xvdx\yvdy

= [ I (f(x,y)-Pn-dx,y)-Qn-i(x,y) + Rn-i(x,y))(xy
Jo Jo

where the latter integral converges absolutely. To prove the absolute convergence, we
consider separately the four regions (a, oo)x(a, oo), (a, oo)x(0, a), (0, a)x(a, oo),
and (0, a) x (0, a).

Clearly, (2.5), (2.6) and (2.7) imply that

/•OO /•!»

a Ja

Secondly, from (2.9) we have

(°° [a\f(x,y)-Pn-l(x,y)\(xyydxdy
a Jo

/

oo p

- r ' *
(jcy)v

«*,
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Also, since

E. Kochneff [8]

n-l d'xQn-i(Q,y)

i=0 ll

we have

/

OO pa

/ \Qn-l(x,y)-Rn-i(x,y)\(xyydxdy
Jo

/
oo paI (xy)v dx dy

s orh? g T>[[ (jf |a"8J/(''

Therefore,

/

OO y»a

/ | / (x, y) - P,,_,(JC, y) - QH-i(x, y) + Rn.x(x, y)\{xy)v dxdy < oo.
Jo

The integral over (0, a) x (a, oo) is finite by a similar argument. Finally,

/ [
o Jo

= «^W jf
v dx dy

M
< oo.

This proves the absolute convergence of the integral.
Let

/

OO /»OO

f(x,y)xvdx= / (f(x,y)-Pn-i(x,y))xvdx.
Jo

By the first hypothesis and Fubini's theorem this integal exists for a.e. y. Let

Kn-Ay)= / (Qn-l(x,y)-Rn_l(x,y))xvdx.
Jo
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[9] Homogeneous solutions of the generalized heat equation 21

Then Kn_x is a polynomial of degree n — 1 for which

/ \k{y) - Kn^{y)\yv dy < oo.
Jo

Therefore

f.p. I ff.p. I f{x, y)xv dx) yvdy= f (k(y) - Kn^(y))f dy
Jo \ Jo / Jo

I I f(x v) — P _i (x y) — 0n—I C^ y) ~i~ ?̂ —i (x y)) (.xy)u <ix fify.
Jo

This completes the proof.

3. Laguerre polynomials

For v > - 1 , the Laguerre polynomials [Lv
m(x)} are defined by orthogonality:

/

oo V(k 4- v + 1)
LJOOLJ.OO*-**1' dx = - 5 - ^ - -«ta, * , « = 0, 1, 2 , . . .

and the condition that each Um (x) is a polynomial of degree w with coefficient of xm

equal to (-1)"1. The definition extends to all v e C using the explicit representation:

or:
exx~v dm

(3.3)

Orthogonality extends to Laguerre polynomials of negative order v ^ — 1, —2, . . .
using Hadamard's integral ([6]):

L\{x)Lv
m{x)e-xxv dx = - — -&k,m, k, m = 0, 1, 2 , . . . .

AC!

For v = — 1, —2, . . . the orthogonality relation holds for restricted indices. Let
v = —/, where / denotes a positive integer. Then for all k > I [10]:

(3.5) L^\x) = (_x)'(lzJ

so that we have for it, m > I:

(3.6)

l > \ W ' \ x - i dx = (*

(*-/)!
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22 E.Kochneff [10]

4. Laguerre polynomials: integral formulae, inequalities, and expansions

It is known that for all x e C, m + v > - 1 ([10]):

(4.1) Vm{x) ml Jo

where Jv(z) is the Bessel function of order v:

(4.2) /v(z) =
*=o

The Bessel function of complex argument is defined by:

{z/2)v+2k

(4.3) Iv{z) = i~vU-iz) =

For — n/2 + S < arg(z) < 37T/2 — S, S > 0, the following assymptotic formula holds
[9]:

(4.4) Iv(z) = (2nz)-l/2(e2 + e-
z+<"+5>-){i + O(\z\-1)}, z -> oo.

Define

(4.5) /

Then for -TT/2 + 8 < arg(z) < 3TT/2 - S, S > 0:

(4.6) /*(z) =

T H E O R E M 4 . 1 . F o r w = 0 , 1 , . . . , * e C, v e R , m + v =£ - 1 , - 2 , . . . , we have

(4 .7) m\Lv
m\Lv
m(-x) = f.p. /

Jo

PROOF. This is equation (4.1) if m + v > - 1 . Therefore, since the left hand side
above is an analytic function of v, it suffices to prove that the right hand side is an
analytic function of v, for m + v ^ - 1 , —2, We will do this by showing that for
all x € C, and m + v # —1, —2,.. . we have

/

o
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[11] Homogeneous solutions of the generalized heat equation 23

where the last sum converges almost uniformly with repect to v. Fix n so that
m + n + v > - 1 . Then by (3.4) with k = m = 0

r ( v + l ) = f.p. /" sve~'ds, v # - l , - 2

so that formally

f.P. [ s-,; We- * . g M r ( t ? . + 1)tR. j f .—*«- *

The exchange of integration and summation is justified, since for fixed v, m,

= O(km), k - • oo.

This completes the proof.

THEOREM 4.2. For all x e C,v e R, a ± \,m = 0,1 m + v ^ -1,-2,
we have

( ax \ 1 r°°
(4-9) L; (r^)= o^arf-p" i 'w-^y^'^y"dy-

PROOF. The case v > - 1 is due to Erdelyi ([2]). For v < - 1 , v # - 2 , - 3 ,
we have, by Theorem 4.1,

f.p.jT i;(xy)Lv
n(ay)e-^+y)yvdy

» v + i) (-ay

)! P'i vW ^ *

! ^ Xh

The last quantity is an entire function of v for each a and x and is equal to
(1 — a)m Vm{ax I\\ —a)) (which is also entire) for v > — 1; therefore equality holds
for all v.
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If v = —k, k — 1, 2 , . . . , then m + v ^ — 1, — 2 , . . . implies m > k. Since

(4.io) /* oo = //;oo

the theorem in this case follows from the theorem for v = k.

By multiplying (1 — a)m onto the left hand side of equation (4.9) and taking the
limit as a —> 1 we obtain

COROLLARY 4.3. For all x e C, m = 0, 1 , . . . , v e R, m + v =£ - 1 , - 2 , . . . , we
have

(4.11)
(—r)m f°°

m\ Jo

Note that for v > — 1, y e R, integrals of the form /0°° I*(zy)F(y)yv dy define
analytic functions of z. Similarly, for v < —1 we have

THEOREM 4.4. Let 0 < a < b, y e R, v < - 1 and v / - 2 , - 3 , Suppose

(4.12) u(z, x) = f.p. [ i;{zy)e-x>F{y)f dy
Jo

is well-defined for x e (a, b) and all z e C. Then u(z, x) is an entire function of z for
each x e (a, b).

PROOF. Fix x. Suppose — (« + 1) < v < — n. We first prove the existence of the
integrals

/»OO

f . p . / e~xyF(y)yv+i dy, 7 = 0 , 1 , . . . .
Jo

The case j = 0 follows from the hypothesis with z = 0.
Let Pn-i(y) = ao + aiy + • • • + an_iy"~l be the polynomial in the definition of

Hadamard's integral for the case j = 0. For j = 1, 2, . . . , « - 1 let fy-iOO =

If 7 > «> then v + j > —1, so that

v+i dy< [ \F(y)e-*> - P^(y)\yv dy + f \ P x { y ) \ f + lyv+1 dy < I \F{y)e-*y - Pn^{y)\yv dy + I \Pn-X(y)\yv+] dy
o Jo Jo

< oo.
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[13] Homogeneous solutions of the generalized heat equation 25

If j = 1, 2 , . . . , n - 1 then - ( « - j + I) < v + j < -(n - j) and

f \F{y)e-xy-Pn^{y)\f+idy
Jo

[ \F(y)e~xy - Pn-i(y)\yvdy + [ \Pn-tiy) - Pn-j-i(y)\yv+i dy < oo.[
Jo

Since also

/»oo

oo

for all j e N and x e (a,b), this proves the claim.
Define

where m is chosen sufficiently large so that both m + y,m + v > —1. Note that

izrm

Define

/»00

v(z,x)= rym(zy)e'xyF(y)yvdy.
Jo

Fix e, M > 0, and suppose \z\ < M. Let x' e (a, b), x' < x. There exists a
constant C independent of z such that

/

OO />

i/;)B(zy)Jrook~*3y<'3'<cizr /
JOf

Jo

Let p be any closed curve in the region |z| < M. By Fubini's Theorem we have

j v(z, x)dz= j (j i;,m(zy) dz\ e-*vF{y)yv dy = 0.
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26 E. Kochneff [14]

Therefore, by Morera's Theorem, v(z, x) is entire in z. Since

m-l ; »oo

u(z, x) = v(z, x) + 22 ~T~( : f-P- / e~xyF{y)yv+i dy

this completes the proof.

We will need size estimates on the Laguerre polynomials for both positive and
negative values of x. For positive values of x we have:

LEMMA 4.5. (i) ([10], p. 241) For any v € Rand c > 0

(4.15) Lv
m(x) = O(mv/2-l/4)ex/2x~v/2-l/\ m - • oo

uniformly in (c, oo).
(ii) ([10], p. 178) For any v e R and w > Owe have

(4.16) Um{x) = OW), m -> oo

uniformly in [0, w], where y = max{v, v/2 — 1/4}.

For negative values of x we have:

L E M M A 4.6. (i) For any 8 > l,v e R and c > Owe have

(4.17) l ^ ( - * ) l = O(mvl2-llA8m)ex'(S-l)x-vl2-x'\ m -> oo

uniformly in (c, oo).

(ii) For any 5 > 1, v e /? and u; > 0 we have

(4.18) \Lv
m(-x)\ = 0(mr8m), m - • oo

uniformly for x € [0, u>], vv/iere y = max{v, v/2 — 1/4}.

PROOF, (i) From (4.6),

(4.19) / » = O(l)s-v/2-1/4e2^s, s €R, s^oo.

Thus, there exists a constant C independent of x > 0 such that
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[15] Homogeneous solutions of the generalized heat equation

Let m + v > — 1. By Theorem 4.1

(4.20)

l

27

m\

v ds

f ' e-
is+x)Sm+V

Jo Jo

v ds

Therefore, since for any S > 1 and all x, s > 0:

(4.21) e-(^-^)2 < ex/(s-\)e-s/s

we have uniformly for x > c, c > 0

\Lv
m(-x)\ < O^x-vt-iW-v [°°e-s/ssm+v/

= ^lx-^
2-^e^s-l)Smr(m + v/2 + 3/4)

m!

v/2-1/4ds

(ii). If v > - 1 / 2 , then (4.19) implies that we have |/v*Cs)| < Ce2^, s > 0 so that
we have uniformly for x e [0, w]

C f°°vJ-x)\ < — / e-^-^2
s
m+v ds

m\ Jo
C f°°

<— e-s/ssm+vds
ml Jo

= 0(mvSm).

If v < —1/2, then - v / 2 — 1/4 > 0, so from (4.20) we have uniformly for
x 6 [0, w]

\Lv
m(-x)\ < —^ I r e-(s+x)sm+vds+ r

< — \r(m + v + 1) + Sm+v/2+3/4r(m + v/2 + 3/4)}
ml l
ml

This concludes the proof.
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THEOREM4.7. Forn e N, — (n + 1) < v < — nandyn = max{v + n, (v + n)/2 —
1/4}suppose

oo

(4.22) ^ | c m | /M y " < oo.
m=0

Let c > 0 and let f be a function for which

(4.23) f \f(x)\e~x/2xv/2-l/4dx < oo
•/c

and for which

(4.24) f.p. f f(x)e~xxvdx
Jo

exists. Then

(4.25)
' OO \ OO /ioo

f.p. / f(x)Lv
m(x)e-xxvdx.

Jo

PROOF. S i n c e d{Lv
m{x))/dx = - L v ^ _ \ ( x ) , w e h a v e for j = 0, 1 , . . . , « :

^ ,„, ., « » J l if^G[O,c]

m=O f m=0

^ ( e / j t ^ , / , 4 o t h e r w i s e .

Therefore by Lemma 2.2 the theorem clearly holds if / is sufficiently nice, for example,
a polynomial. For more general / , since (4.24) exists, there exists a polynomial

Qn-i(x) =ao + aiX-\ h an-Xx"'x

such that

/ \f(x)e-x-Qm-i{x)\xvdx<oo.
Jo

Let &j denote the jth Taylor polynomial of ex centered at 0, and let

n-l

y=o

Then clearly

• i

\f(x) - Pn-\(x)\xvdx < oo.
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By orthogonality, we have for m > n,

f.p. / f(x)L»m(x)e-*xvdx
Jo

OO

/

OO /»O

(f(x) - Pn-X(x))LvJx)e-xxvdx + f.p. /
Jo= [ {f(x)-Pn-X(x)Wm(x)e-xxvdx.

Jo

Furthermore, for c > 0, using Lemma 4.5 we have

T \
m=n

\cm\ / | ( /(JC) - PH.l(x))Lv
m{x)\e-xxvdx

J

P

< OO.

Therefore,

f(x)Vm(x)e-xxvdx

OO /»OO

_ • :

Jo

= f.p. /
Jo

/

°° / ^ \

Pn-i(x) ycmLL(x) I e~xxvdx

/

OO / 00 \

f(x) I Y^cmLv
m(x) 1 e-"xvdx.

\m=n /

This proves the theorem.

One application of Theorem 4.7 is:
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T H E O R E M 4.8. For all v e R,x,s e C:

(4.26) f.p. / i;(ys)i;(yx)e->yvdy = es+*i;(xs).
Jo

PROOF. This is well-known if v > — 1. By multiplying power series we obtain:

,4.27) , - .

Therefore for v ^ — 1, —2, . . . , we have, by Theorem 4.7 and Corollary 4.3,

/•OO

f.p./ i;(ys)i;(yx)e->yvdy
Jo

^—-LvJy))i;(yx)e->/dy

= es+xi;= es+xi;(xs).

For v = —k, k = 1, 2 , . . . , we have

/ r ,(^)r,(^)e-^-^j = (sxf / rk(yS)rk
Jo Jo

COROLLARY 4.9. For all a > 0, x, s, v e R:

/•OO

(4.28) f.p. I I*(ys)I*(yx)e~ayyv dy =
Jo

5. Homogeneous solutions

We consider solutions of equation (1.8) whose boundary values are powers of r.
Following [1], we formally calculate such solutions:

oo tk

(5 1) e'^ - f '-A'r* = fh
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The series above terminates if y = m oiif y = m + I — fi/2, m = 0, 1 , . . . , and
diverges otherwise. The radial heat polynomials R£(r, t) defined in equation (1.9) are
obtained by letting y = m. Letting y = m + 1 — (i/2, m = 0, 1 , . . . , we define for

(5.2) V£(r,t) = e'A*r2r

-2-$)m!

k=Q

= _ 2

It is easy to verify that V£(r, t) are solutions of (1.8) which are homogenous
of degree 2m + 2 - /x. Note V0"(r, 0 = r2"M, V£(r, t) = Oir2'*1), r -+ 0, and
V£(r, 0) = r2-^2"1, m = 0, 1 , . . . , except in the case fi = 2k + 2, m > k.

In the latter case, V£ are identical to R^_k:

(5.3) V£(r, 0 = r-2k(At)mm\H-k\-r2/At)

= (At)m-k{m - k)\L«lk(-r
2/4t)

= K-k(r, t).

We define the associated functions using the Appell transform:

(5.4) V£(r, t) = k,(r, t)V£(r/t, - 1 / 0

The V£(r, t) are homogeneous of degree -2m - 2 and V£(r, f) = O(A-2""), r - • 0,
except for /x = 2k + 2, k = 0, 1 , . . . , m > k, in which case

(5.5) V > , 0 = #U(M).

For (i = l, {V£} and {V̂ 1} coincide with {u2m+i} and {w2m+i} of Rosenbloom-
Widder. As in the case (i = 1, the solutions for (i > 1 are bi-orthogonal:

THEOREM 5.1. Define W^r) = 27r"/V-1. For all t > 0, /x ^ 2 ,4 , . . . , we have

r°°
(5.6) f.p. / V?{r,-t)V£(r,t)Wlt(r)dr=Wm.,,, m,n = 0, 1 , . . .

Jo
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where

2 _

For [i = 2k + 2, k = 0, 1 , . . . , the same result holds provided m, n > k.

PROOF. From (2.3), (3.1), (3.4) and (3.6) we have

f.p. ^ V»(r, -t)V£{r, /)WV(r) dr
Jo

/
Jo
/

Jo
2 - /x/2)<5m,n.

The result for \x = 2k + 2, k = 0, 1 , . . . , also follows from (5.3) and (5.5), see
[1,4].

We obtain a generating function for V^(r, t) from their connection to the Laguerre
polynomials. Since for all v € C ([10]),

uk(x)tk, \t\ < 1,(5.7)

we have

(5.8)
t=0

(1 t)~

\0 =
t=o

By taking the Appell transform of both sides above we have

oo k

(5.9) (47rr)2-^4_M(r, t+Aa) = Y^T^^ ° ' | a |

It is easily verified that

(5.10) TVZ<-r>l) = 2 m ( 2 m

t
(5.11)
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6. Regions of convergence for expansions

A useful tool for estimating the size of coefficients in convergent expansions is:

FEJER'S FORMULA. ([10]) For all v e R andx > 0

(6.1)
Um(x) = 7T-l/2mv/2-l/4e*/2x-»/2-1/4(cos{2(mx)l/2 - (2v + 1)TT/4} + 0m,u(x)/m1/2)

where 0m,v{x) is uniformly bounded for x e [a,b],0 < a < b < oo, as m —> oo.

From Fejer's formula, it follows easily as in [9, Lemma 5.2] that if Yl™=o amLv
m(x)

converges for all x in some interval [a, b], 0 < a < b < oo, then

(6.2) am = o(ml/4-v/2), m ^ oo.

Therefore,

THEOREM 6.1. For t = t0 < 0, r2 e [a, b], 0 < a < b < oo, if

oo

(6.3) ^ a m V ^ ( r , 0

m=0

converges, then

( mo«-i)/4 \

(6.4) am = o[ , m -> oo.

LEMMA 6.2. For any 8 > 1 and r2, r\2 in a fixed interval [a,b],0 < a < b < oo,

we have as m —*• oo:

(6.5) V£(r, t) = O((4tS)mm\), t > 0

(6.6) V£(r, t) = 0((4|f |)"i«!i?!(1-'t)/4), t < 0

(6.7) V£{r),s) = O((4/5)mm!w(1-M)/4), 5 > 0

(6.8) V^(IJ, s) = O((48/\s\)mm\), s < 0.

PROOF. This follows from Lemmas 4.5 and 4.6.

COROLLARY 6.3. 7/(6.3) converges for any t0 < 0, r2 e [a, b], 0 < a < b < oo,
then it also converges for \t\ < \to\, r ^ 0. Furthermore, u(r, t) = Yl™=oamVm(r' 0
defines a solution o/(1.8) in \t\ < \to\ such that r^uir, t) is an entire function ofr2.
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PROOF. This follows from (6.4), (6.5), (6.6) and (5.10).

Note that if (6.3) converges for all \t\ < a for some a > 0, then for any t0 e (0, a)
we have the simpler estimate

m —>• oo.

THEOREM 6.4. If the series

(6.10)
m=0

converges for some t = t0 > 0 and r2 € [a, b], 0 < a < b < oo,

(.(6.11) am=o[ • •» ) , m ^ o o .

PROOF. The series (6.10) converges if and only if 5Z^=0 <3m^2m V̂ 1 (r, — t0) con-
verges. Therefore (6.11) follows from (6.4).

COROLLARY 6.5. If the series (6.10) converges for some t0 > 0, r2 e [a, b], then
it also converges for \t\ > |?0| and defines a solution u(r, t) of (1.8) there such that
r^~2u{r, t) is entire in r2.

1. The double generating function

Define the double generating function:

CM) s.^r.,..) 2 - f)

The convergence of (7.1) follows from Lemma 6.2.

THEOREM 7.1. For all r, r) > 0and\t\ < \s\ we have

^ 2W r **(7 2) S1 (r n-1 ^ - ^ ^ r-(r
2W)/4(.s+t) i* , r

(7.2) AM(r, i,, r , . ) - ffM/2(4(j + t))2_^/2e '«-^ms
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PROOF. This follows from making the substitutions v = (2 — /x)/2, u = —t/s,
x = -r2/4t, andy = r)2/4s into ([8]):

(7.3) (1 - n ) - l c - , » , , . / , , - . , ; . (

Define for s,r,r) ^ 0:

(7.4) KJr, r], s) = lim 5M(r, r)\ t, s)
( > 0 +

m = 0

Note that for fx ^ 2* + 2, /t = 0, 1 , . . . , we have K^r, r), S) = 0((/-J7)2-"),
0. ForM = 2jt + 2,)t = 0, 1 , . . . ,

oo r2m-2k

-k)

Since this coincides with the kernel given in [1, 4], and because of (5.3) and (5.5),
from now on we consider only the case / i e Q , where we define

(7.5) Sl = {n:n> 1, fi^2k + 2, k = 0, 1,...}.

Note that

(7.6) lim r " - % ( r , „.,)

From the asymptotic formula (4.6) we have as rt]/s -*• oo

(7.7)

K ( r , ,,, s) = 1 ( ^ ) ^ / -fr-^/4, + e(3-M);r,/2e-(r+^/4A h + 0( —

Thus for fixed s,

(7.8) *„(/•, IJ, s) = O(l)(r?r)
<1"'i)/2e-(r-'')2/%, rr? - • oo.
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We will also need estimates on the size of the derivatives of K^. Define

(7.9) M*. n) =

Note that

We have for j = 0 ,1 , . . .

(7.11) 9/M*.»?) = (-l)
*=o

so that by equation (4.19) we have

(7.12) 9/M£, n) = C K W d ^ - ^ V ^ - ^ ' 2 , f i, -+ oo.

8. The Huygens property.

DEFINITION 8.1 (The Huygens property). Let/x > 1. Let w(r, t) be a solution of the
generalized heat equation (1.8) in a strip a < t < b,r ^0. We say that u € H*{a, b)
if and only if for a < t' < t < b we have

(8.1) r»-2u{r, t) = f.p. / r""2A:M(r, £, f - *>(£, O ^ ( ? ) d f , r € R.
J

Furthermore, if u (r, t) is a solution of the generalized heat equation in the complement
of such a strip, then we say u(r, t) e H*(b, a) if and only if (8.1) holds whenever
b < t' < t, t' < t < a or both t' > b and t < a.

For r = 0, this is understood to mean that

(8.2)

lim r^~2u(r, t) =
r^o+ - v > " r « 4 -

see equation (7.6).
Note that the existence of the integral in (8.2) implies that, for any c > 0,

(8.3) / e-f2/4('-r/)|M(f, t')\$d% <oo, a < t' <t < b./
Jc
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LEMMA 8.2. Ifu(r, t) e H*(—a, CT) then rM~2«(r, t) is an entire function of r1 for
each t e (a, b).

PROOF. This follows easily from Theorem 4.4.

THEOREM 8.3. For all (j, e £2, m — 0, 1 , . . . , we have

(8.4) V£(r, t) € H*(-oo, oo).

PROOF. The identity

f°° o
r " " 2 F ( r , 0 = f.p. I r ^ L t r . ^ r - O F g . f ' ) ^ ^ ) ^ , t'<t,reR

Jo

for t 7̂  0 follows from letting
2-u t'-t r2 fc2

and >- =
2 ' t' ' 40-?')' 40-O

in Theorem 4.2. The case t = 0 follows from making the same substitutions into the
equality of Corollary 4.3.

COROLLARY 8.4. For m = 0 ,1 , net),

(8.5)
/•CO

r"~2 V ( r , 0 = f.p. / r"~2KJr, £, ?)?2 m + 2"M^($) rf§- ? > 0, r € /?.
Jo

THEOREM 8.5. For every generalized temperature function u(r,t) and every a > 0,
we have u(r, t) e H*{-a, a) if and only if ^u{r, t) e H*(l/a, —1/CT).

PROOF. Assume r ^ 0. If u G H*(—o, a) then for —a < —l/t' < t < a we have

«(r, t) = f.p.
Jo ' '

Therefore, if — a < —l/t' < —l/t < a, or equivalently if 1/CT < ?' < t, t' < t <
— 1/CT or both;' > 1/CT and t < —1/CT, we have

= f.p. / ^ ( r , f, r -
Jo
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For r = 0, note that

^M(r, /) = l imr^a ( - , — ) kJr, t)
r->0 * r-*0 \t t )

and the rest of the proof follows as before.
The proof in the other direction is similar.

THEOREM 8.6. For \x e J2, m = 0, 1 , . . . , we have

(8.6) V£(r,t)eH*(0+,0-).

PROOF. This follows from Theorems 8.3 and 8.5.

THEOREM 8.7. For 0 < t' < t, t' < t < 0 or both t' > 0 and t < 0 we have

(8.7)
/•OO

r"-2Kll(r,r1,t) = f.p. / r^K^r, £, / - t')K^, t), t')W
Jo

PROOF. Let

2-ixe-r
2/Mt-t')e-r,2/4t'

Since

f.p. r r^K^r, $, t - t')K^, r,, t')W^) dt-
Jo

-f2(l/4(r-/')+l/4(') , * / r ^

/

°

we obtain the result from Corollary 4.9.
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9. The Huygens Property of Poisson integrals

THEOREM 9.1. Let 1 < /x <4. Define u(r, t) by

(9.1)
2 / 2 , a < t < b, r e R,

Jo

where we assume that the integral converges absolutely for r e R. Then

(9.2) u(r,t)eH*(a,b).

PROOF. For 1 < \x < 4 we note that K^t-J) is non-negative for non-negative
values of the arguments. Thus if G > 0, then for all r € R, a < t' < t < b, we have

(9.3)
r°°
/ r^K^ni-J -t'M^t'
Jo

= f r»-2K^r,!;j-t')(j K^t-^j' - a\

= I" (r r^2K,(r, f, / - t')K^, n, t1 - a)WM

Jo

where the exchange of integration is justified by Tonelli's theorem. For arbitrary G,
write G as the difference of its positive and negative parts, and the theorem follows
from the case G > 0.

THEOREM 9.2. Suppose -(n + 1) < (2 - /A)/2 < -n, n e N. Define u(r, t) by

(9.4)
/•OO

r"-2«(r, t) = f.p. / /-"-2/^(r, §, r - a)G(?)W^(f) df, a < f < ft, r € .R

w/iere G(£) = | 2"MF( | 2 ) , F(^) /ias n continuous derivatives in some interval [0, c],
c > 0,

Thenu(r,t) e H*{a,b).
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PROOF. Formally, as in Theorem 9.1, the result follows from the interchange of
integration. The justification will follow from Theorem 2.3. We may assume a = 0,
so that 0 < t' < t < b. Using the change of variables r\2 ->• rj, £2 -*• £ we may
rewrite (9.3) as:

(16r'

where

poo / f<x> \

see equation (7.10). Firstly, note that /(£,??) has continuous mixed partials up to
degree n in each variable in [0, c] x [0, c].

Secondly, since by equations (4.21), (7.9), and (7.12) with j = 0,

i , 1L\ =
\4t It/

we have

c Jc

r2

which is finite provided S e (t/t1, b/t').
Next, note that

E (0 («*.
so that since /* is of exponential growth 1/2, given 8 > 1, we have uniformly for
H € [0, c\.

\HfiS, ri)\ = OiDlFi^le-"'461', x] -> oo.

This implies conditions (2.7) and (2.9) of Theorem 2.3.
A similar estimate can be found for |3^/(£, r))\ for r\ e [0, c], £ -> oo. This

completes the proof.
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10. Expansions and the Huygens property

THEOREM 10.1. / /

(10.1) u(r,t) = f^amVZ(r,t)
m=0

converges for \t\ < < r , r ^ 0 , then

(10.2) u(r,t) e H*(-a,o).

PROOF. Formally, we have using Theorem 8.3

(10.3)
/•oo

f.p. / ui^Or^K^^t-t'W
Jo

/•O

= f.p. /
Jo

m^-2C(r , t) = r»-2u(.r, t).
m=0

Let cm = am(4t')mml By equation (6.9), cm = O((t'/t0)
m) for any t0 6 (0, a).

Using the change of variables £2 -> —4?'̂  the sum in (10.3) may be rewritten as

It is easy to verify that for any c > 0 and t' < t < —t', t' e (—a, 0) we have:

Thus the interchange of summation and integration is justified for t' < t < —t' by
Theorem 4.7.

Therefore, Theorems 9.1 and 9.2 imply that u(r, t) e H*(t', -t'), and since t' can
be chosen arbitrarily close to — o this proves the theorem.

LEMMA 10.2. If for o > 0, u G H*(-a, a) then

exists and is independent oft e (—cr, 0).
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PROOF. Let — a < t' < t < 0. Formally, we have

(10.4) ^

f.p. / V^,-t)u(^,t)Wll(,H)dH
Jo

= f.p. j^ V£($, -t) ff.p. jf «(/,, t')K^, IJ, t - t'Wub,) dr\ W

= f.p. I «(i,, f') ('f.p. jf K^, t), t - t')V£G,

= f.p. /
Jo

We now justify the exchange of integration.
By Lemma 8.2, we can write w(£, t) = £2~Mu(|2, t) where u(f, 0 is entire in the

first variable. By the change of variables r)2 -> r\ and ^2 -> ^, the integral in (10.4)
can be written

where

We will justify the interchange of integration using Theorem 2.3. Fix c > 0.
Firstly, note that / (£ , r)) is entire in £ and rj.

Secondly, using equations (4.21) and (7.12) with j = 0 we have

/

OO /»0O

/

f

I
Jc

which is finite provided S - 1 € (-f/(f - t'), (a - f )/(f - t')); see equation (8.3).
Finally, since

given 5 > 1 we have uniformly for r) e [0, c],

oo
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so that conditions (2.6) and (2.8) of Theorem 2.3 are satisfied. A similar estimate
holds for £ G [0, c] and rj ->• oo.

This completes the proof.

THEOREM 10.3. If for a > 0, u e //*(—a, a ) , f/iew u(r,t) has an expansion

u(r,t) = Y^=oamVJn (r> 0 convergingpointwisefor —a < t < a, r ^ 0, WJY/I

1 [°° -
f-p- I V£(%>~OM(£>OWit(§)<^§> —o<t<0.

m + 2 - At/2) Jo

PROOF. From Lemma 10.2 the representation of am is independent of t. Since for

we have formally for —a < t' < 0, t' < t < —t', r ^ 0

(10.5)

m=0

Writing «(£, t) = §2 Mu(£2, t), v(§, 0 entire in f, we may rewrite (10.5) as

(4r')mr(m + 2 - f )

f.p.^^'L^'

By (8.3) with t = - / ' we have

Jc
Thus by Theorem 4.7 and Lemma 6.2 we obtain the result.

THEOREM 10.4. If for a > 0, «(r, t) = Y^^oamV£(ri 0 converges pointwise for
\t\ > a andr ^Othenu(rj) e H*{o,-a).

<oo.
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PROOF. Since

converges in \t\ < 1 /a, Theorem 10.1 implies that srf^u € //*(—1/cr, 1/CT). Thus by
Theorem 8.5 we have u e //*(CT, —a).

THEOREM 10.5. If for a > 0, u(r, t) £ //*(cr, -a) then u(r, t) = E ^ , am V* (r, 0

/»OO

• / V£(£, o«(£,-OW)*
Jo

t < -a.

PROOF. If u e H*(a, -a), then ^u(r, t) e H*(-l/cr, I/a). Thus by Theorem
10.3, .<«(/-, t) = T^=obmV^{r, t), \t\ < I/a, where for -I/a < t < 0

Since V^(?, - 0 = *M($, - o V ^ ( - | / r , 1/0 and .<«(£, r) = ^(f, t)u^/t, - 1 / 0
we have

f.p. /" v>(§,
Jo

(4TT)" f'P" X

so that

t < -a.

Therefore, since u(r, t) = (AnY^u(r, t)/e~37rill/2, we obtain the result.
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