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Abstract

The purpose of this paper is to study an optimal stopping problem with constraints for a
Markov chain with general state space by using the convex analytic approach. The costs
are assumed to be nonnegative. Our model is not assumed to be transient or absorbing
and the stopping time does not necessarily have a finite expectation. As a consequence,
the occupation measure is not necessarily finite, which poses some difficulties in the
analysis of the associated linear program. Under a very weak hypothesis, it is shown that
the linear problem admits an optimal solution, guaranteeing the existence of an optimal
stopping strategy for the optimal stopping problem with constraints.
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1. Introduction

The purpose of this paper is to study an optimal stopping problem with constraints for a
Markov chain with general state space by using the convex analytic approach. This method
has proved to be very effective for solving constrained versions of different optimal control
problems. Without attempting to present an exhaustive literature review, the interested reader
may consult the surveys [15], [18], and the references therein to obtain a rather complete view of
this research field. The key idea is to reformulate the control problem as a primal linear program
(PLP) in a space of measures in which the main object of interest is the occupation measure of the
controlled process. This approach is well developed for discounted Markov decision processes
(MDPs) and for MDPs with long-run average rewards [1], [11], [12], [17]. Work on MDPs with
total undiscounted rewards has received less attention, although investigations on transient and
absorbing models with discrete state space have been treated in a recent book [1]. Of particular
importance is the fact that, for absorbing models, occupation measure corresponding to each
control policy is finite, while for transient models, it takes finite values on singletons. The
convex analytic approach has also been used for investigating many other models, such as
continuous-time Markov chains and more general Markov processes, including diffusions [5],
[9], [19]. More particularly, optimal stopping problems for continuous-time Markov processes
are shown in [5] to be equivalent to infinite-dimensional linear programs over a space of pairs
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of measures under the assumption that the expectation of the stopping time is finite. In [19],
a simple standard continuous-time controlled Markov chain is studied using the notion of an
occupation measure. A similar approach, but for a more general model, is presented in [9],
where it is also proved that the convex analytic approach is dual to that of dynamic programming;
namely these two approaches lead to a dual pair of linear programs.

On the other hand, there exist very few works devoted to the development of the convex
analytic approach for the optimal stopping of a discrete-time Markov chain. To the best of
the authors’ knowledge, [13] and [14] are the only references addressing such a problem. In
these works, the author investigated the case of a finite state space under conditions which
guarantee that, formally speaking, the model is absorbing, and, for each control policy, the
expected value of the stopping time is finite. We may also mention other references [3], [4],
[6], [16], [21], in which single-objective optimal stopping problems are investigated using
the dynamic programming approach. In particular, a linear programming formulation of the
optimal stopping problem for MDPs is approximated using linear function approximation in [3].
In the book [4], the authors studied optimal stopping problems both in the discrete-time and
continuous-time frameworks in the context of economics and finance applications. In [6],
the authors investigated an optimal stopping problem for the class of piecewise-deterministic
Markov processes and provided a numerical approximation scheme. In [16], the solution of the
optimal stopping problem for processes with independent increments is analyzed. It is shown
that the solution is related to the root of the Appell function associated with the maximum of the
process. Finally, nonstationary stopped decision processes are studied in [21] using operator
theory, rather than martingale theory.

Our work appears to be the first attempt to study the constrained version of optimal stopping
of a discrete-time Markov chain with general state space by using the convex analytic approach.
It can be shown that the optimal stopping problem is equivalent to an MDP with a total
undiscounted cost. Therefore, this equivalence result provides a natural way to analyze the
optimal stopping problem by using the convex analytic approach. In the current paper, all
the costs are assumed to be nonnegative and there is at least one policy with a finite (vector)
performance satisfying the required inequality constraints. It is important to point out that
in our case we do not assume that the stopping time has a finite expectation. Moreover, the
equivalent MDP is not necessarily transient or absorbing. As a result, the occupation measure
is not necessarily finite, which renders the PLP very difficult to analyze. Moreover, admissible
solutions to the PLP can be phantom solutions, i.e. they do not correspond to any control
policy. This means that the linear equation on the space of measures, which usually completely
characterizes the space of occupation measures, defines a wider space in our case.

In Section 2 we formulate the optimal stopping problem and show that it is equivalent to
an MDP with total expected cost. In Section 3 we study the PLP related to the unconstrained
optimal stopping problem through the MDP. We show how to construct an optimal policy from
an optimal solution to the PLP. Moreover, an important property is derived showing that, for
any admissible solution to the PLP, there exists a policy for which the associated occupation
measure provides an admissible solution to the PLP with a better value of the cost. This result
will be crucial for the analysis of the constrained problem provided in Section 5. An example
is presented in Section 4 illustrating all the theoretical issues and, in particular, the existence of
phantom solutions to the PLP. Finally, Section 5 is dedicated to the analysis of the constrained
version of the optimal stopping problem. Contrary to the unconstrained case, it is far from
trivial to show that the PLP with constraints admits an optimal solution. The main result of this
section is to prove that this result holds under a very weak condition guaranteeing the existence

https://doi.org/10.1239/jap/1294170511 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1294170511


Multiobjective stopping problem for discrete-time Markov processes 949

of an optimal stopping strategy for the constrained version of the optimal stopping problem.
This is done by introducing a suitable topology on a space of occupation measures. For the
sake of clarity, most of the proofs of our results are presented in Appendix A.

The following notation will be used in this paper: N denotes the set of natural numbers,
R denotes the set of real numbers, R+ denotes the set of nonnegative real numbers, and R̄+
denotes R+ ∪{+∞}. The term measure will always refer to a countably additive, R̄+-valued set
function. Let E be a Borel space and denote by B(E) its associated Borel σ -algebra. The set of
measures defined on (E, B(E)) is denoted by M(E)+. For two measures (γ1, γ2) ∈ M(E)2+,
γ1 ≤ γ2 means that γ1(�) ≤ γ2(�) for any � ∈ B(E). The setwise convergence of a
sequence of measures (γn)n∈N to a measure γ∞ is denoted by limn→∞ γn = γ∞. Let f be
a measurable function defined on E and η ∈ M(E)+. The integral of f with respect to η is
denoted by η(f ) = ∫

E
f (y)η(dy). Recall that if W1 and W2 are positive kernels on E given E,

the product of W1 and W2 is defined by W1W2(B | x) = ∫
E

W2(B | y)W1(dy | x) for any
(x, B) ∈ E × B(E). For a kernel W on E given E, the iterates Wn for n ∈ N ∪{0} are defined
by setting W 0(x, B) = δx(B) for any (x, B) ∈ E × B(E), and, iteratively, Wn = WWn−1.
For any nonnegative measurable function f on E, Wf is the measurable function defined on
E by Wf (x) = ∫

E
f (y)W(dy | x) for any x ∈ E. For a positive measure η on (E, B(E)),

ηW is the measure defined on (E, B(E)) by ηW(B) = ∫
E

W(B | y)η(dy) for any B ∈ B(E).
The restriction on a set B ∈ B(E) of a measure η is denoted by ηB(C) = η(B ∩ C) for any
C ∈ B(E).

2. Problem formulation

In this section we describe the optimal stopping problem using a weak formulation. For
a weak formulation of the optimal stochastic control problem, we refer the reader to [7], [8],
and [10]. We then introduce an auxiliary control problem defined in terms of an MDP and show
that it is equivalent to the optimal stopping problem (see Theorem 2.1). Some basic definitions
related to the occupation measures of the MDP are also presented.

2.1. Optimal stopping

Let E be a Borel space, let S be a stochastic kernel on E given E, and let ν be an arbitrary
probability measure on E. In this subsection we define the optimal stopping problem for a
Markov chain {xt } with state space E generated by the Markov kernel S. The objective is to
stop the process at a random time τ in order to minimize a cost function in the presence of
constraints.

Definition 2.1. The control is defined by

λ = (	, F , Q, {Ft }t∈N, {xt }t∈N, τ )

• (	, F , Q, {Ft }t∈N) is a filtered probability space;

• {xt }t∈N is an E-valued {Ft }t∈N-Markov chain defined on (	, F , Q), where S is its
associated transition kernel and ν is its initial distribution;

• τ is an {Ft }t∈N-stopping time.

The set of previous controls is denoted by 
 and EQ denotes the expectation under the
probability Q.

For the sake of clarity, different notation will be used for the cost functions of the uncon-
strained and constrained versions of the optimal stopping problem.
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The unconstrained case. Let r : E → R+ and R : E → R+ be measurable functions. For a
control λ ∈ 
, the performance criterion is given by

J (λ) = EQ

[τ−1∑
t=0

r(xt ) + 1{τ<∞} R(xτ )

]
.

The unconstrained optimal stopping problem, labeled (P1), we are interested in is to minimize
J (λ) over 
.

The constrained case. Let (rn)n=0,...,N and (Rn)n=0,...,N be R+-valued measurable functions
defined on E, and let (jn)n=0,...,N be numbers in R+. For a control λ ∈ 
, the performance
criterion is given by

J0(λ) = EQ

[τ−1∑
t=0

r0(xt ) + 1{τ<∞} R0(xτ )

]
,

and the constraints are given by

Jn(λ) = EQ

[τ−1∑
t=0

rn(xt ) + 1{τ<∞} Rn(xτ )

]
.

The constrained optimal stopping problem, labeled (P2), we are interested in is to minimize
J0(λ) over 
 subject to Jn(λ) ≤ jn for n ∈ {1, . . . , N}.
2.2. Auxiliary control problem

Following the notation of [11], we introduce the control model (E�, A, L), where E� =
E × {0, �} is the state space, A = {0, 1} is the control set, and L is the stochastic kernel on
E� given E� × A defined by

L(B × C | y, z, a) = S(B | y)[1{z∈C} 1{a=0} + 1{�∈C} 1{a=1}] (2.1)

for all B ∈ B(E), C ⊂ {0, �}, (y, z) ∈ E�, and a ∈ A.
Let � be the set of all randomized past-dependent control policies π = {πt }t∈N, where πt is

a stochastic kernel on the control set A given (E� ×A)t−1 ×E�. A randomized control policy
π = {πt }t∈N ∈ � is said to be stationary if πt = πs for any t ∈ N, where πs is a stochastic
kernel on the control set A given E�. By a slight abuse of notation, if πs is a stochastic kernel
on the control set A given E�, then the corresponding stationary control policy will be denoted
by πs instead of {πt }t∈N with πt = πs for any t ∈ N. Define G = (E × {0, �} × A)∞, and let
G be its associated product σ -algebra. According to [11, Section 2.2], for an arbitrary policy
π ∈ �, there exists a probability measure Pπ

ν on (G, G) such that the coordinate projections
yt , zt , and at from G to the sets E, {0, �}, and A, respectively, satisfy

(i) Pπ
ν [(y0, z0) ∈ B × C] = ν(B) 1{0∈C};

(ii) Pπ
ν [at ∈ D | Gt ] = πt (D | gt );

(iii) Pπ
ν [(yt+1, zt+1) ∈ B × C | Gt ∨ σ {at }] = L(B × C | yt , zt , at ),

for any B ∈ B(E), C ⊂ {0, �}, and D ⊂ A, where Gt = σ {gt } with g0 = (y0, z0) and
gt = (y0, z0, a0, . . . , yt−1, zt−1, at−1, yt , zt ) for t ≥ 1.

A probability on (G, G) is said to be induced by a control policy π ∈ � if it satisfies (i)–(iii),
and it will be denoted by Pπ

ν . In this case, Eπ
ν denotes the expectation under the probability Pπ

ν .
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Introduce the cost functions c : E� × A → R+ and cn : E� × A → R+ for the auxiliary
control problem

c(y, z, a) = [r(y) 1{a=0} +R(y) 1{a=1}] 1{z=0}, (2.2)

cn(y, z, a) = [rn(y) 1{a=0} +Rn(y) 1{a=1}] 1{z=0},

for any (y, z) ∈ E� and a ∈ A. As for the optimal stopping problem, two different MDPs are
introduced. The unconstrained version where the performance criterion to minimize is defined
by

V (π) = Eπ
ν

[ ∞∑
t=0

c(yt , zt , at )

]
(2.3)

and the constrained version where the performance criterion to minimize is defined by

V0(π) = Eπ
ν

[ ∞∑
t=0

c0(yt , zt , at )

]
,

subject to Vn(π) ≤ jn for n ∈ {1, . . . , N} with

Vn(π) = Eπ
ν

[ ∞∑
t=0

cn(yt , zt , at )

]
.

Remark 2.1. Note that our model is clearly not assumed to be transient or absorbing and the
stopping time does not necessarily have a finite expectation. The definitions of the transient
and absorbing Markov control models can be found, for example, in [12, pp. 104–105] and
[1, p. 75].

For a policy π , let us introduce the following expected occupation measures:

µπ
o (�) =

∞∑
t=0

Pπ
ν [(yt , zt , at ) ∈ � × {0} × {0}], (2.4)

µπ
τ (�) =

∞∑
t=0

Pπ
ν [(yt , zt , at ) ∈ � × {0} × {1}], (2.5)

for any � ∈ B(E). In [13] and [14], the measures µπ
o and µπ

τ are called the running and
stopped occupation measures, respectively.

Since c(y, �, a) = 0 for any (y, a) ∈ E × A, the performance criterion for the auxiliary
control problem defined by (2.3) can be rewritten as

V (π) =
∫

E

c(y, 0, 0)µπ
o (dy) +

∫
E

c(y, 0, 1)µπ
τ (dy) = µπ

o (r) + µπ
τ (R). (2.6)

Similarly, we have Vn(π) = µπ
o (rn) + µπ

τ (Rn) for n ∈ {0, . . . , N}.
For notational convenience, the measure µπ

o + µπ
τ will be denoted by µπ . We note that the

probabilistic interpretation of µπ is

µπ(�) =
∞∑
t=0

Pπ
ν [(yt , zt , at ) ∈ � × {0} × A], � ∈ B(E).

The next result shows that the constrained and unconstrained optimal stopping problems are
respectively equivalent to the constrained and unconstrained MDPs previously defined.
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Theorem 2.1. For any λ = (	, F , Q, {Ft }t∈N, {xt }t∈N, τ ) ∈ 
, there exists a policy π ∈ �

such that, for all n ∈ {0, . . . , N},

Vn(π) = Jn(λ), V (π) = J (λ), and µπ
o (E) = EQ[τ ], µπ

τ (E) = Q[τ < ∞].

Conversely, for any π ∈ �, there exists a control λ = (	, F , Q, {Ft }t∈N, {xt }t∈N, τ ) ∈ 


such that, for all n ∈ {0, . . . , N},

Jn(λ) = Vn(π), J (λ) = V (π), and µπ
o (E) = EQ[τ ], µπ

τ (E) = Q[τ < ∞].

Proof. See Appendix A.

3. Convex analytic approach for the unconstrained problem

Having shown that the optimal stopping problem can be reformulated as an MDP, we now
study in this section the PLP related to the unconstrained problem. We show how to construct
an optimal policy from an optimal solution to the PLP; see Proposition 3.1 and Definition 3.2.
An important property is obtained showing that, for any admissible solution to the PLP, there
exists a policy for which the associated occupation measure provides an admissible solution to
the PLP with better value of the cost; see Theorem 3.1. A crucial corollary of this result (see
Corollary 3.2) is then derived for the analysis of the constrained problem provided in Section 5.
By using a dynamic programming argument, it is proved in Theorem 3.2, under a very weak
assumption, that the unconstrained PLP admits an optimal solution, guaranteeing the existence
of an optimal stopping time for the unconstrained problem. Finally, we show that admissible
solutions to the PLP can be phantom solutions, i.e. they do not correspond to any control policy.
However, Theorem 3.3 provides a connection between the optimal phantom solutions of the
PLP and the optimal solutions of the PLP associated to a policy.

The unconstrained PLP is defined as follows: minimize µo(r) + µτ (R) subject to

(µo, µτ ) ∈ M(E)2+, µo + µτ = ν + µoS. (3.1)

A pair of measures (µo, µτ ) on E is called an admissible solution to the unconstrained PLP
if (µo, µτ ) satisfies (3.1). Here (µ∗

o, µ
∗
τ ) is called an optimal solution to the unconstrained

PLP if it is admissible and µ∗
o(r) + µ∗

τ (R) is equal to the infimum of µo(r) + µτ (R) over
(µo, µτ ) ∈ M(E)2+ satisfying (3.1).

Remark 3.1. Note that an admissible pair of measures (µo, µτ ) can take values +∞ and are
not necessarily σ -finite.

Definition 3.1. For any stationary policy πs , the operator T πs : M(E)+ → M(E)+ is defined
by

T πs

η(�) = ν(�) +
∫

E

πs(0 | y, 0)S(� | y)η(dy), � ∈ B(E).

Lemma 3.1. The following assertions hold.

(a) For any policy π ∈ �, the pair of measures (µπ
o , µπ

τ ) is admissible for the PLP.

(b) If πs is a stationary policy then µπs
is the minimal solution to the equation T πs

η = η, η ∈
M(E)+. Moreover, µπs = limt→∞ νt , where νt+1 = T πs

νt for t ≥ 0 and ν0 = ν.
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(c) If πs is a stationary policy then, for any � ∈ B(E),

µπs

o (�) =
∫

�

πs(0 | y, 0)µπs

(dy), µπs

τ (�) =
∫

�

πs(1 | y, 0)µπs

(dy).

Proof. See Appendix A.

Condition 3.1. There exists an admissible pair of measures (µo, µτ ) ∈ M(E)2+ satisfying

µo(r) + µτ (R) < ∞.

Introduce the kernels

IB(C | x) = 1B(x)δx(C) and UB(C | x) =
∑
k≥1

(SIBc)k−1S(C | x),

for x ∈ E and (B, C) ∈ B(E) × B(E). Here UB(C | x) is the average amount of time the
Markov chain spends in the set C up to the time where the chain enters B for the first time.
Define

ER = {x ∈ E : R(x) > 0},
ER

0 = {x ∈ E : R(x) = 0},
Er = {x ∈ E : r(x) > 0},
Er

0 = {x ∈ E : r(x) = 0},
F = {x ∈ Er

0 : UER
0
(Er ∩ ER | x) > 0},

D = ER ∩[F ∪ Er ],
F0 = {x ∈ Er

0 : UER
0
(Er ∩ ER | x) = 0},

Ê = ER ∩ F0.

Remark 3.2. Note that D, Ê, and ER
0 are pairwise disjoint, and that E = D ∪ Ê ∪ ER

0 .

Proposition 3.1. Assume that Condition 3.1 is satisfied for the pair of measures (µo, µτ ). Then
measures µo and µτ are σ -finite on D.

Proof. See Appendix A.

Remark 3.3. From Proposition 3.1, the measures µD
o and µD

τ are σ -finite. Consequently, the
Radon–Nikodym derivative, dµD

τ /d(µD
τ + µD

o ), exists. Clearly, there is no loss of generality
to consider that dµD

τ /d(µD
τ + µD

o ) ∈ [0, 1].
Definition 3.2. Assume that the measures (µo, µτ ) satisfy Condition 3.1. Associated to (µo,

µτ ), introduce the stochastic kernel πs on A given E� defined by

πs(1 | y, 0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dµD
τ

d(µD
τ + µD

o )
(y) if y ∈ D,

1 if y ∈ ER
0 ,

0 if y ∈ Ê,

and πs(0 | y, 0) = 1 − πs(1 | y, 0). Moreover, πs(1 | y, �) = 1 for any y ∈ E.
The stationary control policy πs will be called the stationary control policy induced by

(µo, µτ ).
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Theorem 3.1. Assume that Condition 3.1 is satisfied for the pair of measures (µo, µτ ). Then,
the stationary control policy πs induced by (µo, µτ ) satisfies

V (πs) ≤ µo(r) + µτ (R).

Proof. See Appendix A.

Corollary 3.1. Assume that Condition 3.1 is satisfied, and let (µ∗
o, µ

∗
τ ) be an optimal solution

to the PLP. Then there exists an optimal stationary control policy π∗ for the auxiliary control
problem such that

inf
π∈�

V (π) = V (π∗) = µ∗
o(r) + µ∗

τ (R).

Proof. According to Lemma 3.1(a), for any control policy π , the pair of measures (µπ
o , µπ

τ )

is admissible for the PLP. Consequently, according to (2.6), V (π) = µπ
o (r) + µπ

τ (R) ≥
µ∗

o(r) + µ∗
τ (R). However, combining Theorem 3.1 and the fact that (µ∗

o, µ
∗
τ ) is an optimal

solution to the PLP, there exists a stationary policy π∗ such that V (π∗) = µ∗
o(r) + µ∗

τ (R),
completing the proof.

Remark 3.4. (a) For an optimal solution of the PLP, labelled (µ∗
o, µ

∗
τ ), it can happen that

µ∗
τ (E) > 1 or µ∗

τ (E) = ∞. However, for the optimal policy π∗ induced by (µ∗
o, µ

∗
τ ),

µπ∗
τ = Q[τ < ∞] ≤ 1 (see Theorem 2.1). Of course, in such cases, there also exists another

optimal solution to the PLP given by (µπ∗
o , µπ∗

τ ).

(b) An admissible solution (µo, µτ ) of the PLP is called a phantom solution if there does not
exist any control policy π ∈ � for which µo = µπ

o and µτ = µπ
τ . In the case where the state

space is finite, the PLP has no phantom solution [13], [14].

(c) For an optimal solution (µ∗
o, µ

∗
τ ) to the PLP, an optimal control policy π∗ can be constructed

according to Definition 3.2.

Corollary 3.2. Assume that Condition 3.1 is satisfied for the pair of measures (µo, µτ ). Let
πs be the stationary control policy induced by (µo, µτ ). Suppose that functions r̃ and R̃ are
such that 0 ≤ r̃(y) ≤ r(y) and 0 ≤ R̃(y) ≤ R(y) for all y ∈ E. Let Ṽ (πs) be the performance
criterion corresponding to the cost functions r̃ , R̃, and associated to π . Then

Ṽ (πs) ≤ µo(r̃) + µτ (R̃).

Proof. We can apply exactly the same argument as at the end of the proof of Theorem 3.1,
because R̃(y) = 0 if y ∈ ER

0 and r̃(y) = 0 if y ∈ Ê.

Theorem 3.2. Under Condition 3.1, the unconstrained PLP has an optimal solution leading
to the existence of an optimal stopping time for the unconstrained optimal stopping problem
(P1).

Proof. The optimization problem infπ∈� V (π) associated to the unconstrained MDP has a
solution due to Corollary 9.17.1 of [2]. The dynamic programming approach to optimal stopping
of discrete state space process is presented in [20, Section 7.2.8]. Let π∗(a | y, z) be the
corresponding optimal stationary (in fact, nonrandomized) policy. According to Lemma 3.1(a),
the pair of measures (µπ∗

o , µπ∗
τ ) is admissible for the unconstrained PLP and V (π∗) = µπ∗

o (r)+
µπ∗

τ (R). Let (µo, µτ ) be any admissible pair for the PLP. Without loss of generality, we can
assume that µo(r)+µτ (R) < ∞. Now, according to Theorem 3.1, we have µo(r)+µτ (R) ≥
V (π∗). Now, according to Theorem 2.1, the control λ∗ ∈ 
 associated to the optimal control
policy π∗ ∈ � is optimal for problem (P1), completing the proof.
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Theorem 3.3. Assume that Condition 3.1 is satisfied. Let (µ∗
o, µ

∗
τ ) be an optimal solution

for the PLP, and let π∗ be the stationary control policy induced by (µ∗
o, µ

∗
τ ). Then, for all

� ∈ B(D),
µ∗

o(�) = µπ∗
o (�), µ∗

τ (�) = µπ∗
τ (�).

Proof. See Appendix A.

4. Example

In this section we present an example that illustrates the fact that (optimal) solutions (γo, γτ )

can exist to the PLP for which there does not exist any policy π such that γo = µπ
o and γτ = µπ

τ ,
namely there exist (optimal) phantom solutions to the PLP.

The state space is defined by E = {A1, A2, A3, A4, A5, 1, 2, . . . , 1′, 2′, . . . , 1′′, 2′′, . . .}.
The transition kernel S of the Markov chain is given by

S((i − 1)′ | i′) = 1 for all i′ > 1′,
S((i − 1)′′ | i′′) = 1 for all i′′ > 1,

S(A3 | 1′) = S(1 | A1) = S(A1 | A2) = S(A2 | A3) = S(A5 | A5) = 1,

S(A3 | A4) = S(A4 | A4) = 1
2 ,

S(A1 | 1′′) = S(A2 | 1′′) = 1
2 ,

S(i + 1 | i) = 1 for all i ≥ 1.

All other transition probabilities are 0. The initial distribution ν is defined by ν(A1) = ν(A2) =
ν(A3) = ν(A4) = ν(A5) = 1

5 . The values of loss functions r and R are given in Table 1.
In the proof of Theorem 3.1, it was shown that the state space E of the Markov chain admits

a decomposition into the subsets D, ER
0 , and Ê : E = D ∪ ER

0 ∪ Ê. Let us denote by ER the
set of states x for which R(x) > 0 and by Er the set of states x for which r(x) > 0. Then the
following assertions hold.

• D contains Er ∩ ER and such states y satisfying R(y) > 0 and r(y) = 0 and for which
there exists a path in the set ER of the Markov chain generated by the kernel S starting
from y and reaching the set Er ∩ ER . This gives D = {A1, A2, 1, 2, . . . , 1′′, 2′′, . . .}.

• ER
0 is the set of states x such that R(x) = 0, giving ER

0 = {A3}.
• Ê = (D ∪ ER

0 )c and so Ê = {A4, A5, 1′, 2′ . . .}.
It is very easy to describe the optimal stopping policy given by

• π∗(1 | A3, 0) = 1 because R(A3) = 0;

• π∗(0 | i′, 0) = 1 for all i′ because R(i′) = 1, but starting from i′ the process will reach
state A3 and terminate, leading to the zero total loss;

Table 1.

A1 A2 A3 A4 A5 i ≥ 1 i′ ≥ 1′ i′′ ≥ 1′′

r 0 0 1 0 0
( 1

2

)i−1 0 0

R 3 1 0 1 1 3 1 3

https://doi.org/10.1239/jap/1294170511 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1294170511


956 F. DUFOUR AND A. B. PIUNOVSKIY

r = 0 R =3,
Do not stop

r = 0 R =3,
Do not stop

r = 0 R =3,

Do not stop

r = 0 R =1,

Stop Stop Do not stop Do not stop

Do not stopDo not stopDo not stop

Do not stop

Do not stop

r = 0 R =1,r = 0 R =1,

r = 0 R =1, r = 1 R =0, r = 0 R =1, r = 0 R =1,

r = 1 R =3, r = R =3,1
4r = R =3,1

2

Do not stop

1

22 31

1 2 3

A5A2 A3A1 A4

D

Ê

E
R
0

Figure 1: Example.

• π∗(0 | A4, 0) = 1 because of the same reason;

• π∗(0 | A5, 0) = 1 because R(A5) = 1 > 0, but, never being stopped, the process,
starting from the absorbing state A5, provides no loss;

• π∗(0 | A1, 0) = π∗(0 | i, 0) = 1 for all i ≥ 1 because the total loss on the infinite
horizon in the chain starting from A1 or from i ≥ 1 does not exceed 2, whereas the cost
of stopping equals R = 3;

• π∗(1 | A2, 0) = 1 because the stopping cost R(A2) = 1 is smaller than 2, the total
minimal possible future loss if the process starting from A2 is not stopped;

• π∗(0 | i′′, 0) = 1 for all i′′ because R(i′′) = 3, but starting from i′′, the process will
either terminate at A2 or will never be stopped, leading to a total expected cost of 3

2 .

See Figure 1 for a pictorial representation of the above.
Combining parts (b) and (c) of Lemma 3.1, we can compute the occupation measures µπ∗

o and
µπ∗

τ given in Table 2, which provide an optimal solution to the PLP, according to Theorem 3.1.
It is interesting to note that the PLP has other optimal solutions (γo, γτ ) which do not

correspond to any stopping policy. Indeed, it is easy to check that, for any constant c ∈ R ∪{∞},
the measures (γo, γτ ) defined by γo(i

′) = c and γo(x) = µπ∗
o (x) for x �= i′, i ∈ N, and

γτ (A3) = 2
5 + c and γτ (x) = µπ∗

τ (x) for x �= A3 is admissible for the PLP and optimal since
only the values of γo(i

′) and γτ (A3) have changed and r(i′) = R(A3) = 0. Hence, the objective

https://doi.org/10.1239/jap/1294170511 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1294170511


Multiobjective stopping problem for discrete-time Markov processes 957

Table 2.

x A1 A2 A3 A4 A5 i ≥ 1 i′ ≥ 1′ i′′ ≥ 1′′

µπ∗
o (x) 1

5 0 0 2
5 ∞ 1

5 0 0
µπ∗

τ (x) 0 1
5

2
5 0 0 0 0 0

value does not change and remains minimal. However, for any c > 0, the pair of measures
so defined cannot be associated to any policy π because the states i′ cannot be reached and so
µπ

o (i′) must be 0.

Remark 4.1. (a) At this point, we would like to emphasize the following fact. Let (µo, µτ ) be
a phantom solution to the PLP which is not optimal, and let π be the stationary policy induced
by (µo, µτ ) according to Definition 3.2. Then it may happen that µo �= µπ

o and µτ �= µπ
τ on

D, as illustrated in the previous example. Indeed, we can set µo(i
′′) = c, where c ≥ 0 is an

arbitrary number, with the corresponding modification of measures µo and µπ on D. Then
we necessarily have µo(i

′′) �= µπ
o (i′′), since, by using the same argument as above, the states

i′′ cannot be reached and so µπ
o (i′′) must be 0. However, if (µo, µτ ) is a phantom solution

to the PLP which is optimal then, necessarily, µo = µπ
o and µτ = µπ

τ on D according to
Theorem 3.3.

(b) Since, for all y ∈ E, maxa∈A c(y, 0, a) > 0, we can consider only the absorption in the
subset {(y, �, a), y ∈ E, a ∈ A}, on which c(y, �, a) ≡ 0. But the optimal policy π∗ is not
absorbing because, for τ = min{t ∈ N : at = 1}, we have Eπ∗

ν [τ ] = ∞; so the expected time to
absorption Eπ∗

ν [τ + 1] = ∞. It is sufficient to look at the initial state A1 with ν(A1) = 1
5 . The

optimal policy π∗ is also not transient because
∑∞

t=0 Pπ∗
ν [yt = A5, τ > t] = ∞. Therefore,

the auxiliary control problem under consideration is neither absorbing nor transient.

5. Constrained version of the optimal stopping problem

In this section, the constrained version of the optimal stopping problem is investigated
through the related constrained version of the PLP. By introducing a suitable topology on a set
of occupation measures, an existence result (see Theorem 5.1) for an optimal solution of the
PLP with constraints is obtained, guaranteeing the existence of an optimal stopping time for
the constrained optimal stopping problem. This result holds under a very weak assumption
(see Condition 5.1). It must be pointed out that the dynamic programming argument used to
prove the existence result for the unconstrained case cannot be used here in the presence of
constraints.

The constrained version of the PLP (3.1) is defined as follows: minimize µo(r0) + µτ (R0)

subject to
(µo, µτ ) ∈ M(E)2+, µo + µτ = ν + µoS,

µo(rn) + µτ (Rn) ≤ jn for n ∈ {1, . . . , N}. (5.1)

For notational convenience, let gt : G → E� × A be defined by

gt (ω) = (yt (ω), zt (ω), at (ω)),

and define

h0(ω) = (y0(ω), z0(ω)) and ht (ω) = (g0(ω), . . . , gt−1(ω), yt (ω), zt (ω))

for ω ∈ G and t ≥ 1. Denote by P the set of probability measures on (G, G) and by P π the
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set of probability measures on (G, G) induced by control policies π ∈ �. Now introduce Dπ

to be the set of occupation measures (µπ
o , µπ

τ ) ∈ M(E)2+, where µπ
o and µπ

τ are respectively
defined by (2.4) and (2.5) for a policy π ∈ �. Let B be the mapping B : P π → Dπ such that
B(Pπ

ν ) = (µπ
o , µπ

τ ).
In order to define a topology on P , we need to introduce the set of functions Wt as a subset

of bounded measurable functions f : (E� × A)t × E� → R such that, for any (e0, . . . , et ) ∈
(E�)t+1, the function f (e0, ., e1, ., e2, . . . , et−1, ., et ) defined on At is continuous.

The ws∞-topology on P is defined as the coarsest topology rendering the mappings P →∫
G

f (ht (ω)) dP(ω) continuous, where f ∈ Wt and t ≥ 0. For more details on the ws∞-
topology, we refer the reader to [22]. The set P π is endowed by the induced topology. Note
that items (1) and (2) of Conditions (S) of [22] are satisfied. Therefore, P π is compact (see
Theorem 6.6 of [22]).

The topology on Dπ is defined as the strongest topology for which the mapping B is
continuous (the final topology on Dπ associated to the mapping B).

Lemma 5.1. For any nonnegative measurable functions r and R, and any K ∈ R+, define Dπ
K

by
Dπ

K = {(µπ
o , µπ

τ ) ∈ Dπ : µπ
o (r) + µπ

τ (R) ≤ K}.
The set Dπ

K is compact and the mapping D : Dπ → R+ defined by D(µπ
o , µπ

τ ) = µπ
o (r) +

µπτ(R) is lower semi-continuous.

Proof. Let us show that the set P π
K = {Pπ

ν ∈ P π : ∑∞
t=0

∫
G

c(gt (ω)) dPπ
ν (ω) ≤ K} is com-

pact in the ws∞-topology (where c is given by (2.2)).
Clearly, by definition, the mappings An : P π → R+ defined by

An(P
π
ν ) =

n∑
t=0

∫
G

c(gt (ω)) dPπ
ν (ω)

are continuous and so the mapping A : P π → R+ defined by

A(Pπ
ν ) =

∞∑
t=0

∫
G

c(gt (ω)) dPπ
ν (ω)

is lower semi-continuous because c ≥ 0. However, the set P π
K = A

−1([0, K]) and so it is
closed and compact. Since B(P π

K ) = Dπ
K , the set Dπ

K is compact as a continuous image of a
compact set, completing the first part of the proof.

Now, note that D ◦ B = A. Consequently, for any M ∈ R+, the set B
−1(D−1((M, ∞)))

is an open set of P π and so D
−1((M, ∞)) is open in the topology of Dπ , showing that D is

lower semi-continuous and completing the last part of the proof.

Condition 5.1. There exist a control policy π̄ and a constant j0 < ∞ such that

V0(π̄) = j0 and Vn(π̄) ≤ jn for n ∈ {1, . . . , N}.
Theorem 5.1. Under Condition 5.1, the constrained PLP has an optimal solution leading to
the existence of an optimal control for the constrained optimal stopping problem (P2).

Proof. Let π̄ be control policy, and let j0 be the constant satisfying Condition 5.1. Introduce
the sets

Dπ
jn

= {(µπ
o , µπ

τ ) ∈ Dπ : µπ
o (rn) + µπ

τ (Rn) ≤ jn}.
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Then (µπ̄
o , µπ̄

τ ) ∈ ⋂N
n=0 Dπ

jn
, and so according to Lemma 5.1,

⋂N
n=0 Dπ

jn
is a nonempty compact

set and the mapping D0 : Dπ → R+ given by D0(µ
π
o , µπ

τ ) = µπ
o (r0)+µπ

τ (R0) is lower semi-
continuous. Consequently, there exists π∗ ∈ � such that (µπ∗

o , µπ∗
τ ) ∈ ⋂N

n=1 Dπ
jn

and

inf
(µo,µτ )∈⋂N

n=0 Dπ
jn

{µo(r0) + µτ (R0)} = µπ∗
o (r0) + µπ∗

τ (R0).

However, according to Corollary 3.2 with r = ∑N
n=0 rn and R = ∑N

n=0 Rn, it follows that, for
any (µo, µτ ) ∈ M(E)2+ satisfying (5.1) and µo(r0) + µτ (R0) ≤ j0, there exists a stationary
policy πs ∈ � such that µπs

o (rn) + µπs

τ (Rn) ≤ µo(rn) + µτ (Rn) for all n ∈ {0, . . . , N}.
Therefore, the infimum of µo(r0) + µτ (R0) over (µo, µτ ) ∈ M(E)2+ satisfying (5.1) is equal
to

inf
(µo,µτ )∈⋂N

n=0 Dπ
jn

{µo(r0) + µτ (R0)}.

Now, according to Theorem 2.1, the control λ∗ ∈ 
 associated to the optimal control policy
π∗ ∈ � is optimal for problem (P2), completing the proof.

Appendix A

A.1. Proof of Theorem 2.1

Consider λ ∈ 
, where λ = (	, F , Q, {Ft }t∈N, {xt }t∈N, τ ). On the probability space
(	, F , Q), let us introduce the random processes {ut }t∈N and {dt }t∈N defined by

ut = 1{τ≤t}, dt = ut−1� for t ≥ 1 and d0 = 0.

Since τ is an {Ft }t∈N-stopping time, then clearly {ut }t∈N is {Ft }t∈N-adapted and {dt }t∈N is
{Ft }t∈N-predictable. Define Ht = σ {x0, d0, u0, . . . , xt−1, dt−1, ut−1, xt , dt } for t ≥ 1 and
H0 = σ {x0, d0}. Observe that Ht ∨ σ {ut } ⊂ Ft for all t ∈ N. For any B ∈ B(E) and
C ⊂ {0, �}, we have

Q[(xt+1, dt+1) ∈ B × C | Ht ∨ σ {ut }] = EQ[EQ[1{xt+1∈B} | Ft ] 1{dt+1∈C} | Ht ∨ σ {ut }]
= S(B | xt )[1{0∈C} 1{ut=0} + 1{�∈C} 1{ut=1}].

Moreover, {ut = 0} ⊂ {ut−1 = 0} = {dt = 0}, and so

Q[(xt+1, dt+1) ∈ B × C | Ht ∨ σ {ut }] = L(B × C | xt , dt , ut ).

Now introduce the sequence π = {πt }t∈N of stochastic kernels defined on the control set A

given (E� × A)t−1 × E� by

πt (D | ht ) = E[1{1∈D} ut + 1{0∈D}(1 − ut ) | Ht ]
for any D ⊂ A, where ht = (x0, d0, u0, . . . , xt−1, dt−1, ut−1, xt , dt ).

By the uniqueness property in the theorem of Ionescu-Tulcea (see Appendix C of [11,
Section 2.2]), we obtain

Q[(x0, d0, u0, . . . , xt , dt , ut , . . .) ∈ H ] = Pπ
ν [y0, z0, a0, . . . , yt , zt , at , . . .) ∈ H ]

for any H ∈ G, where the processes {yt }t∈N, {zt }t∈N, and {at }t∈N were introduced in Section 2.2.
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Note that the previous construction of the policy π does not depend on the cost functions.
Observe that {t < τ } = {ut = 0} = {ut = 0} ∩{dt = 0} and {t = τ } = {ut = 1} ∩{dt = 0},
and so the cost is given by

J (λ) = EQ

[ ∞∑
t=0

r(xt ) 1{t<τ } +R(xt ) 1{t=τ }
]

= EQ

[ ∞∑
t=0

c(xt , dt , ut )

]
;

hence,

J (λ) = EQ

[ ∞∑
t=0

c(xt , dt , ut )

]
= Eπ

ν

[ ∞∑
t=0

c(yt , zt , at )

]
= V (π).

Similarly, Jn(λ) = Vn(π) for all n ∈ {0, . . . , N}, completing the first part of the proof.
Conversely, consider a policy π and the processes {yt }t∈N, {zt }t∈N, and {at }t∈N as defined

in Section 2.2 on the probability space (G, G, Pπ
ν ). Define Ft = σ {y0, a0, . . . , yt , at }. Clearly,

the process {yt }t∈N defined on (G, G, Pπ
ν ) is an E-valued {Ft }t∈N-Markov chain with transition

kernel S and initial distribution ν. Now define τ = inf{t ∈ N : at = 1}, and if this set is empty
then set τ = ∞. Then τ is an {Ft }t∈N-stopping time. Observe that {t < τ } = {at = 0} ∩{zt =
0} and {t = τ } = {at = 1} ∩{zt = 0}. Consequently, we have

V (π) = Eπ
ν

[ ∞∑
t=0

c(yt , zt , at )

]

= Eπ
ν

[ ∞∑
t=0

(r(yt ) 1{at=0} +R(yt ) 1{at=1}) 1{zt=0}
]

= Eπ
ν

[τ−1∑
t=0

r(yt ) + 1{τ<∞} R(yτ )

]
.

Using similar arguments, we have Vn(π) = Jn(λ) for all n ∈ {0, . . . , N}. Therefore, the
control λ defined by (G, G, Pπ

ν , {Ft }t∈N, {yt }t∈N, τ ) belongs to 
, and satisfies J (λ) = V (π)

and Jn(λ) = Vn(π) for all n ∈ {0, . . . , N}.
In both cases, it is easy to check that τ = inf{t ∈ N : at = 1} = ∑∞

t=0 1E×{0}×{0}(yt , zt , at )

and 1{τ<∞} = ∑∞
t=0 1E×{0}×{1}(yt , zt , at ), implying that µπ

o (E) = EQ[τ ] and µπ
τ (E) =

Q[τ < ∞]. This completes the proof.

A.2. Proof of Lemma 3.1

(a) Clearly, (µπ
o , µπ

τ ) ∈ M(E)2+. According to Lemma 9.4.3(c) of [12], we obtain, for
� ∈ B(E),

ρ(� × {0} × A) = ν(�) +
∫

E�×A

L(� × {0} × A | y, z, a)ρ(d(y, z, a)),

where the measure ρ is defined by ρ(� × C × D) := ∑∞
t=0 Pπ

ν [(yt , zt , at ) ∈ � × C × D] for
� ∈ B(E), C ⊂ {0, �}, and D ⊂ {0, 1}. However, from the definitions of µπ

o and µπ
τ (see

(2.4) and (2.5)), we have ρ(� × {0} × A) = µπ
o (�) + µπ

τ (�). Now, using the definition of the
stochastic kernel L (see (2.1)), we have

∫
E�×A

L(� × {0} × A | y, z, a)ρ(d(y, z, a)) = µπ
o S,

completing the proof of part (a).
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(b) Let πs be a stationary policy. Define

νt (�) =
t∑

i=0

ν̂i (�), (A.1)

where ν̂i (�) = Pπs

ν [yi ∈ �, zi = 0] for � ∈ B(E). Let us show by induction that νt+1 =
T πs

νt . For t = 0, we have ν1(�) = ν0(�) + Pπs

ν [y1 ∈ �, z1 = 0]. By definition, ν0 = ν and

ν̂1(�) = Eπs

ν [L(� × {0} | y0, z0)]
= Eπs

ν [S(� | y0) 1{z0=0} 1{a0=0}]
=

∫
E

S(� | y)πs(0 | y, 0)ν(dy),

showing that ν1 = T πs
ν0. Now, assume that νt = T πs

νt−1 for t ≥ 1. Then, using similar
arguments, it is easy to obtain

ν̂t+1(�) = Eπs

ν [S(� | yt ) 1{zt=0} 1{at=0}] =
∫

E

S(� | y)πs(0 | y, 0)ν̂t (dy).

However,

νt+1(�) = νt (�) + ν̂t (�) = T πs

νt−1 +
∫

E

S(� | y)πs(0 | y, 0)ν̂t (dy),

which, upon using the definition of T πs
, completes the induction step.

The operator T πs
is monotone: if η1 ≥ η2 then T πs

η1 ≥ T πs
η2. Consequently, we have

νt+1 ≥ νt for t ≥ 0, and so the limit of νt as t tends to ∞ exists, limt→∞ νt = ν∞, implying
that ν∞ = T πs

ν∞. However, from the definition of νt , it follows that ν∞ = µπs
, yielding

T πs
µπs = µπs

.
If µ̃ ≥ 0 is another measure on E satisfying µ̃ = T πs

µ̃ then, by the definition of T πs
, we

have ν ≤ µ̃. Since the operator T πs
is monotone, it is easy to show by induction that νt ≤ µ̃,

implying that ν∞ = µπs ≤ µ̃, completing the proof of part (b).
(c) Define νo,t (�) = ∑t

i=0 Pπs

ν [yi ∈ �, zi = 0, ai = 0] for � ∈ B(E). Similarly to the
proof of part (b), it can be shown by induction that νo,t (�) = ∫

�
πs(0 | y, 0)νt (dy), where νt is

defined in (A.1). Moreover, note that limt→∞ νo,t = µπs

o , and, from part (b), limt→∞ νt = µπs
.

Consequently, µπs

o (�) = ∫
�

πs(0 | y, 0)µπs
(dy). The second equality follows by similar

arguments.

A.3. Proof of Proposition 3.1

The proof of this result is very involved and so it is divided into several preliminary results.

Lemma A.1. For y ∈ Ê, S(D | y) = 0.

Proof. Let y ∈ Ê. Note that S(D | y) = S(ER ∩ F | y) + S(ER ∩ Er | y). Clearly, we
have S(ER ∩ Er | y) = 0 since S(ER ∩ Er | y) ≤ UER

0
(Er ∩ ER | y). We will show by

contradiction that S(ER ∩ F | y) = 0. Assume that S(ER ∩ F | y) > 0. Consequently, it
follows from the definition of F that∫

ER ∩ Er
0

UER
0
(Er ∩ ER | z)S(dz | y) =

∫
ER ∩ Er

0

UER
0
(Er ∩ ER | z)SIER(dz | y) > 0,
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implying that
∑

n≥1(SIER)nS(Er ∩ ER | y) > 0. It follows that UER
0
(x, Er ∩ ER) > 0, lead-

ing to a contradiction. This gives S(ER ∩ F | y) = 0, completing the proof.

Lemma A.2. Let η be a positive measure on (E, B(E)), and let W be a positive kernel on E

given E. Assume that ηW is σ -finite on B ∈ B(E). Then η is σ -finite on

{y ∈ E : W(B | y) > 0}.
Proof. There exists a sequence of pairwise disjoint sets (Bj )j∈N such that ηW(Bj ) < ∞

and B = ⋃
j≥1 Bj . Define, for j ∈ N and p ∈ N, Bp

j = {y ∈ E : W(Bj | y) > 1/p}. Clearly,
we have

{y ∈ E : W(B | y) > 0} =
⋃
j≥1

⋃
p≥1

B
p
j ,

and

η(B
p
j ) ≤

∫
B

p
j

pW(Bj | y)η(dy) ≤ pηW(Bj ) < ∞,

completing the proof.

In what follows, (µo, µτ ) is a fixed pair of measures satisfying Condition 3.1.

Proof of Proposition 3.1. Clearly, µτ is σ -finite on D ⊂ ER . Moreover, µo is σ -finite on
Er ∩ ER . Let us show that µo is σ -finite on ER ∩ F to obtain the result. Define Bk = {x ∈
ER : S(IERS)k−1(Er ∩ ER | x) > 0} for k ∈ N. Note that ER ∩ F ⊂ ⋃

k≥1 Bk . Let us show
by induction that the measure µo is σ -finite on Bk for k ∈ N, and the result will follow.

The measure µoS is σ -finite on Er ∩ ER since µoS + ν = µo + µτ and µo + µτ is
σ -finite on Er ∩ ER . Consequently, by applying Lemma A.2 we find that µo is σ -finite on B1.
Assume that µo is σ -finite on Bk for k ∈ N. Since Bk ⊂ ER , µτ is σ -finite on Bk and we
find that µoS is σ -finite on Bk . Again, applying Lemma A.2, we find that µo is σ -finite on
{x ∈ E : S(Bk | x) > 0}. However, note that Bk+1 ⊂ {x ∈ E : S(Bk | x) > 0}, which
completes the induction.

A.4. Proof of Theorem 3.1

In order to prove this result, we first need the following technical lemma.

Lemma A.3. For any � ∈ B(D), the following inequalities hold:∫
�

πs(0 | y, 0)µπs

(dy) ≤ µo(�), (A.2)∫
�

πs(1 | y, 0)µπs

(dy) ≤ µτ (�). (A.3)

Proof. Note that, by the definition of πs , for any � ∈ B(D), we have∫
�

πs(0 | y, 0)(µo + µτ )(dy) = µo(�). (A.4)

According to Lemma 3.1, µπs = limt→∞ νt , where νt+1 = T πs
νt for t ≥ 0 and ν0 = ν. Let

us show by induction that, for all t ≥ 0,∫
�

πs(0 | y, 0)νt (dy) ≤ µo(�). (A.5)
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Since (µo, µτ ) satisfies (3.1), it follows that∫
�

πs(0 | y, 0)ν0(dy) ≤
∫

�

πs(0 | y, 0)(µo + µτ )(dy) = µo(�).

Now assume that, for any � ∈ B(D),
∫
�

πs(0 | y, 0)νt (dy) ≤ µo(�) for t ≥ 1. From
Lemma A.1 and bearing in mind that πs(0 | y, 0) = 0 for any y ∈ ER

0 , we obtain

νt+1(�) = ν(�) +
∫

D

S(� | y)πs(0 | y, 0)νt (dy).

Therefore, νt+1(�) ≤ ν(�) + ∫
D

S(� | y)µo(dy) ≤ µo(�) + µτ (�). Using (A.4), we com-
plete the induction. Now by taking the limit in (A.5) we obtain (A.2). Similar arguments can
be used to show (A.3).

Proof of Theorem 3.1. Combining Lemma 3.1(c) and (2.6), it follows that

V (πs) =
∫

E

r(y)πs(0 | y, 0)µπs

(dy) +
∫

E

R(y)πs(1 | y, 0)µπs

(dy).

However, from the definition of πs and the set D, we obtain

V (πs) =
∫

D

r(y)πs(0 | y, 0)µπs

(dy) +
∫

D

R(y)πs(1 | y, 0)µπs

(dy).

From the previous lemma, we obtain

V (πs) ≤
∫

D

r(y)µo(dy) +
∫

D

R(y)µτ (dy).

A.5. Proof of Theorem 3.3

The proof of this result is divided into several steps.

Lemma A.4. For all � ∈ B(D), µ∗
τ (�) = µπ∗

τ (�) and µ∗
o(�) ≤ µπ∗

o (�). Moreover,
µ∗

o(�) = µπ∗
o (�) for all � ∈ B(Er ∩ ER).

Proof. Clearly, combining Lemma A.3 and Lemma 3.1(c), we have, for all � ∈ B(D),

µπ∗
τ (�) ≤ µ∗

τ (�) and µπ∗
o (�) ≤ µ∗

o(�).

Now assume that there exists � ∈ B(D) such that µπ∗
τ (�) < µ∗

τ (�). Then µπ∗
τ (R) < µ∗

τ (R)

since R(x) > 0 for all x ∈ D. According to Corollary 3.2 with R̃(x) = 0 and r̃(x) = r(x), we
have µπ∗

o (r) ≤ µ∗
o(r). This shows that µπ∗

o (r) + µπ∗
τ (R) < µ∗

o(r) + µ∗
τ (R), in contradiction

with the fact that (µ∗
o, µ

∗
τ ) is an optimal solution for the PLP. Consequently, µπ∗

τ (�) = µ∗
τ (�)

for all � ∈ B(D). Similarly, it can be shown that µ∗
o(�) = µπ∗

o (�) for all � ∈ B(Er ∩ ER).

Unfortunately, it cannot be shown directly that µ∗
o(�) = µπ∗

o (�) for all � ∈ B(D) as for
µ∗

τ and µπ∗
τ , mainly because it cannot be claimed that r(x) > 0 for all x ∈ D. The rest of the

proof is devoted to showing that, for all � ∈ B(F ∩ ER), µ∗
o(�) = µπ∗

o (�).

Lemma A.5. For all � ∈ B(Er ∩ ER) and all k ≥ 0,

µπ∗
o S(IDS)k(�) = µπ∗

o (IDS)k+1(�).
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Proof. By definition, π∗(0 | y, 0) = 0 for all y ∈ ER
0 . Therefore, using Lemma 3.1(c), we

have µπ∗
o (ER

0 ) = 0, implying that, for all � ∈ B(E) and k ≥ 0,

µπ∗
o S(IDS)k(�) =

∫
D ∪ Ê

S(IDS)k(� | x)µπ∗
o (dx). (A.6)

Note that, since D ⊂ ER , S(IDS)k(� | x) ≤ S(IERS)k(� | x) for all x ∈ E and � ∈
B(Er ∩ ER). Now by the definitions of Ê and F0, S(IERS)k(� | x) = 0 for all x ∈ Ê and
� ∈ B(Er ∩ ER), and so, using (A.6),

µπ∗
o S(IDS)k(�) =

∫
D

S(IDS)k(� | x)µπ∗
o (dx)

for all � ∈ B(Er ∩ ER), completing the proof.

Lemma A.6. The measures µπ∗
o (IDS)k are σ -finite on Er ∩ ER and

µπ∗
o (IDS)k(�) = µ∗

o(IDS)k(�)

for all k ≥ 0 and � ∈ B(Er ∩ ER).

Proof. Let us prove this result by induction. Clearly, the result holds for k = 0 because of
Proposition 3.1 and Lemma A.4, and the fact that Er ∩ ER ⊂ D. Now assume that the result
holds for k ≥ 0. Consider any � ∈ B(Er ∩ ER). Then, using the fact that (µπ∗

o , µπ∗
τ ) is an

admissible solution for the PLP, we obtain

µπ∗
o (IDS)k(�) + µπ∗

τ (IDS)k(�) = ν(IDS)k(�) + µπ∗
o S(IDS)k(�). (A.7)

According to Theorem 2.1, the measure µπ∗
τ is finite. Recalling that the measure ν is finite and

using the induction hypothesis, we find that the measure µπ∗
o S(IDS)k is σ -finite on Er ∩ ER .

However, µ∗
oID ≤ µ∗

o, and so we find that the measure µπ∗
o (IDS)k+1 is σ -finite on Er ∩ ER .

Now, using (A.7) and Lemma A.5, we have

µπ∗
o (IDS)k(�) + µπ∗

τ (IDS)k(�) ≤ ν(IDS)k(�) + µπ∗
o (IDS)k+1(�). (A.8)

However, Lemma A.4 shows that µπ∗
o ID ≤ µ∗

oID , implying that

ν(IDS)k(�) + µπ∗
o (IDS)k+1(�) ≤ ν(IDS)k(�) + µ∗

o(IDS)k+1(�). (A.9)

Moreover, combining the facts that µ∗
oID ≤ µ∗

o and the pair of measures (µ∗
o, µ

∗
τ ) is an

admissible solution for the PLP, we have

ν(IDS)k(�) + µ∗
o(IDS)k+1(�) ≤ ν(IDS)k(�) + µ∗

oS(IDS)k(�)

= µ∗
o(IDS)k(�) + µ∗

τ (IDS)k(�). (A.10)

According to the induction hypothesis and Lemma A.4, it follows that

µ∗
o(IDS)k(�) + µ∗

τ (IDS)k(�) = µπ∗
o (IDS)k(�) + µπ∗

τ (IDS)k(�). (A.11)

Combining equations (A.8)– (A.11), we obtain

µπ∗
o (IDS)k(�) + µπ∗

τ (IDS)k(�) ≤ ν(IDS)k(�) + µπ∗
o (IDS)k+1(�)

≤ ν(IDS)k(�) + µ∗
o(IDS)k+1(�)

≤ µπ∗
o (IDS)k(�) + µπ∗

τ (IDS)k(�).
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Therefore, since the left- and right-hand sides of the above inequalities are equal, we have

ν(IDS)k(�) + µπ∗
o (IDS)k+1(�) = ν(IDS)k(�) + µ∗

o(IDS)k+1(�),

and since the measure ν is finite, the result follows.

Lemma A.7. For all x ∈ D,

UDc(Er ∩ ER | x) = UER
0
(Er ∩ ER | x).

Proof. In order to obtain the result, let us show that

S(IDS)k(Er ∩ ER | x) = S(IERS)k(Er ∩ ER | x)

for all x ∈ D and k ≥ 0 by induction. This is clearly true for k = 0. Now assume that the
result holds for k ≥ 0. Consider x ∈ D. Then,

S(IDS)k+1(Er ∩ ER | x) = SIDS(IDS)k(Er ∩ ER | x)

= SIDS(IERS)k(Er ∩ ER | x).

Owing to Lemma A.1, we have S(IERS)k(Er ∩ ER | y) = 0 for all y ∈ Ê. Therefore,
I
Ê
S(IERS)k(Er ∩ ER | x) = 0, and so

SIDS(IERS)k(Er ∩ ER | x) = S(ID + I
Ê
)S(IERS)k(Er ∩ ER | x).

However, IER = ID + I
Ê

, completing the induction.

Lemma A.8. For all � ∈ B(F ∩ ER), µ∗
o(�) = µπ∗

o (�).

Proof. According to Lemma A.6, the measure µπ∗
o IDUDc is σ -finite on Er ∩ ER . Conse-

quently, there exists an increasing sequence of sets (�i)i∈N such that limi→∞ �i = Er ∩ ER

with �i ⊂ Er ∩ ER and µπ∗
o IDUDc(�i) < ∞ for i ≥ 1. Let us introduce the sequence of sets

(Di)i∈N defined by Di = {x ∈ D : UDc(�i | x) > 0}. Using Lemma A.6, we have, for all
i ≥ 1,

µπ∗
o IDUDc(�i) = µ∗

oIDUDc(�i). (A.12)

Therefore, for all i ≥ 1 and � ∈ B(Di), we obtain

µπ∗
o (�) = µ∗

o(�). (A.13)

Indeed, assume the contrary, namely that there exists a set � ∈ B(Di) such that µπ∗
o (�) <

µ∗
o(�). Using Lemma A.4 and the fact that IDUDc(�i | x) > 0 for all x ∈ �, we have

µπ∗
o IDUDc(�i) < µ∗

oIDUDc(�i), leading to a contradiction with (A.12). This proves (A.13).
According to Lemma A.7,

Di ↑ {x ∈ D : UDc(Er ∩ ER | x) > 0} = {x ∈ D : UER
0
(Er ∩ ER | x) > 0}.

However, note that F ∩ ER ⊂ {x ∈ D : UER
0
(Er ∩ ER | x) > 0}, completing the proof.

Proof of Theorem 3.3. The result is a straightforward consequence of Lemmas A.4 and A.8,
and the fact that D = (Er ∩ ER) ∪(F ∩ ER).
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