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The Spherical Functions Related to the
Root System B2

P. Sawyer

Abstract. In this paper, we give an integral formula for the eigenfunctions of the ring of differential

operators related to the root system B2.

1 Introduction

In [13], Jiro Sekiguchi gave an Euler type formula for the spherical functions Φλ,m of
the symmetric space SO0(2,m + 2)/ SO(2) × SO(m + 2). He used that formula to

propose a generalization of the functions Φλ,m for other values of the parameter m.
He conjectured that these generalized spherical functions would satisfy a system of
differential operators related to the root system B2.

These generalized spherical functions are connected to the work of G. J. Heckman

and E. M. Opdam in [2], [3], [7], [8] and to the work of R. J. Beerends in [1]. We did
a similar investigation for the root system An−1 in [11].

In [12], we found a new expression for the spherical functions of the space
SO0(p, q)/ SO(p)× SO(q), q ≥ p. Based on that expression, we will propose in Sec-

tion 2 a generalization of these spherical functions for p = 2 and for q with <q > 3.
We will show that these generalized spherical functions satisfy a system of differential
operators related to the root system B2.

In Section 3, we will show that our definition and that of Sekiguchi are equivalent

thus proving his conjecture. This gives an added relevance to the results of [13] whose
interest relied on the validity of his conjecture.

2 Spherical Functions on B2

We are concerned with the symmetric space G/K = SO0(p, q)/ SO(p)×SO(q) where
q ≥ p.

If λ ∈ a
∗, the space of complex-valued functionals on the Cartan subalgebra a,

the corresponding spherical function is φλ(eH) =
∫

K
e(iλ−ρ)(H(eH k)) dk where g =

keH(g)n ∈ K A N (the Iwasawa decomposition of G).

From [12], we know that the element H ∈ a is of the form

H =





0p×p Dp×p 0p×(q−p)

Dp×p 0p×p 0p×(q−p)

0(q−p)×p 0(q−p)×p 0(q−p)×(q−p)
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where the subscripts indicate the size of the matrix blocks and where D =

diag[H1, . . . ,Hp].

Suppose λ ∈ a
∗ is defined on a by λ(H) =

∑p
k=1 λkHk. In [12], we gave a

relationship between the spherical functions on SO0(p, q)/ SO(p)×SO(q) and those

on the symmetric cone GL+(p,R)/ SO(p). If φ̃Λ denotes a spherical function on
GL+(p,R)/ SO(p), then

φλ(eH) =

∫

SO(q)

φ̃Λ
(

cosh D + (sinh D)A(k)
)

dk(1)

where A(k) denotes the left-upper p × p submatrix of k and Λ(H) =
∑p

k=1

(

λk + i(q − 1)/2
)

Hk. The relationship between λ and Λ will be assumed
throughout the paper.

Except when otherwise stated, we will assume from now on that p = 2.

Remark 1 Let H = diag[H1,H2], k1, k2 ∈ SO(2) and g = k1eHk2. We recall from

[10] that

φ̃Λ(g) =
eiΛ2(H1+H2)

π

∫ H1

H2

ei(Λ1−Λ2)(ξ)

√
sinh(H1 − ξ) sinh(ξ −H2)

dξ.(2)

Let E = ∂
∂H1

+ ∂
∂H2

and∆ be the Laplace-Beltrami operator on GL+(2,R)/ SO(2).

We then have Eφ̃Λ = i(Λ1 +Λ2)φ̃Λ and∆φ̃Λ = −(Λ2
1 +Λ2

2 + 1/4)φ̃Λ. It will be useful

later (in Definition 14) to note that every symmetric polynomial in Λ1 and Λ2 can be
written in a unique way as a polynomial in i(Λ1 + Λ2) and−(Λ2

1 + Λ2
2 + 1/4).

It will be necessary to integrate with respect to A = A(k) in (1). Lemma 2 and
Proposition 4 will let us do that.

Lemma 2 Let dν stand for the rotation-invariant measure on the sphere with total

mass 1. Suppose J(x) is a matrix of size q × (q − 1) which depends smoothly on x ∈
Sq−1 and is such that [x J(x)] ∈ SO(q). Suppose also that J(x, y) is a matrix of

size q × (q − 2) which depends smoothly on (x, y) ∈ Sq−1 × Sq−2 and is such that

[x J(x)y J(x, y)] ∈ SO(q). Then

∫

SO(q)

f (k) dk =

∫

SO(q−2)

∫

Sq−2

∫

Sq−1

f
(

[x J(x)y J(x, y)k0]
)

dν(x) dν(y) dk0.

(3)

Proof Every element of k ∈ SO(q) can be written as k = [x J(x)y J(x, y)k0].
Indeed, x corresponds to the first column of k and the columns of J(x) span x⊥ so

choosing y appropriately gives us the second column of k. The columns of J(x, y)
span {x, J(x)y}⊥ so choosing k0 appropriately gives us the rest of k. It now suffices
to show that the right-hand side integral is invariant under the action of k̃ ∈ SO(q).
Now, k̃ J(x) = J(k̃x)kx with kx ∈ SO(q − 1) and k̃ J(x, y) = J(k̃x, kxy)kx,y with
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kx,y ∈ SO(q − 2). The existence of kx comes from the fact that both k̃ J(x) and J(k̃x)

span (k̃x)⊥. A similar reasoning apply to the existence of kx,y.
The rest then follows from the invariance properties of the measures dν(x), dν(y)

and dk0.

The author is indebted to Ken Richardson of Texas Christian University for his
suggestion to parameterize the first two columns of an element of SO(q) using ele-
ments of Sq−1 × Sq−2.

Remark 3 We give here a simple construction of the maps J(x) and J(x, y) (we
are excluding a set of measure 0 in Sq−1 × Sq−2). Given x ∈ Sq−1, we apply the
Gram-Schmidt process to the columns of the matrix [x e2 · · · eq] to obtain
[x J(x)] ∈ O(q). Given y ∈ Sq−2 and J(x), we apply the Gram-Schmidt process to

the columns of the matrix [x J(x)y e3 · · · eq] to obtain [x J(x)y J(x, y)] ∈
O(q). In each case, it may be necessary to multiply the last column by −1 to obtain
matrices in SO(q).

Proposition 4 Let f : SO(q) → R be a function of the upper left corner p × p sub-

matrix. Abusing notation, write f (A) = f
(

(ai j)1≤i, j≤p

)

. Then, if p = 1, 2 and

q > 2p − 1,

∫

SO(q)

f
(

A(k)
)

dk = (C p
q )−1

∫

Mp

f (A)
(

det(I − AAT)
) (q−1)/2−p

dA(4)

where Mp is the set of matrices A with ‖A‖2 ≤ 1 and dA is the Lebesgue measure on

Mp. Recall that ‖A‖2 is the largest singular value of A or, equivalently, the square root

of the largest eigenvalue of AAT . Note that C
p
q =
∫

Mp

(

det(I − AAT)
) (q−1)/2−p

dA.

Proof Since the case p = 1 is simpler, we will only discuss the case p = 2.

Let x = (xi) with xi = (
∏i−1

k=1 sin ak) cos ai , 1 ≤ i ≤ q − 1, and xq =
∏q−1

k=1 sin ak

where 0 ≤ a j ≤ π for j < q − 1 and 0 ≤ aq−1 ≤ 2π. Let y = (yi) with yi =

(
∏i−1

k=1 sin bk) cos bi , 1 ≤ i ≤ q − 2 and yq =
∏q−2

k=1 sin bk where 0 ≤ b j ≤ π for
j < q− 2 and 0 ≤ bq−2 ≤ 2π.

We now describe the matrix J(x) = ( Ji j) of size q× (q− 1):

Ji j =



















0 i < j

− sin a j i = j

cos a j(
∏i−1

k= j+1 sin ak) cos ai j < i < q

cos a j

∏q−1
k= j+1 sin ak i = q.

We only need the upper left corner 2 × 2 submatrix A which we compute using
(3). Written in the (ai , b j) coordinates,

A =

(

cos a1 − sin a1 cos b1

sin a1 cos a2 cos a1 cos a2 cos b1 − sin a2 sin b1 cos b2

)

.(5)
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Using Lemma 2, the Haar measure on SO(q) is given by

C
(

q−1
∏

i=1

sinq−1−i ai

)(

q−2
∏

i=1

sinq−2−i bi

)

da1 · · · daq−1db1 · · · dbq−2dk0

if dk0 represents the Haar measure on SO(q − 2) (the measure dν is given in [4,

p. 223]). Integrating out the variables that do not intervene in A, we have

∫

SO(q)

f
(

A(k)
)

dk

= C

∫

[0,π]4

f (A) sinq−2 a1 sinq−3 a2 sinq−3 b1 sinq−4 b2 da1 da2 db1 db2

where A is as in (5). Let a11 = cos a1, a12 = − sin a1 cos b1, a21 = sin a1 cos a2 and
a22 = cos a1 cos a2 cos b1 − sin a2 sin b1 cos b2. It is a simple calculus exercise to show
that

∫

SO(q)

f
(

A(k)
)

dk = C ′
∫

M2

f (A)
(

det(I − AAT)
) (q−5)/2

dai j .

Corollary 5 Using the same notation as in the lemma, we have for p = 2

∫

SO(q)

f
(

A(k)
)

dk = (C p
q )−1

∫

SO(2)

∫

SO(2)

∫ 1

−1

∫ |x1|

0

f

(

k1

[

x1 0

0 x2

]

k2

)

· (1− x2
1)(q−5)/2(1− x2

2)(q−5)/2(x2
1 − x2

2) dx2 dx1 dk2 dk1.

(6)

Proof We write what is essentially the singular value decomposition of A:

A =

[

cos θ − sin θ
sin θ cos θ

] [

x1 0
0 x2

] [

cosψ − sinψ
sinψ cosψ

]T

=

[

x1 cos θ cosψ + x2 sin θ sinψ x1 cos θ sinψ − x2 sin θ cosψ
x1 sin θ cosψ − x2 cos θ sinψ x1 sin θ sinψ + x2 cos θ cosψ

]

,

(7)

and compute da11 da12 da21 da22 = (x2
1 − x2

2) dx1 dx2 dθ dψ, with −1 ≤ x1 ≤ 1,
0 ≤ x2 ≤ |x1| and θ, ψ ∈ [0, 2π].

Corollary 6 If p = 1 or 2 and q > 2p − 1 then

φλ(eH) = (C p
q )−1

∫

Mp

φ̃Λ
(

cosh D + (sinh D)A
)(

det(I − AAT)
) (q−1)/2−p

dA

where Λr = λr + i(q− 1)/2.

Proof A direct consequence of (1) and of Proposition 4.
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Remark 7 If p = 1 then

φλ(eH) =

∫ 1

−1

(

cosh H + (sinh H)x
) iλ

(1− x2)(q−3)/2 dx
∫ 1

−1
(1− x2)(q−3)/2 dx

.

We are now ready to propose a generalization of the spherical functions related to
the root system Bp.

Definition 8 For λ ∈ a
∗ and <q > 2p − 1, let

φ
(q)
λ (eH) = (C p

q )−1

∫

Mp

φ̃Λ
(

cosh D + (sinh D)A
)(

det(I − AAT)
) (q−1)/2−p

dA.

(8)

Although Definition 8 is given for all integers p ≥ 1, we continue to focus on the

case p = 2. We still need to explain in which way the φ
(q)
λ ’s generalize the ordinary

spherical functions.

Definition 9 Let D(G/K) denote the commutative algebra of left-invariant differ-
ential operators on G/K.

Definition 10 Adapting [13, p. 99] to our notation, let

∆
(q)
2 =

∂2

∂H2
1

+
∂2

∂H2
2

+ [(q− 2) coth H1 + coth(H1 + H2) + coth(H1 −H2)]
∂

∂H1

+ [(q− 2) coth H2 + coth(H1 + H2)− coth(H1 −H2)]
∂

∂H2
,

L
(q)
1 =

∂2

∂H2
1

− ∂2

∂H2
2

+ (q− 2) coth(H1)
∂

∂H1
− (q− 2) coth(H2)

∂

∂H2
,

L
(q)
2 =

∂2

∂H2
1

− ∂2

∂H2
2

+
(

2 coth(H1 −H2) + 2 coth(H1 + H2) + (q− 2) coth(H1)
) ∂

∂H1

+
(

2 coth(H1 −H2)− 2 coth(H1 + H2)− (q− 2) coth(H2)
) ∂

∂H2

+ (q− 2)
(

coth(H1)
(

coth(H1 −H2) + coth(H1 + H2)
)

+ coth(H2)
(

coth(H1 −H2)− coth(H1 + H2)
)

)

+ 4 coth(H1 −H2) coth(H1 + H2),

∆
(q)
4 = L

(q)
2 L

(q)
1 .
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Remark 11 In Remark 1, we gave the two generators of D
(

GL+(2,R)/ SO(2)
)

,

namely E and ∆. The two generators of D
(

SO0(2, q)/ SO(2) × SO(q)
)

are ∆
(q)
2

and ∆
(q)
4 . The generators of D(G/K) are given in [6] in all rank 2 cases except for

G2/ SU(2)× SU(2).

The following result is mentioned in [13, Lemma 9] without proof.

Lemma 12 We have

1. [∆
(q)
2 , L

(q)
1 ] = 2( 1

sinh2(H1−H2)
+ 1

sinh2(H1−H2)
)L

(q)
1 .

2. [∆
(q)
2 , L

(q)
2 ] = −2L

(q)
2 ◦ ( 1

sinh2(H1−H2)
+ 1

sinh2(H1−H2)
).

3. [∆
(q)
2 ,∆

(q)
4 ] = 0.

Proof The proof of 1. and 2. is rather tedious but can be done using a system such
as Maple or Mathematica (we did both). To alleviate some of the computations, one
applies the differential operators to the function ea1H1+a2H2 and then we factor out that

function. Proving those equalities then becomes a matter of checking the equality of
polynomials in the ai ’s of degree at most 3.

The proof of 3. follows directly from 1., 2. and [∆
(q)
2 , L

(q)
2 L

(q)
1 ] = L

(q)
2 [∆

(q)
2 , L

(q)
1 ] +

[∆
(q)
2 , L

(q)
2 ]L

(q)
1 .

Remark 13 There are some mistakes in the statement of [13, Lemma 9]. Referring
to the notation in [13]: the terms coth(2h1) and coth(2h2) that appear in the 0 order

term of L
(ν,µ)
2 should be interchanged and the sign preceding 4ν in (i) should be +.

Definition 14 Let D(q) be the algebra generated by∆
(q)
2 and∆

(q)
4 . Let χ(∆

(q)
2 )(λ) =

−
(

λ2
1+λ2

2+
(

(q−1)2 +1
)

/2
)

andχ(∆
(q)
4 )(λ) =

(

(λ1−λ2)2 +1
)(

(λ1+λ2)2 +1
)

and

extend χ on D(q) as an algebra homomorphism (refer to [13, p 99] with λ replaced

by iλ).
We define the map T : D

(

SO0(2, q)/ SO(2) × SO(q)
)

→ D
(

GL+(2,R)/ SO(2)
)

the following way. Let D ∈ D
(

SO0(2, q)/ SO(2) × SO(q)
)

. We have
Dφλ = χ(D)(λ)φλ. We define T(D) to be the unique differential operator in

D
(

GL+(2,R)/ SO(2)
)

such that T(D)φ̃Λ = χ(D)(λ)φ̃Λ (recall the relationship be-
tween λ and Λ). This is possible by the end of Remark 1.

Remark 15 The map χ is well defined since ∆
(q)
2 and ∆

(q)
4 commute and are alge-

braically independent. Note that for q ≥ 2 an integer, D(q) corresponds to
D
(

SO0(2, q)/ SO(2) × SO(q)
)

and Dφλ = χ(D)(λ)φλ whenever D ∈ D(q). Note

also that in the notation of [13], D(q)
= A1,q−2.

We justify our statement that φ
(q)
λ is a generalized spherical function of the root

system B2 by showing that Dφ
(q)
λ = χ(D)(λ)φ

(q)
λ for every D ∈ D(q). This is done in

Theorem 20 given toward the end of this section. Our strategy to prove that result is

simple. First, we show that for an important range of λ’s, φ
(q)
λ is a rational function
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of q which is known when q ≥ 4 is an integer. The next step is to show that the other

φ
(q)
λ ’s can be approximated by the smaller class.

To this end, we need to know more about integration on M2 as given in (4).

Lemma 16 If p(A) = p(a11, a1,2, a21, a22) is a polynomial then
∫

M2
p(A)
(

det(I − AAT)
) (q−5)/2

dA is a rational function of q.

Proof It is enough to show this for terms of the form an11

11 an12

12 an21

21 an22

22 . If
∑

ni j

is odd, then we can show that the integral is 0 using the invariance properties of
(

det(I − AAT)
) (q−5)/2

dA. If
∑

ni j is even then an11

11 an12

12 an21

21 an22

22 will be a sum of
terms xr

1xs
2F(θ, ψ) with r + s =

∑

ni j . If r and s are both odd then the integral is

0. We can therefore assume that r and s are both even. Note also that p̃(x1, x2) =
∫ 2π

0

∫ 2π

0
p(a11, a12, a21, a22) dθ dψ is symmetric in x2

1 and x2
2. To see this, it suffices to

replace θ by θ + π/2 and ψ by ψ + π/2 in (7). We also note that every symmetric

polynomial in x2
1 and x2

2 can be written as a linear combination of terms of the form

(x2k
1 + x2k

2 )(1 − x2
1)i(1 − x2

2)i (if i ≤ j, then x2i
1 x

2 j
2 + x

2 j
1 x2i

2 = (x
2( j−i)
1 + x

2( j−i)
2 ) ·

(1− x2
1)i(1− x2

2)i+terms of lower degree). It is therefore enough to show that

Rk(ν) =

∫ 1

0

∫ x1

0

(x2k
1 + x2k

2 )(x2
1 − x2

2)(1− x2
1)ν−1(1− x2

2)ν−1 dx2 dx1

is a rational function of ν for every fixed integer k ≥ 0.
Let γ1(t) = (t, t), −γ2(t) = (t, 1) and −γ3(t) = (0, t) where 0 ≤ t ≤ 1. Let

P = −x2k+1
1 (1 − x2

1)ν(1 − x2
2)ν−1 and Q = x2k+1

2 (1 − x2
1)ν−1(1 − x2

2)ν and note that
∂P
∂x1

+ ∂Q
∂x2
=
[

(2ν + 2k + 1)
(

x2k
1 + x2k

2 + Sk−1(x2
1, x

2
2)
)]

(x2
1− x2

2)(1− x2
1)ν−1(1− x2

2)ν−1

where Sk−1 is a symmetric polynomial of degree at most k− 1 (in particular, if k = 0
then S−1 = 0). Using Green’s theorem, we have

∫ 1

0

∫ x1

0

(

∂P

∂x1
+
∂Q

∂x2

)

dx2 dx1 =

∫

γ1∪γ2∪γ3

(Q dx1 − P dx2).

The latter expression is rational in ν. The result follows then using induction in k.

Corollary 17 We have C2
q =

1
(q−2)(q−3)

.

Proof This requires a simple computation using P and Q with k = 0 and ν =
(q− 3)/2.

We state a Weierstrass theorem for functions of several variables. The explicit
construction of the polynomials allows us to say something about the derivatives of
order at most 2.

Lemma 18 Let f : R2 → R be such all that its derivatives up to order 2 are continuous.

Let K be a compact set. Then there exists a sequence of polynomials ( fn) such that fn,
∂ fn

∂xi
and

∂2 fn

∂xi x j
converge uniformly to f ,

∂ f
∂xi

,
∂2 f
∂xi x j

respectively for i, j = 1, 2.
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Proof By scaling and by multiplying by an appropriate cutoff function, we may
assume that K ⊂ {x : ‖x‖ < 1/2} and that f vanishes when ‖x‖ ≥ 1/2.

Let pn(x) = cn(1− ‖x‖2)n where n is chosen so that
∫

‖x‖<1
pn(y) dy = 1. Let

fn(x) =

∫

R2

f (y)pn(x − y) dy =

∫

R2

f (x − y)pn(y) dy.

The first equality ensures that fn is a polynomial while the second equality shows

that the relationship between the derivatives of fn and those of f is the same as that
between fn and f . It is therefore enough to show that the sequence ( fn) converges
uniformly to f on the set ‖x‖ < 1/2. The rest of the proof is very close to [14,
p. 117].

Remark 19 If f = f (x1, x2) is symmetric in x1 and x2 then we can choose
symmetric polynomials. Indeed, it suffices to replace fn from the proof by
(

fn(x1, x2) + fn(x2, x1)
)

/2.

Theorem 20 Let p = 2 and suppose <q > 3. Then for every D ∈ D(q), we have

Dφ
(q)
λ = χ(D)(λ)φ

(q)
λ .(9)

Proof We will proceed in two steps. It is useful to refer to (2).

1. Let n1 ≥ n2 ≥ 0 be integers. LetΛ(H) = −i(4n1 +1)H1/2− i(4n2−1)H2/2. This
ensures that φ̃Λ(g) is a symmetric polynomial in e2H1 and e2H2 , i.e., a polynomial

in r1 = tr ggT
= e2H1 + e2H2 and in r2 = (det g)2

= e2H1+2H2 . These polynomials
are known as “Jack polynomials” (to know more about them, refer to [5]). If
g = cosh D + sinh DA then r1 and r2 are polynomials in sinh Hi , cosh Hi and in
the ai j .

When we apply the operator D to φλ, equation (8), Lemma 16 and the above
imply that both sides are rational functions of q. We know that they are equal

when q ≥ 4 is an integer since then φ
(q)
λ is a spherical function of a symmetric

space. This means that they have to be equal for every q. Therefore (9) holds for

the corresponding class of λ’s.
2. Let T be as in Definition 14. We claim that

D

∫

M2

f (cosh D + sinh DA)
(

det(I − AAT)
) (q−5)/2

dA

=

∫

M2

(

T(D) f
)

(cosh D + sinh DA)
(

det(I − AAT)
) (q−5)/2

dA

where f : R2 → R is such all that its derivatives up to order 2 are continuous.
This clearly implies the desired result (one just has to take f = φ̃Λ).

We know that the claim is true for every φ̃Λ with Λ chosen as in part 1, i.e., for
every Jack polynomial and, by linearity, for every symmetric polynomials. We
then use Proposition 18 to do the rest.
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Remark 21 We could have done much of the same thing with p = 1. We already

know that for p = 1, φ
(q)
λ can be described by an ordinary hypergeometric function

(see for instance [4, Problem 8, p. 484]).

The following lemma gives a crude estimate which will be useful next section.

Lemma 22 Suppose p = 2. Suppose K1 and K2 be compact subsets of a and a
∗

respectively and suppose δ > 0. Then there exist a constant C = C(K1,K2, δ) such that

for <q > 3 + δ, we have |φ(q)
λ (eH)| ≤ C|q|2.

—Proof Note first that the set {cosh D + (sinh D)A : D ∈ K1,A ∈ M2} is com-
pact. If we refer to (8) and to Corollary 17 then

|φ(q)
λ (eH)| ≤ 1

|C2
q |

∣

∣

∣

∣

∫

M2

φ̃Λ
(

cosh D + (sinh D)A
)(

det(I − AAT)
) (q−5)/2

dA

∣

∣

∣

∣

≤ 1

|C2
q |

∫

M2

∣

∣φ̃Λ
(

cosh D + (sinh D)A
)
∣

∣

(

det(I − AAT)
)<(q−5)/2

dA

≤ C̃(K1,K2)

|C2
q|

∫

M2

(

det(I − AAT)
)<(q−5)/2

dA

≤
C̃(K1,K2)C2

<q

|C2
q|

=
C̃(K1,K2)|(q− 2)(q− 3)|

(<q− 2)(<q− 3)
.

3 On a Conjecture by Jiro Sekiguchi

As explained in the introduction, the work of Sekiguchi in [13] was the inspiration for
this paper. In Section 2, we accomplished the generalization of the spherical functions

he wanted but with another “candidate”. We will now show that our generalizations
are equivalent thus proving his conjecture.

We first recall some of the notation and results of [13]. Let

L(b1, b2, t) =

{

1 + b2
1t1 + (1 + b1b2t2)

(

1 +
b1t2

b2

)

t3

}

·
{

1 +
1

b2
1

t1 +

(

1 +
t2

b1b2

)(

1 +
b2t2

b1

)

t3

}

+

(

2(1 + t1) +

{

(1 + b1b2t2)

(

1 +
t2

b1b2

)

+

(

1 +
b2t2

b1

)(

1 +
b1t2

b2

)})

t4 + t2
4 .

If m ≥ 1 is an integer, let Φλ,m(a1, a2) = φ(m+2)
−iλ (eH) =

∫

K
e(λ−ρ)(H(eH k)) dk where

ai = eHi . Suppose 0 < <(λ1 − λ2) < 1 and −m/2 < <λ2 < m/2. In [13,
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Theorem 5], Sekiguchi showed that

Φλ,m(a1, a2) = C(λ,m)

∫ ∞

0

t
−(λ1−λ2+1)/2
1 dt1

∫ ∞

0

t
−λ2+m/2−1
2 dt2

∫ ∞

0

t
m/2−1
3 dt3

·
∫ ∞

0

t
m/2−1
4 dt4

∫ ∞

−∞

(1 + y2)(m−1)/2(L1 + L2 y2)−(m+1)/2 dy

(10)

where C(λ,m) = 22m−2mπ−3
Γ( m+1

2
)2 cos

π(λ1−λ2)

2

Γ(λ2+m/2)Γ(−λ2+m/2)
, L1 = L(a1, a2, t) and L2 =

L(a2, a1, t).

Definition 23 (Sekiguchi) Let Φλ,m be as in (10) in the domain <m > 0, 0 <
<(λ1 − λ2) < 1 and−<m/2 < <λ2 < <m/2.

Sekiguchi conjectured in [13] that the Φλ,m’s would be eigenfunctions of the op-
erators given in Definition 10 (modulo a change of variables).

To prove the conjecture Sekiguchi made, it will suffice to show thatΦλ,m(a1, a2) =

φ(m+2)
−iλ (a1, a2) whenever <m > 1. We already know that this equality is valid when

m is an integer greater than 1. This will suffice once we show that the two functions
satisfy similar bounds.

Lemma 24 Suppose <m > 0, 0 < <(λ1 − λ2) < 1 and −<m/2 < <λ2 < <m/2.

Then Φλ,m(1, 1) = 1.

Proof Take a1 = a2 = 1 in (10). We then have L1 = L2 =
(

1 + t1 + t4 + t3(1 + t2)2
) 2

.
Using (10), we have

Φλ,m(1, 1) = C(λ,m)π

∫ ∞

0

t
−(λ1−λ2+1)/2
1 dt1

∫ ∞

0

t
−λ2+m/2−1
2 dt2

∫ ∞

0

t
m/2−1
3 dt3

·
∫ ∞

0

t
m/2−1
4

(

1 + t1 + t4 + t3(1 + t2)2
)−(m+1)

dt4.

Now, if we make the change of variables s3 = t3(1 + t2)2, s4 = t4/(1 + t1 + s3),
s1 = t1/(1 + s3) and s2 = t2, then the computations become straightforward.

Corollary 25 Suppose<m > 0, 0 < <(λ1−λ2) < 1 and−<m/2 < <λ2 < <m/2.

Then

|Φλ,m(a1, a2)| ≤ |C(λ,m)|
C(<λ,<m)

.

Proof It is not difficult to see that the minimum of L1 and L2 occur when a1 = a2 =

1. Noting that for a > 0, |az| = a<z, the result follows from the proof of the lemma.
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Corollary 26 Let M > 0 and 0 < δ < 1/2 be fixed. Suppose δ < <(λ1 − λ2) <
1 − δ, −M/2 < <λ2 < M/2, |=λi | < M/2, i = 1, 2. Then there exists a constant

C = C(M, δ) such that on the domain <m > 2M + 1, we have

|Φλ,m(a1, a2)| ≤ C|m2|.

Proof We know that Γ(z) ∼
√

2πzz−1/2e−z when z → ∞ provided | arg | < π − δ
for some δ > 0. This means that in our domain, there exist constants C1 > 0 and
C2 > 0 such that C1|z|<z−1/2e−<z ≤ |Γ(z)| ≤ C1|z|<z−1/2e−<z. This implies that
|C(λ,m)|

C(<λ,<m)
≤ C

|m|2

(<m)2 .

Lemma 27 Let a ∈ R and suppose | f (z)| ≤ |P(z)| where P is a polynomial and f

is an analytic function on Ω = {z : <z > a} which is 0 at every integer in Ω. Then

f (z) = 0 for all z ∈ Ω.

Proof By taking a larger if necessary, we may assume that Ω does not contain any
zero of P (if f is zero on the smaller domain, it has to be zero on the larger one). Let

U denotes the unit disk and let T : Ω→ U be defined by T(z) = (z−a−1)/(z−a+1)
and note that 1 − T(n) = 2/(n − a + 1). Now, ( f /P) ◦ T−1 is a bounded analytic
function on U with zeros at T(n). Since

∑
(

1−T(n)
)

is divergent, we conclude from
[9, Theorem 15.23] that ( f /P) ◦ T−1 is identically zero.

We now prove the conjecture made by Sekiguchi in [13].

Theorem 28 Suppose <m > 1, 0 < <(λ1−λ2) < 1 and−<m/2 < <λ2 < <m/2.

Then

Φλ,m(eH) = φ(m+2)
−iλ (eH).(11)

Proof It suffices to show (11) with the following stricter restriction: <m > 2(1 + δ)

with δ > 0, δ < <(λ1−λ2) < 1−δ,−(1+δ)/2 < <λ2 < (1+δ)/2, |=λi | < (1+δ)/2,
i = 1, 2 and H in an arbitrary compact subset of a since the result will then follow
by analyticity. If we consider f (m) = Φλ,m(eH) − φm+2

−iλ(eH) only as a function of m

then it is analytic and it is bounded by a multiple of |m2| according to Lemma 22 and

Corollary 25. Since f (m) = 0 when m ≥ 2 is an integer, we can use Lemma 27 to
conclude.

4 Conclusion

A natural question is whether this can be generalized to all p.
Let us outline what would need to be done. One would have to show that Propo-

sition 4 (or something similar) is valid for all p. On the other hand, a general version

of Corollary 5 would follow from the proposition without difficulty.
Defining the algebra D(q) for an arbitrary p might be difficult to do explicitly but

all we really needed was the fact that the operators in D(q) were rational (actually
polynomial) functions of q. Note that a version of Lemma 16 for p = 1 would
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require the factor (C1
q)−1 in order to be valid. We presume that in general, it would

depend on whether p is even or odd. Lemma 18 is easily generalized to all p. If all

these “details” were taken care of, the proof of Theorem 20 would hold for all integers
p ≥ 1 and all q with <q > 2p − 1.
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