
11 TheMultiple Facets of Correlation Functions

The notion of correlation function, defined in Chapter 10, can be extended and adapted
toward the study of a wide range of observables designed to investigate specific aspects
of nuclear collision dynamics or properties of the matter produced in elementary particle
and nuclear collisions. Figure 11.1 displays an overview of the many correlation functions
and fluctuation measures commonly used by particle and nuclear physics in their study of
nuclear collisions.

In this chapter, we examine several types of correlation functions in detail, beginning
with a discussion of two-particle differential correlation functions in §11.1 and a cursory
look at three-particle correlations in §11.2. Several integral correlators commonly used
in high-energy nuclear for measurements of event-by-event fluctuations are presented in
§11.3. The chapter ends with a comprehensive discussion of flow measurement techniques.

11.1 Two-Particle Correlation Functions

Two-particle correlation functions play an important role in the study of collision dynam-
ics in nucleus-nucleus collisions as well as in elementary particle interactions (e.g., pp, p̄p,
e+e−, ep, and so on). Azimuthal correlations, in particular, have been instrumental in the
discovery of jet quenching by the opaque and dense medium (QGP) formed in central A–A
collisions studied at the Relativistic Heavy-Ion Collider (BNL) and the Large Hadron Col-
lider (CERN) [11]. Such correlations may be studied between indistinguishable particles
in identical kinematic ranges, or with particles of different types, species, or belonging to
distinct kinematic ranges.

We begin with a description of two-particle azimuthal correlations in §11.1.1 and extend
the discussion to joint azimuthal and rapidity correlations in §11.1.2.

11.1.1 Two-Particle Azimuthal Correlation Functions

Momentum and energy conservation impart a specific relation between particles produced
by elementary processes. For instance, a ρ0-meson decaying at rest in the laboratory is ex-
pected to produce a pair of π+ and π− that fly back-to-back in this frame of reference. This
means the two pions should be emitted with an angle of 180◦ relative to one another, as
illustrated in Figure 11.2a. However, if the ρ-meson is in slow motion, the pions will not be
seen exactly back-to-back but with a slightly smaller angle than 180◦. And if the ρ0 travels
at high velocity in the lab frame, the pions will appear to be focused in nearly the same
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527 11.1 Two-Particle Correlation Functions

Fig. 11.1 The multiple facets of correlation functions. Differential and integral correlations have a common basis in terms of
cumulants, and enable the definition of several types of correlation observables, many of which are shown in this
figure and discussed in this chapter.

direction and will thus be observed with a very small relative angle. Two-particle decays of
other resonances produce qualitatively similar results. Three-particle decays at rest might
produce Mercedes topologies, termed this because of their similarity to the Mercedes-Benz
logo, as shown in Figure 11.2d, while parton fragmentation yields collimated particle pro-
duction in the forms of jets consisting of several particles emitted in relatively narrow cone,

Fig. 11.2 Momentum vectors ofπ -mesons produced byρ-meson decays (a) at rest, (b) at small velocity, and (c) at very large
velocity (near speed of light). (d) 3-prong resonance decay at rest. (e) Jet: emission of several hadrons in a narrow cone
surrounding the direction of a fragmenting parton.
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528 The Multiple Facets of Correlation Functions

as illustrated in Figure 11.2e. Of course, a typical elementary collision might involve a ran-
dom selection or/and superposition of several of these and other processes. Two-particle
distributions in relative angle may thus become arbitrarily complex. Still, understanding
the specific mechanisms that lead to particle production may be possible if one can identify
specific correlation features. This said, since the number of particles produced in elemen-
tary processes (and even more so in nucleus–nucleus collisions) can be rather large, and
given that not all particle pairs may be correlated (i.e., result from a common process), it is
useful to consider the use of two-particle cumulants to identify the strength of two particle
correlations. Recall from §10.2 that while two-particle densities ρ2(y1, y2) are sensitive to
the number of particle pairs produced, they do not readily provide an unambiguous indi-
cation of the degree of correlation of these pairs. Different reaction mechanisms may lead
to different correlation topologies (e.g., in terms of relative azimuthal angle), and thus it
is indeed necessary to use cumulants to properly gauge the degree of correlation between
measured pairs.

Observable Definition: Two-Particle Cumulant

We begin our discussion for pairs of “identical” particles measured in the same kinematic
range. In §10.2, we defined generic two-particle cumulant C2 in terms of kinematic vari-
ables y1 and y2 as

C2(y1, y2) = ρ2(y1, y2) − ρ1(y1)ρ1(y2), (11.1)

where ρ1(yi) and ρ2(y1, y2) represent single and pair densities expressed as function of
kinematical variables y1 and y2, respectively. We also introduced normalized cumulants
R2,

R2(y1, y2) = ρ2(y1, y2)

ρ1(y1)ρ1(y2)
− 1, (11.2)

which effectively carry the same information about the correlations between produced par-
ticles. We here restrict the two variables y1 and y2 to specifically represent the azimuthal
production angles φ1 and φ2 of the two particles of interest, and write

C2(φ1, φ2) = ρ2(φ1, φ2) − ρ1(φ1)ρ1(φ2) (11.3)

R2(φ1, φ2) = ρ2(φ1, φ2)

ρ1(φ1)ρ1(φ2)
− 1, (11.4)

where the densities ρ1(φi) and ρ2(φ1, φ2) are measured/calculated for specific ranges
pT,min ≤ pT < pT,max and ηT,min ≤ ηT < ηT,max. From a theoretical standpoint, in the ab-
sence of polarization or other discriminating direction or axis, one expects the single par-
ticle yield should have no dependence on φ,

ρ1(φ1) = ρ1(φ2) ≡ ρ̄1, (11.5)

while the strength of the correlation function C2 should depend only on the relative an-
gle �φ = φ1 − φ2. It is thus of interest to recast the correlation function in terms of �φ
exclusively. Toward that end, consider the change of variable

φ1, φ2 → �φ = φ1 − φ2, φ̄ = (φ1 + φ2)/2 (11.6)
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529 11.1 Two-Particle Correlation Functions

with the Jacobian J = ∣∣∂ (�φ, φ̄)/∂ (φ1, φ2)
∣∣ = 1. This yields a correlation function C2

that can in principle depend on both�φ and φ̄. But given the collision system is not polar-
ized and the reaction plane of the colliding particles (nuclei) is not explicitly determined,
particle production must be invariant under rotation in φ̄. It is thus legitimate to average out
(marginalize) this coordinate. One consequently gets a correlation function C2 that depends
exclusively on the relative angle �φ of the particles:

C2(�φ) = ρ2(�φ) − 1

2π

∫ 2π

0
ρ̄2

1 dφ̄, (11.7)

= ρ2(�φ) − ρ̄2
1 ,

where, in the second line, we used the fact that ρ2
1 is a constant and can be taken out of the

integral. Given R2 is a ratio, one can consider two distinct approaches to average out the φ̄
coordinate. The first involves a ratio of averages while the second consists of the average
of a ratio. In general, one can in fact use two approaches for the determination of C2 and
R2. Indeed, one can first proceed to estimate these correlation functions in terms of both
φ1 and φ2, with a subsequent average over φ̄ to obtain functions of �φ only. Alternatively,
one can seek estimates of either function directly in terms of �φ. The latter approach is
more common and is therefore referred as Method 1 (M1) in the following:

Method 1 (M1)

C(M1)
2 (�φ) = ρ2(�φ) − ρ1 ⊗ ρ1(�φ) (11.8)

R(M1)
2 (�φ) = ρ2(�φ)

ρ1 ⊗ ρ1(�φ)
− 1, (11.9)

where the term ρ1 ⊗ ρ1(�φ) may be evaluated either through an event-mixing technique
or by averaging the product ρ1(φ1)ρ1(φ2) over φ̄.

Method 2 (M2) first requires the determination of both the single and pair densities in
terms of φ1 and φ2 explicitly. The two functions are subsequently obtained as averages
over φ̄:

Method 2 (M2)

C(M2)
2 (�φ) =

∫∫∫ 2π

0
{ρ2(φ1, φ2) − ρ1(φ1)ρ1(φ2)} (11.10)

× δ(�φ − φ1 + φ2)δ(φ̄ − (φ1 + φ2)/2) dφ1dφ2dφ̄

R(M2)
2 (�φ) =

∫∫∫ 2π

0
R2(φ1, φ2) (11.11)

× δ(�φ − φ1 + φ2)δ(φ̄ − (φ1 + φ2)/2) dφ1dφ2dφ̄.

where

R2(φ1, φ2) = C2(φ1, φ2)

ρ1(φ1)ρ1(φ2)
(11.12)

= ρ2(φ1, φ2)

ρ1(φ1)ρ1(φ2)
− 1
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Fig. 11.3 Correlation functionC2 ofρ0-meson decaying (a, b) near rest, (c) at very large velocity in the laboratory reference
frame, and (d) over a “realistic” range of velocities spanning values from zero up to nearly the speed of light. In (a), the
number ofρ0 was fixed to one per event, while in (b–d), it is set to fluctuate randomly from five to tenρ0 per event.
Distributions have been “shifted” in�φ for purely esthetic reasons. Dashed lines are drawn at�φ = 0 and
�φ = 0 to guide the eye.

For angles φ1 and φ2 in the range [0, 2π ], one obtains a difference �φ = φ1 − φ2 in the
range [−2π, 2π ]. However, by virtue of the system’s symmetry, this range may be re-
duced to [0, π ] and other components of the [−2π, 2π ] range are redundant and usually
shifted onto [0, π ]. It should thus be understood that the preceding integrals over φ1 and
φ2 are evaluated onto 0 ≤ �φ ≤ π , and often symmetrized about π and plotted in the
range [0, 2π ], or shifted and plotted in [−π, 3π/2] for ease of visualization. From a the-
oretical standpoint, it is easy to show that the two methods yield identical results for �φ
correlations, since the single particle yield is invariant under azimuthal rotation, that is,
ρ1(φ1) = ρ1(φ2) ≡ ρ̄1. We will see in §12.4, where we discuss methods to account for
instrumental effects, that both M1 and M2 yield robust1 measurements of R2(�φ). Mea-
surements of C2, however, require efficiency corrections in either method. Additionally,
while M2 may be subject to aliasing because of the finite size of the bins used to obtain
estimates of the densities ρ1 and ρ2, we will also show in §12.4 that M1 is not strictly ro-
bust when measurements are extended to involve dependencies on other coordinates such
as the rapidity of the particles, or their differences.

Example 1: Resonance Decays

A great variety of dynamical processes such as jet production, resonance decays, and col-
lective flow can shape azimuthal correlation functions. Figure 11.3 presents examples
of correlation functions, C2(�φ), obtained with Monte Carlo simulations of collisions

1 Unaffected by instrumental effects, most particularly detection efficiencies.
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531 11.1 Two-Particle Correlation Functions

producing charged pion pairs (π+ + π−) by decays of ρ0-mesons. Figure 11.3a displays
the correlation function of events involving a single ρ0 decaying near rest in the lab frame
yield. One observes a prominent away-side peak centered at �φ = π , which corresponds
to pion pairs being emitted essentially back-to-back. Emission from ρ0 at rest would pro-
duce a narrow peak at �φ = π exactly, but moving ρ0s produce pairs that are not strictly
back-to-back and consequently lead to a finite width peak centered at �φ = π . Also note
that because the number of ρ0 is fixed, so is the number of pions because no efficiency
losses or acceptance cuts were accounted for in the generation of this plot. A fixed num-
ber of particles effectively produces a multinomial behavior. The total multiplicity is fixed,
and the pions can fall in a wide variety of bins. The covariance of the yields for �φ val-
ues outside the peak thus tend to be negative. This effect disappears if the ρ0 multiplicity
fluctuates, as illustrated in Figure 11.3b, which was computed with a uniformly distributed
random number of ρ0 in the range 5–10. However, as illustrated in Figure 11.3c, the cor-
relation peak shifts to the origin (i.e., �φ = 0) if the ρ0-decays take place at very large
momentum in the lab frame. In practice, resonances such as the ρ0 are produced over a
large range of momenta, one then observes a more complicated correlation function, as
shown in Figure 11.3d, which combines peaks at both the origin and at �φ = π .

Example 2: Correlations from Anisotropic Flow

Two-particle correlations are also very much influenced by collective effects. For instance,
collisions of heavy nuclei at finite impact parameter, illustrated in Figure 11.4, may lead to
the production of a very dense but inhomogeneous and anisotropic medium or system. The
expansion of this medium, through pressure or momentum transfer gradients, is understood
to lead to collective motion and anisotropic emission of low to medium pT particles in the
plane transverse to the beam axis. High-energy partons produced within this medium are
also believed to be subject to differential energy loss according to the pathlength they tra-
verse to exit the medium, thereby leading to complementary high pT anisotropic emission
patterns. Both effects are commonly known as anisotropic flow. While general techniques
to measure flow are discussed in §11.4, we demonstrate, in the remainder of this section,
that collective particle motion may readily be identified with simple two-particle cumulants
C2(�φ) and/or normalized cumulants R2(�φ).

On general grounds, let us assume that nucleus–nucleus collisions produce, on an event-
by-event basis, systems that are inhomogeneous and anisotropic, as illustrated in Fig-
ure 11.4a. One can model the system (energy density) spatial anisotropy in terms of a
simple Fourier decomposition relative to the origin O:

ρ(φ, r) = f (r)

(
1 +

∞∑
n=1

εn cos(nφ)

)
. (11.13)

The dynamics of the collisions leads to system expansion and particle emission that reflect
the magnitude of the spatial anisotropy coefficients εn. One can then model the collective
motion of particles produced by the system as a Fourier expansion in momentum space,

https://doi.org/10.1017/9781108241922.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108241922.014


532 The Multiple Facets of Correlation Functions

Fig. 11.4 Schematic illustration of the transverse profile of the participant matter produced in high-energy heavy-ion collisions.
The participant region features pressure gradients which propel particle outward anisotropically in the transverse
plane.

relative to the collision impact parameter vector, �b:

ρ(φi|ψ ) = ρ̄
{

1 + 2
∞∑

n=1

vn cos(n(φi − ψ ))

}
, (11.14)

where ρ̄ is the average particle density, φ is the angle of emission of the particles, and ψ is
the orientation angle of the reaction plane in the laboratory frame of reference. Since the
impact parameter is not readily observed, one must average over all possible orientations
of the reaction plane to get the observed single particle density:

ρ1(φi) =
∫ 2π

0
dψρ1(φi|ψ )P(ψ ) = ρ̄. (11.15)

The orientation of the reaction plane,ψ , is assumed to vary collision by collision uniformly
in the range [0, 2π ] and is given a probability P(ψ ) = (2π )−1. The integration in (11.15)
thus indeed yields ρ̄, the average particle density. The density of particle pairs has a less
trivial behavior, however. At fixed ψ , we model the two-particle density as

ρ2(φ1, φ2|ψ ) = ρ̄2

{
1 + 2

∞∑
n=1

vn cos(n(φ1 − ψ ))

}
(11.16)

×
{

1 + 2
∞∑

n=1

vn cos(n(φ2 − ψ ))

}
.

Given ψ is not explicitly measured, the two-particle density must be averaged over all
equally probable values of this angle. One finds

ρ2(φ1, φ2) = (2π )−1
∫ 2π

0
ρ2(φ1, φ2|ψ ) dψ (11.17)

= ρ̄2

{
1 + 2

∞∑
n=1

(vn)2 cos(n(φ1 − φ2))

}
and concludes that the spatial anisotropy of the collisions may lead to observable
anisotropies in momentum space. The harmonic coefficients vn are commonly known as
flow coefficients. Their magnitudes have been measured in a variety of collision systems
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Fig. 11.5 Simulations of R2(�φ) correlation functions determined by anisotropic flow. (a) Simulated elliptic flow with
v2 = 0.04. (b) Simulated triangular flow with v3 = 0.04, (c) combination of elliptic and triangular flow with
v2 = v3 = 0.04, which produces an away-side dip at�φ = π similar to those observed in central Heavy-Ion
collisions by several RHIC and LHC experiments [1]. The dashed and solid lines display the Fourier components used in
the simulation and their sum, respectively.

at several beam energies. In high-energy nucleus-nucleus the v2 coefficients are typically
the largest. The v3 are also found to be significant, even in symmetric collision systems
(e.g., Au–Au, or Pb–Pb), most likely the result of fluctuations in the initial spatial configu-
rations of the colliding nuclei. Higher-order coefficients, vn≥4, are typically much smaller
than either v2 or v3 coefficients [182].

Figure 11.5 displays simulated R2(�φ) correlation functions obtained for selected val-
ues of flow coefficients v2 and v3. Note how the particular combination of coefficients
v2 = v3 = 0.04, shown in panel (c), produces an away-side “dip” featured in many ob-
served distributions measured in central A–A collisions at RHIC and LHC energies [1].

Semi-inclusive and Species Dependent Correlation Functions

As we saw earlier, resonance production and flow lead to varied correlation shapes in
azimuth. To further complicate the interpretation of correlation functions, consider that
jet fragmentation and other particle production processes such as “string fragmentation”
have their own signatures also in two-particle azimuthal correlations. The fragmentation
of a single jet in particular produces a strong and broad peak centered at �φ = 0, while
the production of di-jets features both a near-side peak (�φ = 0) and an away-side peak
(�φ = π ). The strength, shape, and width of these peaks are known to depend on the jet
transverse momentum and particle multiplicity (number of particles composing the jet).
All in all, the structure of correlation functions measured in p–p collisions are typically the
result of a random superposition of several production processes that depend on the colli-
sion energy, as well as the number and species of particles produced. Correlation functions
produced in heavy-ion collisions are further “enriched” by collective processes, such as
the anisotropic flow discussed earlier, and radial (or outward) flow effects discussed in
[181]. Inclusive measurements of two-particle azimuthal correlation functions are conse-
quently insufficient, typically, to fully pinpoint the collision dynamics. Researchers have
thus sought to study more exclusive correlation functions (e.g., azimuthal correlation as
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534 The Multiple Facets of Correlation Functions

a function of particle multiplicity), for specific particle species or by adding additional
kinematic constraints. One may also gain further insight into the nature of the particle
production processes by studying correlations as a function of the particle momenta and
rapidity (pseudorapidity).

Correlation functions of distinguishable particle types or species are readily defined on
the basis of Eq. (11.3), and both M1 and M2 may be used to carry out measurements of
these functions. The correlation measurements discussed earlier in this section can thus be
straightforwardly extended to correlation studies of particles of different charge or species
(e.g., π+ vs. π−, or π vs. K, and so on), or for particles in different momentum (or rapidity)
ranges, discussed in the next subsection.

Triggered Correlation Functions

Correlation functions involving one high- and one low-pT particle are particularly useful
to study and characterize the production of jets in both p–p and A–A collisions without
actually resorting to a full-fledged jet-finding analysis. Correlation studies of this type are
commonly known as triggered correlation functions, even though no actual trigger is ac-
tually involved in such studies. Triggered correlation functions have been instrumental in
unravelling the existence of jet quenching in Au–Au collisions at RHIC [11].

The study of triggered correlation functions typically requires the trigger particle to be
at much higher pT than the second particle, known as the associate. The production of
the trigger particle may consequently be rare. It is thus legitimate to count the number
of associates found in a given event, relative to the trigger particle. Labeling the trigger
particle as T and the associates as A, one may define a triggered correlation as

CT,A(�φ) = ρ2(�φ)

〈NT 〉 , (11.18)

where

ρ2(�φ) =
∫
	T

∫
	A

ρ2(ηT , φT , p⊥,T , ηA, φA, p⊥,A) (11.19)

× δ(�φ − φT + φA) dηT dφT d p⊥,T dηAdφAd p⊥,A

〈NT 〉 =
∫
	

ρT (ηT , φT , p⊥,T ) dηT , dφT , d p⊥,T , (11.20)

The integration is taken over the volumes 	i, i = T,A, that specify the kinematic range in
which the trigger and associates are measured. The numerator ρ2(�η) corresponds to the
average number of trigger–associate pairs detected as a function of the relative azimuthal
angle�φ, while the denominator 〈NT 〉 corresponds to the average number of trigger parti-
cles altogether detected, in a given dataset, or under some specific event selection criteria.
Effectively, CT,A(�φ) provides the average number of associates, vs. �φ, per trigger par-
ticle. A measurement of CT,A(�φ) may be implemented by taking the ratio of the average
number of trigger–associate pairs per event by the average number of trigger particles
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per event:

CT,A(�φ) =
∑N ′

ev
α=1 NT,A(�η)∑N ′

ev
α=1 NT,α

(11.21)

where the sums are computed only for events containing a trigger particle. Triggered cor-
relations are typically of greatest interest for jet-like trigger particles. Those have a low
production cross section and only a small fraction of the events are thus expected to con-
tain a trigger particle. If there is at most one trigger particle per event, one may write

CT,A(�φ) = 1

N ′
ev

N ′
ev∑

α=1

NT,A(�η) (11.22)

where the sum is taken over events containing one trigger particle. For kinematical condi-
tions such that there is typically more than one trigger particle per event, there is a common
practice that consists in defining CT,A(�φ) as

Cebye
T,A (�φ) = 1

N ′
ev

N ′
ev∑

α=1

NT,A(�η)

NT
(11.23)

where NT stands for the number of trigger particle measured in each event (the sum being
carried out only on events with at least one trigger particle). In general, this formulation
is expected to yield values in qualitative agreement to those obtained with Eq. (11.21).
Quantitative difference of several percent may, however, occur. And while this latter for-
mulation of the correlation function may seem more natural, it does not lend itself to a
simple definition in terms of single- and two-particle densities such as Eq. (11.21). The
inclusive formulation, though seemingly less intuitive, is thus usually preferred.

It is also important to realize that CT,A(�φ) is not a correlation function in the strict sense
of the word, since it does not involve subtraction of purely combinatorial contributions.
This is not a serious problem, however, as long as the trigger particle rate is small and the
kinematic range considered for associates actually involves mostly true associates. This
condition is easily satisfied in p–p collisions but is typically violated in high-energy A–A
collisions, unless trigger particles are selected in a very high pT ranges.

Correlation Function Scaling

By construction as a two-particle cumulant, the correlation function C2(�φ) is expected to
scale in proportion to the number of “sources,” while R2(�φ) should be inversely propor-
tional to this number. For a collision system consisting of m independent identical sources,
one should consequently get

C(m)
2 (�φ) = mC(1)

2 (�φ) (11.24)

R(m)
2 (�φ) = 1

m
R(1)

2 (�φ). (11.25)

The triggered correlation CT,A has yet a different scaling property. If the number of trigger
and associate particles are truly rare, both the numerator and the denominator of CT,A are
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536 The Multiple Facets of Correlation Functions

expected to scale in proportion to the number of particle sources, and their ratio should con-
sequently be invariant under variations of this number. In practice, particularly in heavy-ion
collisions, both the number of trigger and associates can become rather large in central col-
lisions, and this simple scaling is therefore violated. However, many researchers attempt
to recover this property by removing combinatorial and collective correlation backgrounds
using a technique known as zero yield at minimum (ZYAM) [16]. This technique assumes
a two-component (two sources) particle production model, which may be approximately
valid in the study of jets, provided the coupling (correlation) between the jet and the under-
lying background is small. This hypothesis may, however, be difficult to justify in analyses
seeking to study the influence of the medium (bulk of produced particles) on the produced
jets. It is thus preferable and logically consistent to define triggered correlation functions
on the basis of C2(�φ) rather than ρ2(�φ) (see Problem 11.11).

11.1.2 Two-Particle�η Correlation Functions

Correlation functions measured in terms of the pseudorapidity difference of produced par-
ticles provide another powerful tool to explore the collision dynamics of both elementary
particle and nuclear collisions. They have been used extensively, in particular, to study
hadron production in p–p collisions and jet production in heavy-ion collisions.

As for the azimuthal correlations discussed in the previous section, we proceed to define
two-particle correlation functions vs. �η in terms of two-particle cumulants and normal-
ized cumulants, as defined by Eq. (10.22),

C2(η1, η2) = ρ2(η1, η2) − ρ1(η1)ρ1(η2) (11.26)

R2(η1, η2) = ρ2(η1, η2)

ρ1(η1)ρ1(η2)
− 1. (11.27)

The η1 vs. η2 dependence of these functions cannot, however, be readily reduced to a
single variable�η, such as in the case of azimuthal correlations. Indeed, it is quite possible
that the correlation dynamics may be an arbitrary function of both η1 and η2. In fact,
measurements conducted in p–p collisions at the ISR and in p–p̄ collisions at the Tevatron
have shown that correlation functions may have a rather intricate dependence on both η1

and η2, particularly when the particles have rapidities approaching the beam rapidity [85,
193]. However, in collider experiments with a focus on central rapidities (η ≈ 0), one may
expect the correlations to depend primarily on the rapidity difference of the two particles
considered, it is thus reasonable to recast the C2 and R2 correlation functions in terms of
variables�η = η1 − η2 and η̄ = (η1 + η2)/2, average out the dependence on η̄, and obtain
correlation functions in terms of �η exclusively. One must, however, properly account for
the finite acceptance of the detector.

As an example, let us assume, as illustrated in Figure 11.6, that both particle 1 and
2 are measured in the same range −η0 ≤ η < η0, and let us calculate the two-particle
cumulant C2(�η) assuming the cumulant C2(η1, η2) is known. Averaging out over η̄ may
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537 11.1 Two-Particle Correlation Functions

Fig. 11.6 Illustration of the rapidity acceptance of two-particle correlation measurements.

be accomplished as follows:

C2(�η) = 1

	(�η)

∫∫∫
	

C2(η1, η2) (11.28)

× δ(�η − η1 + η2)δ(η̄ − (η1 + η2)/2) dη1dη2dη̄,

where the factor 	(�η) accounts for the width of the η̄ acceptance at a given value of�η.
For the square and symmetric acceptance illustrated in Figure 11.6, one gets

	(�η) = 2ηo −�η. (11.29)

This factor accounts for the fact that, with a square acceptance |ηi| < η0, it is far less likely
to observe pairs with a rapidity difference |�η| ≈ 2η0 than with�η ≈ 0. Failure to account
for this simple geometric effect results in an apparently strong triangular correlation shape.
The division by 	(�η) is thus commonly known as the triangle acceptance correction.
This is an unfortunate misnomer, however, because the division by 	(�η) is not strictly
speaking a correction of the data but a factor born out of the acceptance averaging over η̄.

As for measurements of C2(�φ), two basic techniques, hereafter referred to as Method
1 (M1) and Method 2 (M2), may be used to obtain an estimator of C2(�η).

M1 involves the determination of the two particle density ρ2(�η) directly using a 1D
pair histogram, H2, binned and filled at �η = η1 − η2 for all relevant pairs:

ρ̂2(�η) = 1

	(�η)

k

(Nev − 1)��η
H2(�η). (11.30)

The histogram H2 must be filled over all Nev events satisfying relevant event cuts and all
particle pairs satisfying track quality cuts and kinematic selection criteria of interest. The
factor ��η represents the bin width used to define and fill the histogram H2. The factor
k is unity for nonidentical particle pairs (e.g., kaons vs. pions, or particles in different pT

ranges), and equal to 2 for identical particles analyzed with two nested loops i < j over
all particles (i.e., with 1 ≤ i ≤ nparts and i + 1 < j ≤ nparts). The factor 	(�η) must be
determined numerically and accounts for the finite acceptance in η̄.

The second term of the correlation function may be obtained by numerical integration
of the product ρ̂1(η1)ρ̂1(η2), where ρ̂1(ηi) is an estimator of the single particle density as a
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function of η:

ρ̂1(η) = 1

(Nev )�η
H1(η). (11.31)

The factor �η represents the bin width used to fill the histogram H1. Two distinct his-
tograms H (1)

1 (η) and H (2)
1 (η) (and corresponding single particle densities) must obviously

be used if the analysis is carried out on distinguishable particles. Numerical techniques to
carry out the numerical integration of ρ̂1(η1)ρ̂1(η2) to obtain a function ρ̂1 ⊗ ρ̂1(�η) are
discussed in §11.5. An estimator of Ĉ2(�φ) of the correlation function may thus be written

Ĉ2(�φ) = ρ̂2(�η) − ρ̂1 ⊗ ρ̂1(�η). (11.32)

One may alternatively estimate the second term ρ1 ⊗ ρ1(�η) of the correlation function
on the basis of mixed events rather than a product of single particle densities. This is
accomplished by filling 1D histogram H (Mixed)

2 from pairs of particles obtained from mixed

events. One then gets a mixed event density ρ̂ (Mixed)
2 (�η)

ρ̂
(Mixed)
2 (�η) = 1

	(�η)

k

(Nev − 1)��η
H (Mixed)

2 (�η), (11.33)

which should provide a legitimate estimate of the density product, ρ1 ⊗ ρ1(�η), since
particles produced in different collisions (events) should be physically uncorrelated. An
estimator of Ĉ2(�φ) of the correlation function may thus also be obtained with

Ĉ2(�η) = ρ̂2(�η) − ρ̂ (Mixed)
2 (�η). (11.34)

Another approach, hereafter known as Method 2 (M2), consists of obtaining C2(�η)
as an integral of C2(η1, η2). That is, one first obtains an estimate Ĉ2(η1, η2) based on his-
tograms H2(η1, η2) and H1(ηi) accumulated over all relevant pairs of particles (tracks) and
single particles, respectively, and estimate C2 as

Ĉ2(η1, η2) = ρ̂2(η1, η2) − ρ̂1(η1)ρ̂1(η2) (11.35)

with

ρ̂1(ηi) = 1

Nev�η
H1(ηi), (11.36)

ρ̂2(η1, η2) = 1

(Nev − 1)�2
η

H2(η1, η2), (11.37)

where�η is the bin size used to define and fill histograms H1 and H2. The estimator Ĉ2(�η)
is subsequently obtained by numerical integration of Ĉ2(η1, η2)

Ĉ2(�η) = 1

	(�η)

∑
η1,η2,η̄

Ĉ2(η1, η2) (11.38)

× δ(�η − η1 + η2)δ(η̄ − (η1 − η2)/2).

Alternatively, the term ρ̂1(η1)ρ̂1(η2) may be determined with pairs from mixed events:

ρ̂1(η1)ρ̂1(η2) = 1

(Nev − 1)�2
η

H (Mixed)
2 (η1, η2), (11.39)
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539 11.1 Two-Particle Correlation Functions

Note that the use of finite width bins leads to a smearing of the correlation across the
width of the �η bin. Indeed, a specific bin in �η obtained from two specific bins in η1

and η2 corresponds to an actual range η1 − η2 which is larger than the width of the bin
and effectively smears the correlation signal across bins.2 This effect, often referred to as
aliasing, can be reduced by oversampling the ρ1(ηi) and ρ2(η1, η2) distributions, in other
words, by using bins in η that are two or more times smaller than the width �η.

As for C2, the normalized cumulant R2(�η) may in principle be determined with either
M1 or M2. M1 estimates R2(�η) as the ratio

R̂(M1)
2 (�η) = Ĉ2(�η)

ρ̂1 ⊗ ρ̂1(�η)
(11.40)

while M2 requires an average of R̂2(η1, η2) over η̄:

R̂(M2)
2 (�η) = 1

	(�η)

∑
η1,η2,η̄

R̂2(η1, η2) (11.41)

× δ(�η − η1 + η2)δ(η̄ − (η1 + η2)/2).

Unfortunately, the two methods may yield substantially different results. Indeed, unlike the
case of azimuthal correlations, for which the single densities ρ1(φ) are invariant under ro-
tation in φ, the single densities ρ1(ηi) are arbitrary functions of ηi, that is, they may exhibit
substantial variations throughout the acceptance of the measurement. This is a problem be-
cause the integral of the ratio of functions is in general not equal to the ratio of the integrals
of these functions: ∫

	

ρ2(�η, η̄)

ρ1 ⊗ ρ1(�η, η̄)
dη̄ �=

∫
	
ρ2(�η, η̄) dη̄∫

	
ρ1 ⊗ ρ1(�η, η̄) dη̄

(11.42)

The issue may be exacerbated by detection inefficiencies that strongly depend on the coor-
dinates η1 and η2. This is discussed in detail in §12.4.3, where we argue that although less
intuitive and direct from an experimental standpoint, R(M2)

2 (�η) constitutes a more robust
and meaningful measure of the normalized cumulant. In practice, at collider experiments,
both the single particle ρ1 and pair densities ρ2 appear to have only rather modest depen-
dence on rapidity in fiducial ranges measured. Constants can, of course, be factorized out
of the preceding integrals and the two methods consequently yield very similar results in
symmetric A–A collisions. Rapidity dependencies may, however, be larger in asymmetric
collisions such as p–A collisions.

By construction as cumulants, the functions C2 and R2 exhibit the scaling properties
embodied in Eqs. (10.25) and (10.39) discussed for generic cumulants in §10.2.4 and for
azimuthal correlation functions in §11.1.1.

Triggered correlation functions CTA(�η) may be defined similarly to the functions
CTA(�φ) introduced §11.1.1. Caveats discussed for CTA(�φ) apply to CTA(�η) also

2 For instance, combining yields from bins 0.9 < η1 ≤ 1.1 and 0.9 < η2 ≤ 1.1 corresponds to a range of −0.2 ≤
η1 − η2 ≤ 0.2 being projected onto a �η bin of width 0.2.
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and are further complicated by issues associated with Method 1 discussed earlier. Pre-
cision measurements should be conducted exclusively with cumulants calculated based on
Method 2.

The R2(�η) correlation function introduced in this section and the R2(�φ) function
introduced earlier can be trivially combined to obtain correlation functions with joint de-
pendencies on �η and �φ. Measurements with Method 2 yield

R(M2)
2 (�η,�φ) = 1

	(�η)

∫
	

R2(η1, φ1, η2, φ2) (11.43)

× δ(�η − η1 + η2)δ(η̄ − (η1 + η2)/2) dη1dη2dη̄,

× δ(�φ − φ1 + φ2)δ(φ̄ − (φ1 + φ2)/2) dφ1dφ2dφ̄,

where

R2(η1, φ1, η2, φ2) = ρ̂2(η1, φ1, η2, φ2)

ρ̂1(η1, φ1)ρ̂1(η2, φ2)
− 1, (11.44)

and the densities are obtained from multidimensional histograms filled by processing all
relevant events and particles:

ρ̂1(ηi, φi) = 1

Nev�η�φ
H1(ηi, φi), (11.45)

ρ̂2(η1, φ1, η2, φ2) = k

(Nev − 1)�2
η�

2
φ

H2(η1, φ1, η2, φ2), (11.46)

where, as in the preceding, k is unity for distinguishable particles and equal to 2 for indis-
tinguishable particles analyzed with two-particle nested loops with an i < j condition.

11.1.3 Balance Functions

The production of particles in elementary particles is constrained by energy/momentum
conservation and several other conservation laws, such as charge conservation, baryon
number conservation, and so on. A charge balance function provides a tool to emphasize
effects associated with charge conservation on the charge particle production. For instance,
in the case of pion production, one can assume that energy–momentum considerations af-
fect the production of negative and positive pions in essentially the same way. However, one
expects on general grounds that correlations between unlike-sign pions should be stronger
than those between like-sign pions because charge conservation dictates that particles must
be created in unlike-sign pairs. The charge balance function is designed to isolate the corre-
lation strength associated with charge conservation specifically by measuring the number
of unlike-sign pairs relative to the number of like-sign pairs in a given momentum vol-
ume. In heavy-ion collision studies, the charge balance function was also proposed by Bass
et al. [31, 155] as a tool to identify the presence of a qualitative change in charged parti-
cle production versus collision centrality. The production of a long lived phase of quark
gluon plasma, in particular, is expected to lead to delayed hadronization manifested by a
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541 11.1 Two-Particle Correlation Functions

narrowing of the balance function measured as a function of the rapidity (or pseudorapid-
ity) difference between produced particles [155].

The balance function introduced in ref. [31] is written

B(�η) = 〈N−N+〉(�η)

〈N−〉 + 〈N+N−〉(�η)

〈N+〉 (11.47)

−〈N+(N+ − 1)〉(�η)

〈N+〉 − 〈N−(N− − 1)〉(�η)

〈N−〉 ,

where 〈N−N+〉(�η), 〈N+(N+ − 1)〉(�η), and 〈N−(N− − 1)〉(�η) represent the number of
(+−), (++), and (−−) pairs observed in a fixed range of pseudorapidity �η, while 〈N+〉
and 〈N−〉 are the average numbers of positively and negatively charged particles detected
in the measurement acceptance, respectively. Introducing normalized two-particle densities
rα,β (�η), defined as

rα,β (�η) = 〈NαNβ〉(�η)

〈Nα〉〈Nβ〉 for α �= β (11.48)

= 〈Nα (Nα − 1)〉(�η)

〈Nα〉2
for α = β,

where the indices α and β represent charges + and −, one may write the balance function
as

B(�η) = 〈N+〉r−+(�η) + 〈N−〉r+−(�η) (11.49)

− 〈N+〉r++(�η) − 〈N−〉r−−(�η).

At high collisional energy, one expects 〈N+〉 ≈ 〈N−〉 and r++(�η) ≈ r−−(�η) at central
rapidities. Additionally, for a symmetric collision system (e.g., Pb + Pb), one also expects
r−+(�η) = r+−(�η). The balance function may then be expressed in terms of the charge-
dependent correlation function, RCD, defined in §10.7 (see also Problem 11.13).

B(�η) = 〈Nch〉RCD(�η) (11.50)

where Nch = N+ + N−. Use of this expression for a measurement of the balance function,
rather than Eq. (11.47), has two obvious advantages: (1) the observable RCD is by construc-
tion robust against particle losses associated with detection efficiencies, and (2) the charge
particle multiplicity has a simple dependency on detection efficiency that is usually simple
to correct.

Pratt et al. have shown that the balance function is sensitive to radial flow effects that are
independent and distinct from delayed hadronization effects. Radial flow effects may be
modeled using a variety of techniques. The balance function thus constitutes an excellent
observable to investigate the relative effects associated with charge transport (flow) and
delayed hadronization [64]. The balance function (and related correlation functions) may
be adapted to studies of net baryon number or net strangeness transport by substituting the
number of baryons (strange particles) and anti-baryons (anti-strange) for the number of
positively and negatively charged particles, respectively.
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11.1.4 Forward–Backward Correlations

The production of particles in elementary collisions at very high energy spans a very large
range of rapidity. In order to understand the mechanisms that yield particles over such large
range, researchers have sought to measure the correlation level between particles emitted
forward and backward with a large rapidity gap. This type of correlation measurement is
commonly known as forward–backward correlation. We first describe the technique in
some detail, and next discuss its merits and limitations.

The forward–backward correlation technique essentially consists of a linear regression
between the number of particles produced at forward rapidities, within a narrow range δη
centered at +η, and the number of particles emitted at backward rapidities, −η, within
an equivalent narrow range δη. Given fixed values of η and δη, one determines and plots
the average number of particles produced forward, 〈nF 〉, for a given value (binned) of the
number produced backward, nB. One then fits the measured (nB, 〈nF 〉) data points using a
simple linear parameterization (i.e., a linear regression):

〈nF (nB)〉 = a + b × nB. (11.51)

The measurement is repeated, and the coefficients a and b determined, for several values of
the rapidity gap 2η. The coefficient b, which describes the strength of the linear regression
(i.e., the forward–backward correlation) may then be plotted as a function of the rapidity
gap 2η. While conceptually simple, the aforementioned measurement recipe is tedious of
execution, and thus an alternative, more straightforward method is commonly used. This
method relies on the hypothesis of a linear relationship between the particle yield emitted
forward and backward. One writes

nF − 〈nF 〉 = b × (nB − 〈nB〉) + r, (11.52)

where b is the correlation strength to be determined, while r represents a random variable
uncorrelated to the value of nB, and with a vanishing expectation value, 〈r〉 = 0. One may
then calculate the expectation value of the product nF nB as follows:

〈nF nB〉 = b
(〈n2

B〉 − 〈nB〉2
)+ 〈nF 〉〈nB〉 + 〈rnB〉. (11.53)

Given r is assumed to be uncorrelated to nB, the last term on the right vanishes, since
〈rnB〉 = 〈r〉〈nB〉 and 〈r〉 = 0. The slope coefficient b may consequently be written

b = 〈nF nB〉 − 〈nF 〉〈nB〉
〈n2

B〉 − 〈nB〉2
, (11.54)

which provides a simple and rapid method to determine the coefficient b in terms of the
covariance, Cov[nF , nB] = 〈nF nB〉 − 〈nF 〉〈nB〉, and the variance, Var[nB] = 〈n2

B〉 − 〈nB〉2.
Although the implementation of Eq. (11.54) is seemingly simple, accounting for detector

effects, most particularly particle losses, is not. We will see in §12.4.2 that for measure-
ments with limited efficiency, ε, the variance of the particle multiplicity, n, detected in
a given kinematical range scales as ε2Var[n] + εn. The ratio b expressed by Eq. (11.54)
consequently does not constitute a robust observable, and its correction to account for de-
tection efficiencies, which may differ at forward and backward rapidity, is therefore not
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trivial. However, since the information being sought lies within the strength of the co-
variance 〈nF nB〉 − 〈nF 〉〈nB〉, a measurement of forward-backward correlation may then be
obtained with a normalized two-particle cumulant:

CBF = 〈nF nB〉 − 〈nF 〉〈nB〉
〈nF 〉〈nB〉 (11.55)

which is, by construction, robust under particle losses associated with detection efficien-
cies.

11.1.5 Differential Transverse Momentum Correlations

Measurements of two- and multiple-particle correlations constitute powerful tools to study
heavy-ion collision dynamics and enable the identification in nucleus–nucleus collisions of
new correlation features not found in proton–proton interactions. These tools can be fur-
ther enhanced by inserting weights dependent on the kinematical properties of the particles
into the correlation function definition. We consider, as an example, the definition of two-
particle differential transverse momentum correlation functions. As for integral transverse
momentum fluctuation correlations (see §11.3.5), there is a certain latitude in the definition
of such correlation functions. Indeed, as for integral correlations, one can use both inclu-
sive and event-wise definitions [173]. One can also consider dynamical fluctuations as the
difference between measured fluctuations and statistical fluctuations, that is, fluctuations
expected for a purely Poisson system. Extension of the fluctuation variable �pT [92, 146]
is also possible. In this section, we use the notations introduced in prior sections and focus
our discussion only on an inclusive definition. Extensions to event-wise and other differ-
ential fluctuation measures are also possible [173].

The 〈�pT�pT 〉 correlation function is defined as a pair-averaged product of deviates
�pT�pT ,

〈�pT�pT 〉(�η, δφ) = 1

	

∫
	

ρ
(�pT�pT )
2 (η1, φ1, η2, φ2)

ρ2(η1, φ1, η2, φ2)
(11.56)

× δ(�η − η1 + η2)δ(η̄ − (η1 + η2)/2)

× δ(�φ − φ1 + φ2)δ(φ̄ − (φ1 + φ2)/2)

× dφ1dη1dφ2dη2dη̄dφ̄

where

ρ
(�pT�pT )
2 (η1, φ1, η2, φ2) =

∫
	

ρ2(�p1, �p2) (11.57)

×�pT,1�pT,2d pT,1d pT,2,

ρ2(η1, φ1, η2, φ2) =
∫
	

ρ2(�p1, �p2)d pT,1d pT,2,

The function ρ2(�p1, �p2) is the pair density expressed with respect to the particles’ rapidity,
azimuth, and transverse momentum; �pT,i = pT,i − 〈pT,i〉 and 〈pT,i〉 represents the inclu-
sive average of the particle momenta in the fiducial acceptance of the measurement.
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Given its explicit dependence on the product of deviates �pT,1�pT,2, the 〈�pT�pT 〉
correlation function provides a qualitatively different measure of particle correlations (rel-
ative to R2) that is sensitive to the particle momenta. Indeed, consider that a given pair
of particles may involve two particles below the average momentum 〈pT,i〉, two above, or
one above and one below. The product �pT,1�pT,2 may consequently be either positive or
negative. A correlated particle pair involving two particles below (or above) the mean mo-
mentum will have a positive contribution to the correlation average, while correlated pairs
consisting of one particle above and one particle below the momentum average should
have a negative contribution to the correlation average. The 〈�pT�pT 〉 correlator thus
provides a different way to probe particle production processes. For instance, processes
such as Bose–Einstein condensation yield correlated pairs in close momentum proximity
and should have a strong positive contribution to the 〈�pT�pT 〉 correlation function. On
the other hand, particle decays that lead to the production of one slow particle and one high-
momentum particle should have a negative contribution to 〈�pT�pT 〉. The study of this
correlation function thus provides an additional tool to probe and understand the particle
production dynamics in elementary and nuclear collisions.

A measurement of 〈�pT�pT 〉 can be straightforwardly implemented using Method 2
discussed in §11.1.2. The average momentum should be obtained as an inclusive average
over all particles of interest:

〈pT,i〉 = 1

Npart

∑
parts

pT,i (11.58)

Estimates of the density ρ2 and weighted density ρ (�pT�pT )
2 may be obtained using four

dimension histograms:

ρ̂2(η1, φ1, η2, φ2) = 1

Nev

1

�2
η�

2
φ

H2(η1, φ1, η2, φ2) (11.59)

ρ̂
(�pT�pT )
2 (η1, φ1, η2, φ2) = 1

Nev

1

�2
η�

2
φ

H (�p�p)
2 (η1, φ1, η2, φ2), (11.60)

where H2(η1, φ1, η2, φ2) is incremented by 1 at η1, φ1, η2, φ2 for each pair measured while
H (�p�p)

2 (η1, φ1, η2, φ2) is incremented by the product �pT,1�pT,2.

11.2 Three-Particle Differential Correlation Functions

Two-particle correlations enable a rather extensive study of particle correlations and have
been instrumental in the study of jet production, flow, and several other phenomena en-
countered in both elementary and nuclear collisions at high-energy. At times, however,
the interpretation of two-particle correlations may be somewhat ambiguous. For instance,
in 2004, the PHENIX and STAR experiments reported two-particle correlation func-
tions, with asymmetric pT ranges (one high- and one low-pT particle), that indicated the
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Fig. 11.7 Back-to-back suppression in like-sign (LS) and unlike-sign (UL) two-particle correlations measured in central (0–10%)
Au + Au collisions relative to correlations measured in minimum-bias (Min Bias) Au+Au and in p–p collisions. Data
from STAR collaboration. (Adapted from C. Adler, et al. Disappearance of back-to-back high pT hadron correlations in
central Au+Au collisions at

√
SNN = 200-GeV. Physical Review Letters, 90:082302, 2003.)

presence of a depletion in back-to-back emission at top RHIC energies, as illustrated in
Figure 11.7 [11].

Theoretical analyses of these correlation functions suggested that several distinct pro-
duction mechanisms might explain the suppressed and flattened away-side emission struc-
ture revealed by the two experiments. Unfortunately, the two-particle correlation measure-
ments could not readily distinguish whether the broadening of the away-side was due to
medium induced deflection of the leading partons with no actual broadening of the jet, or
due to the interactions and dispersion of jet fragments by the medium, or due to a new phe-
nomenon known as Mach cone emission, or perhaps another mechanism as yet unknown.
Measurements of three-particle correlations were then conceived to attempt a resolution of
this ambiguity.

If the jet structure is unchanged except for initial scattering of the leading jet parton,
then the width of the away-side particles remains unchanged between p–p and Au + Au
collisions. If, on the other hand, the jet fragments are dispersed (scattered) by the medium,
then the width of the away-side should indeed increase, as schematically illustrated in Fig-
ure 11.8b. Three-particle azimuthal correlations could also be useful for identifying Mach
cone emission or Cerenkov radiation. In the case of the predicted Mach cone emission, the
propagation of the away-side parton in the dense medium formed by the A–A collisions
was expected to lead to the production of a wake at an angle determined by the ratio of
parton speed and sound velocity in the medium. There were predictions of a sound veloc-
ity of the order of 0.33c, whereas the parton speed is near c. This might then have led to
particle emission at 60–70◦ from the away-side direction, as illustrated in Figure 11.8d, e.
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546 The Multiple Facets of Correlation Functions

Fig. 11.8 Searching for Mach cone emission with three-particle correlations. Schematic illustration of three-particle azimuthal
correlation patterns expected for (a) back-to-back jets; (b) medium induced broadening of the away-side jet;
(c) deflected jets; (d) transverse plane emission of Mach cone; and (e) 3-D Mach cone.

Mach cone emission was then anticipated to yield four-side structures at 60–70◦ from
the away-side direction, as schematically illustrated in Figure 11.8. In contrast, parton de-
flection (scattering) should have instead led to an elongation along the diagonal of the
away-side jet peak (Fig. 11.8c). Measurements of three-particles were subsequently car-
ried out by various groups to seek evidence for either of the correlated emission struc-
tures described earlier. Measurements by the STAR collaboration, in particular, involved
a medium to high-pT particle, hereafter labeled as particle 1, and two lower pT particles,
labeled 2 and 3. Measurements were done in terms of the relative angles �φ12 = φ1 − φ2

and �φ13 = φ1 − φ3 between the particles.
Recall from §10.2 that measured n-particle densities involve combinatorial contri-

butions from uncorrelated particle emission as well as correlated emission. It is thus
strongly advisable to carry out an analysis based on normalized three-particle cumulants,
R3(�φ12,�φ13) [158], which eliminate, by construction, combinatorial and uncorrelated
triplets of the form ρ1ρ1ρ1 and ρ2ρ1. Normalized cumulants R3 also naturally lend them-
selves to particle-yield corrections required to account for instrumental effects, discussed
in §12.4. In the context of the �φ12 vs. �φ13 three-particle correlation described earlier,
the normalized cumulant R3 may be written:

R3(�φ12,�φ13) = C3(�φ12,�φ13)

ρ1 ⊗ ρ1 ⊗ ρ1(�φ12,�φ13)
. (11.61)

As for measurements of second-order normalized cumulants, R2, one has the option of
measuring R3 as function of�φ12 vs.�φ13 directly, using for instance a mixed-event tech-
nique, or via averages of R3 measured as functions of the three angles φ1, φ2, and φ3

explicitly. In this latter case, the cumulant C3 may be written

C3(φ1, φ2, φ3) = ρ3(φ1, φ2, φ3) − ρ2(φ1, φ2)ρ1(φ3) (11.62)

− ρ2(φ1, φ3)ρ1(φ2) − ρ2(φ2, φ3)ρ1(φ1)

+ 2ρ1(φ1)ρ1(φ2)ρ1(φ3).
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In practice, the determination of ρ3(φ1, φ2, φ3) requires three dimensional histograms, and
thus may be rendered difficult by the size of the dataset, or by computational and storage
issues. One may therefore opt to determine the three-particle density directly in terms of the
relative angles �φ12 and �φ13. The determination of C3 then involves the computation of
three terms ρ2 ⊗ ρ1(�φ12,�φ13) and ρ1 ⊗ ρ1 ⊗ ρ1(�φ12,�φ13). Numerical techniques
to estimate these terms on the basis of histograms with finitely many bins are discussed
in §11.5. Direct estimations of ρ3(�φ12,�φ13) and terms of the form ρ2(�φi j ) with 2D
and 1D histograms, respectively, proceed with the same techniques as discussed in prior
sections.

Three-particle correlation studies in pseudorapidities can be done, similarly, by substi-
tuting rapidities ηi to azimuthal angle φi and differences�ηi j to�φi j in Eq. (11.62). Note,
however, that for correlation studies in rapidity (or pseudorapidity), no periodic boundary
applies, and one must consequently consider the integration and averaging of the correla-
tion functions over ranges ηi,min − η j,max ≤ �ηi j < ηi,max − η j,min. Numerical integration
and averaging techniques are discussed in §11.5.

The interpretation of three-particle cumulants measured in heavy-ion collisions as func-
tions�φ12 and�φ13 is greatly complicated by the presence of collective flow effects. Flow
indeed contributes irreducible terms of the form 〈vp(1)vm(2)vn(3)〉δp,m+ncos(pφ1 − mφ2 −
nφ3) to the cumulant that are functions of the product of three flow coefficients known to
be dependent on the particle momentum and subject to fluctuations as well as correlations.
A discussion of these terms is beyond the scope of this textbook but may be found in
ref. [160].

11.3 Integral Correlators

11.3.1 Introduction

Measurements of fluctuations in the relative production yields of two specific particle
species are commonly performed to study the underlying particle production mechanisms
and to investigate the nature of the system produced in elementary particle or nucleus–
nucleus collisions. For example, it was predicted that event-by-event fluctuations of the
ratio of the number of positively and negatively charged particles would be suppressed if
a quark gluon plasma, as opposed to a hadron gas, were produced in high-energy nucleus-
nucleus collisions. Similarly, fluctuations of the ratio of the yield of kaons to the yield of
pions were also expected to be modified if the nuclear matter produced in collisions lies
near a phase boundary or the critical point of nuclear matter. There also have been predic-
tions and expectations for fluctuations of other types of particles or particle species.

While a measurement of event-by-event fluctuations of the ratio, R, of the yields of
two particle types α and β observed in a specific fiducial momentum range, hereafter de-
noted Nα and Nβ , may sound straightforward, complications may occur that make such
measurements nontrivial. For instance, if the particle yields are small, there is a finite prob-
ability that the yield Nβ may vanish in a given event, thereby leading to a divergent ratio
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R = Nα/Nβ . Additionally, since particle detection efficiencies are typically functions of
several kinematical and collision parameters, correcting the measured ratios for such fluc-
tuations may become a rather complex task. Fortunately, a measurement of fluctuations
of the ratio R may be replaced by an essentially equivalent measurement of two-particle
integral correlators. Measurements of integral correlators are usually preferred relative to
measurements of event-by-event fluctuations of particle yield ratios because they are not
subject to divergences and can usually be corrected for detection efficiencies relatively
easily. Integral correlators also present the advantage of being theoretically well defined
and directly calculable. Their use for studies of relative yield fluctuations is consequently
recommended over measurements of ratios.

11.3.2 Equivalence between Particle Yield Ratio Fluctuations and Integral Correlators

Let us first demonstrate the equivalence between measurements of ratio fluctuations and
that of integral correlation functions. Let Nα and Nβ be the yields of two particle types
(e.g., positively and negatively charged particles) measured in a given event within a fidu-
cial momentum range. We are interested in measuring the variance 〈�R2〉 of the ratio
R = Nα/Nβ of these two yields. Let 〈Nα〉 and 〈Nβ〉 represent event averages, that is, the
expectation values of the yields Nα and Nβ . Let us further denote as �Nα and �Nβ the
deviations of Nα and Nβ from their respective means, and define 〈R〉 as the ratio of these
averages. The ratio R may thus be written

R = 〈Nα〉 +�Nα
〈Nβ〉 +�Nβ

(11.63)

= 〈R〉
(

1 +�Nα/〈Nα〉
1 +�Nβ/〈Nβ〉

)
.

If the magnitude of the fluctuations �Ni are small relative to the means 〈Ni〉, one can write

R = 〈R〉
(

1 + �Nα
〈Nα〉 − �Nβ

〈Nβ〉 + O(1/N2)

)
. (11.64)

The variance of the ratio normalized to the mean is thus

〈�R2〉
〈R〉2

= 〈�N2
α 〉

〈Nα〉2
+ 〈�N2

β 〉
〈Nβ〉2

− 2
〈�Nα�Nβ〉
〈Nα〉〈Nβ〉 . (11.65)

The preceding quantity is commonly denoted ν in the literature [161]. It may also be written

ν ≡ 〈�R2〉
〈R〉2

=
〈(

Nα
〈Nα〉 − Nβ

〈Nβ〉
)2
〉
. (11.66)

In the limit of independent particle production (Poisson statistics), one expects that
〈�N2

i 〉 = 〈Ni〉 and the correlator 〈�Nα�Nβ〉 vanishes. The so-called statistical limit of
ν, more aptly called the independent particle production limit, may thus be written

νstat = 1

〈Nα〉 + 1

〈Nβ〉 , (11.67)
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from which we find that the variance of the ratio fluctuations, 〈�R2〉, becomes

〈�R2〉stat = νstat〈R〉2. (11.68)

Such statistical fluctuations are typically of limited interest because they are predominantly
determined by the magnitude of the yields 〈Nα〉 and 〈Nβ〉. Of greater interest is the devia-
tion of ν from the statistical limit νstat. One consequently introduces the difference ν − νstat,
known in the recent literature as a measure of dynamical fluctuations, noted νdyn. It is
straightforward (Problem 11.1) to verify that

νdyn = 〈Nα (Nα − 1)〉
〈Nα〉2

+ 〈Nβ (Nβ − 1)〉
〈Nβ〉2

− 2
〈NαNβ〉

〈Nα〉〈Nβ〉 . (11.69)

This measure of fluctuations is of particular interest because the three terms it comprises
are related to integral correlators Rαβ , as follows:

Rαα = 〈Nα (Nα − 1)〉
〈Nα〉2

− 1, (11.70)

Rαβ = 〈NαNβ〉
〈Nα〉〈Nβ〉 − 1.

The number of particle pairs 〈Nα (Nα − 1)〉 and 〈NαNβ〉 are given by integrals of the particle
production cross sections

〈Nα (Nα − 1)〉 =
∫
	

ραα dη1dφ1d pT,1dη2dφ2d pT,2, (11.71)

〈NαNβ〉 =
∫
	

ραβ dηαdφαd pT,αdηβdφβd pT,β , (11.72)

and the average single particle yields are given by

〈Nα〉 =
∫
	

ρα dηαdφαd pT,α. (11.73)

The quantities ρα and ραβ are single- and two-particle densities, respectively:

ρα (ηα, φα, pT,α ) = d3N

dηαdφαd pT,α
, (11.74)

ραβ (ηα, φα, pT,α, ηβ, φβ, pT,β ) = d6N

dηαdφαd pT,αdηβdφβd pT,β
. (11.75)

The integrals may be taken over the entire acceptance of the detector or across specific
narrow ranges in rapidity, production azimuth, and transverse momentum deemed suitable
for the study of specific particle production mechanisms (e.g., emphasis on low- or high-pT

particles).
Clearly, the integral correlators, Rαβ , are in all ways similar to the differential correlation

functions introduced earlier in this chapter, and consequently sharing the same attributes
and properties. They scale as the inverse of the multiplicities Nα , and particle production
by m distinct and independent sources (or mechanisms) should satisfy

R(m)
αβ = 1

m
R(1)
αβ, (11.76)
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where R(1)
αβ and R(m)

αβ are the correlators for a single process and a superposition of m iden-
tical such processes, respectively (see Problem 11.2). Integral correlators are also robust
observables, i.e., observables independent of detection and measurement efficiencies – at
least to first-order approximation, as we shall discuss in detail in §12.4. This implies, by
construction, that the observable νdyn also shares these characteristics. One expects in par-
ticular that νdyn should scale as 1/m for nuclear collisions consisting of superpositions of
m independent proton-proton (or perhaps parton–parton) processes (see Problem 11.3):

ν
(m)
dyn = 1

m
ν

(1)
dyn. (11.77)

Note, on the other hand, that the observable ν = 〈�R2〉/〈R〉2 is not a robust observable
given its explicit dependence on 〈Nα〉 and 〈Nβ〉 in the independent-particle production limit.
Measurements of yield fluctuations are thus best conducted in terms of the robust variable
νdyn, which provides a simple and explicit connection to two-particle densities and is as
such easily interpreted.

Obviously, Eq. (11.64) is an approximation strictly valid only for small deviations �Ni

relative to the averages 〈Nα〉. The correlator method discussed earlier is thus not an exact
substitute for measurements of fluctuations of the ratios of particle species yields. Nonethe-
less, it remains the preferred observable given that (1) it does not suffer from the patho-
logical behavior (divergence) associated with a ratio of numbers that may vanish, and (2)
its interpretation in terms of integral correlators provides a strong and clear foundation for
the interpretation of data.

In the following subsections, we discuss specific implementations of the νdyn observable
for the study of net charge fluctuations, and fluctuations of particle production.

11.3.3 Net Charge Fluctuations

Although electric charge is a conserved quantity, particle production in elementary particle
and nuclear collisions is subject to net charge fluctuations. The net charge of particles pro-
duced in a given region of momentum space is expected to fluctuate collision by collision.
The size of the fluctuations should be in part determined by the magnitude of the charge
of the produced particles. In a quark gluon plasma (QGP), the charge carriers, the quarks,
have fractional charges (±1/3, ±2/3), and therefore fluctuations of net charge should be
suppressed relative to particle production in a hadron gas where charge carriers have inte-
ger charges (±1). Several theoretical works published in the 1990s in fact predicted that
a signature of the production of QGP phase in relativistic heavy-ion collisions could be
a substantial reduction of net charge fluctuations relative to that observed in lower energy
collisions systems where no QGP is expected to be formed [46, 120, 121]. Subsequently, in
the mid-2000s, several measurements were undertaken to find evidence for the predicted
suppression of net charge fluctuations by SPS and RHIC experiments. Measurements of
net charge fluctuations have also been conducted more recently at the LHC. While the
results were somewhat inconclusive, the correlation functions developed to carry out the
measurements have merits that extend beyond the search for explicit manifestation of
the quark gluon plasma, and as such remain of general interest for the study of particle
production dynamics in high-energy nuclear collisions.
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The question arises as to what constitutes a reliable and significant measure of fluctu-
ations of the net charge, Q = N+ − N− (for a review, see [157]). Clearly, the size of the
fluctuations must depend on the actual produced particle multiplicity, the magnitude of the
individual charges, as well as the efficiency of the counting and detection processes. A
measurement of the variance of the produced multiplicity would therefore be incomplete
and inconclusive. A measurement of the ratio N+/N−, however, would obviously be sensi-
tive to fluctuations of the net charge. Alternatively, one might also consider the variance of
Q relative to the average total number of charge particles 〈Nch〉 = 〈N+〉 + 〈N−〉:

ωQ ≡ 〈�Q2〉
〈N+〉 + 〈N−〉 = 〈Q2〉 − 〈Q〉2

〈Nch〉 . (11.78)

It is straightforward (see Problem 11.4) to show that one expects ωQ = 1, for a strictly Pois-
sonian system. Particle production is, however, not a perfect Poisson process. For instance,
Koch et al.[120] estimated that the production of resonances, such as the ρ-meson, in a
hadron gas would reduce the fluctuations to ωQ = 0.8. They further predicted that a dras-
tic reduction to ωQ = 0.2 would take place in the presence of a quickly expanding QGP
[46, 121].

Inspection of the expressions for ωQ reveals that this observable depends linearly on
the efficiency, ε, of the detection and particle counting process. Because the efficiency
may depend on the particle species considered as well as various other factors such as
the detector occupancy, environmental features, defective detector components, and so on,
the normalized variance constitutes a nonrobust observable, that is, one which requires a
detailed calculation of the detection efficiency involving the various characteristics (flaws)
and cuts used in the analysis. It is thus of interest to seek observables that are sensitive to net
charge fluctuations but remain robust under practical experimental conditions. An obvious
choice is the dynamic fluctuation observable, νdyn, introduced in the previous section. Let
Nα = N+ and Nβ = N−, one gets

ν+−,dyn = 〈N+(N+ − 1)〉
〈N+〉2

+ 〈N−(N− − 1)〉
〈N−〉2

− 2
〈N+N−〉

〈N+〉〈N−〉 . (11.79)

The quantities 〈N+(N+ − 1)〉, 〈N−(N− − 1)〉, and 〈N+N−〉 are the average number of pos-
itively charged, negatively charged, and unlike-sign pairs, respectively, measured within a
fiducial momentum volume over an ensemble of events. 〈N+〉 and 〈N−〉 are the average
yields of positive and negative particles averaged over the same fiducial volume and event
ensemble. ν+−,dyn shares all attributes and properties of νdyn correlation functions. It is de-
termined by the integral correlators R++, R−−, and R+− and is as such a robust observable.
ν+−,dyn may be measured as a function of global event observables such as the total

transverse energy or the charged particle multiplicity produced in a selected part of the
experimental acceptance. However, care must be taken to correct for finite bin width effects
as discussed in §12.4.3.

Measurements of correlation functions in elementary particle collisions at the ISR, the
Tevatron (FNAL), the SPS (CERN), and RHIC (BNL) have shown that R++ ≈ R−− <
R+−/2 [85, 193]. The dynamic fluctuations ν+−,dyn are consequently found to be negative
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in such elementary processes. They are also found to be negative in nucleus–nucleus colli-
sions, where ν+−,dyn roughly scales inversely as the produced particle multiplicity [3, 159].

Charge conservation fixes the total charge produced in an elementary particle (or nu-
clear) collision. A measurement encompassing all particles produced by a collision (i.e.,
over 4π acceptance and perfect detection efficiency) would thus not be subject to net charge
fluctuations. Particle production at SPS, RHIC, and LHC, however, spans several units of
rapidity, and it is typically not possible to measure the full range of produced particles. Net
charge fluctuations do take place on the scale of few units of rapidity. The strength of such
fluctuations should in fact be sensitive to the degrees of freedom (i.e., hadronic vs. par-
tonic) of the matter produced in high-energy collisions. Charge conservation does impact
the measured fluctuations. One finds [157] that charge conservation yields a contribution
to ν+−,dyn on the order of

νcc
+−,dyn = − 4

〈N〉4π
, (11.80)

where the superscript cc indicates the “charge conservation” limit, and 〈N〉4π is the av-
erage total charged particle multiplicity produced by a collision system at a given impact
parameter in nucleus–nucleus collisions (see also [46]).

Several other fluctuation observables have been proposed and used to measure net charge
fluctuations. Of particular note is the �q observable, specifically designed to identify
dynamic fluctuations of the net charge [92] produced in nucleus–nucleus collisions. By
construction, �q yields a constant value for nucleus–nucleus collisions that could be re-
duced to a superposition of independent proton–proton interactions. It thus enables, at least
in principle, identification of not only dynamic fluctuations, but fluctuations that might
vary nontrivially as a function of collision system size, or collision centrality relative to
proton–proton interactions. However, one can show that �q can be expressed in terms of
ν+−,dyn [157], as follows:

�q ≈ 〈N+〉3/2〈N−〉3/2

〈N〉2
ν+−,dyn. (11.81)

Given its explicit dependence on particle multiplicities, one concludes this observable is
nonrobust against particle detection efficiencies. Use of the observable ν+−,dyn is conse-
quently recommended for practical measurements of net charge fluctuations. Changes in
the collision dynamics may then be identified by scaling ν+−,dyn with the produced charged
particle multiplicity (corrected for detection efficiencies and charge conservation effects).

11.3.4 Kaon vs. Pion Yield Fluctuations

Anomalous fluctuations in the yield of kaons, relative to the yield of (charged) pions, were
suggested as a potential signature of the formation of a quark gluon plasma in high-energy
heavy-ion collisions [49]. Several measurements of such fluctuations have been conducted
at the SPS (CERN) in terms of the variance,�R2, of the ratio of the yield of charged kaons
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and charged pions measured in fixed rapidity and momentum ranges,

R = NK

Nπ
, (11.82)

relative to the mean ratio

〈R〉 = 〈NK〉
〈Nπ 〉 . (11.83)

Given that�R2 is sensitive to trivial statistical fluctuations, as well as actual correlations in
the particle production of kaons and pions, measurements in terms of this variable typically
rely on a comparison of the variance measured in actual events (siblings) relative to those
found in mixed events. Such a comparison is complicated, however, by various detector
effects, and most particularly, by detection efficiencies.

In light of the discussion in §11.3.2, which establishes an equivalence between the dy-
namical fluctuations measured with νdyn and deviations of the measured variance�R2 from
the independent particle limit, it is advisable to carry measurements of relative kaon and
pion yields in terms of νdyn, which is by construction a robust quantity. Such measurements
have been conducted at RHIC [4] in terms of the νKπ,dyn observable, defined as:

νKπ,dyn = 〈NK (NK − 1)〉
〈NK〉2

+ 〈Nπ (Nπ − 1)〉
〈Nπ 〉2

− 2
〈NKNπ 〉

〈NK〉〈Nπ 〉 , (11.84)

where 〈NK (NK − 1)〉 and 〈Nπ (Nπ − 1)〉 are second-order factorial moments of the pro-
duced kaon and pion yields, respectively, 〈NKNπ 〉 represents the average number of kaon
+ pion pairs observed event-by-event in the fiducial acceptance, whereas 〈NK〉 and 〈Nπ 〉
are the mean kaon and pion yields, respectively. This observable is by construction robust
against particle loses associated with detection efficiencies. It is thus suitable to measure
the rather small dynamical fluctuations observed in large multiplicity A–A collisions.

11.3.5 Transverse Momentum Fluctuations

Introduction

Studies of event-by-event average transverse momentum fluctuations in heavy-ion colli-
sions were initially undertaken to search for evidence of critical phenomena predicted to
take place near the hadron–parton phase boundary and identify the formation of a quark
gluon plasma [8, 9]. Although no conclusive evidence for the formation of a quark gluon
plasma arose from early studies in Au–Au collisions, it was clear that transverse mo-
mentum fluctuations constituted a useful technique to study the collective dynamics of
nucleus–nucleus collisions, most particularly radial flow effects. Studies were thus car-
ried out by several groups for multiple colliding systems and at several colliding energies
[6, 9, 12, 22, 104].

The event-wise mean transverse momentum is often defined as

〈pT 〉 ≡ 1

N

N∑
i=1

pT,i, (11.85)
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Fig. 11.9 Distribution of 〈pT 〉 per event (solid squares) measured for 5%most central Au+Au collision at
√
sNN = 200 GeV,

compared to a mixed event average pT distribution (open squares). Data from STAR collaboration. (Adapted from
J. Adams et al. Incident energy dependence of pt correlations at RHIC. Physical Review C 72:044902, 2005.)

where N is the total number of particles per event detected in the kinematical range of
interest and pT,i represents their transverse momenta. The kinematical range may be se-
lected in rapidity, azimuthal angle, and transverse momentum. The sum can in principle
be carried on all detected particles, neutral or charged particles only, or some specific set
of particle species. Figure 11.9 displays a measurement of the event-wise mean transverse
momentum (Black squares) measured by the STAR collaboration in Au–Au collisions at√

SNN = 200 GeV [9], compared to a mean pT distribution (open squares) obtained with
mixed events. Mixed events, defined in §12.4.5, are obtained by mixing particles from dif-
ferent events and thus carry no intrinsic particle–particle correlation. They thus constitute
a sensible reference to establish whether particles produced in a given event do exhibit cor-
relations. One finds that the mean pT distribution of actual events is slightly wider than the
reference histogram, which means that dynamic mean pT fluctuations take place in Au–Au
collisions, that is, fluctuations exceed the statistical fluctuations expected for a stochastic
system consisting of independently produced particles.

An intuitive and quantitative measure of dynamical fluctuations is the excess variance,
δp2

t , of the data relative to the reference:

δp2
t = σ 2

data − σ 2
ref (11.86)

where σ 2
data and σ 2

ref are the variance of the real and reference mean pT distributions, re-
spectively. However, in view of limited particle detection efficiencies, the measured mean
pT distributions (real and mixed events) may be subject to artificial broadening associ-
ated with purely instrumental effects. The δp2

t observable also obscures the origins of the
dynamical fluctuations, which are found in two- and multiparticle correlations. It is thus
of greater interest to use observables that render this connection more explicit. Unfortu-
nately, there exists several distinct ways to define and measure mean pT observables that
make this connection more explicit. Although qualitatively similar, the results obtained
with these different definitions are found to be quantitatively distinct.
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〈�pT�pT 〉 Correlation Functions
In this section, we introduce the so-called event-wise (EW) and inclusive (I) �pT�pT

observables. We show in the next section, that these observables can be both approximately
related to the excess pT variance defined by Eq. (11.86).

The event-wise average pT per event is defined as

〈〈pT 〉〉EW = 1

Nev

Nev∑
α=1

SpT
α

Nα
, (11.87)

where

SpT
α =

Nα∑
k=1

pT,k, (11.88)

which is the sum of the transverse momenta of the Nα particles in event α, and Nev is the
number of events considered.

The inclusive average pT is obtained by taking the event averages of SpT
α and Nα sepa-

rately:

〈〈pT 〉〉I =
1

Nev

∑Nev
α=1 SpT

α

1
Nev

∑Nev
α=1 Nα

=
∑Nev
α=1 SpT

α∑Nev
α=1 Nα

≡ 〈SpT 〉
〈N〉 . (11.89)

While the definition of 〈〈pT 〉〉EW may seem more “intuitive,” the inclusive definition has
the advantage of being directly related to the particle production cross section, and is thus
recommended. Noting that

∑
SpT
α is the sum of transverse momenta of all the particles

measured in the data sample of interest, and that
∑

Nα is the total number of such particles,
one can write

〈〈pT 〉〉I =
∑

all pT

Nparticles
. (11.90)

This expression is indeed just the average pT of all the particles measured, and it can be
written in terms of the inclusive single-particle cross section:

〈〈pT 〉〉I =
∫
	
ρ1(η, φ, pT )p2

T dηdφd pT∫
	
ρ1(η, φ, pT )pT dηdφd pT

, (11.91)

where the integration is taken over a selected subset 	 of the detector’s acceptance, and

ρ1 = d3N

pT dηdφd pT
. (11.92)

Writing a similar formula for 〈〈pT 〉〉EW is possible but yields a rather complicated ex-
pression in terms of conditional cross-sections (see, e.g., [173] and Problem 11.6). One
however expects that the two definitions converge in the large N particle production limit.

The event-wise and inclusive 〈�pT�pT 〉 observables are defined as covariances relative
to mean pT averages, respectively. The event-wise 〈�pT�pT 〉EW is given by

〈�pT�pT 〉EW = 1

Nev

Nev∑
α=1

S�pT�pT
α

Nα (Nα − 1)
(11.93)
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556 The Multiple Facets of Correlation Functions

with

S�pT�pT
α =

Nα∑
i=1

Nα∑
j=1, j �=i

(pT,i − 〈〈pT 〉〉EW ) (pT,i − 〈〈pT 〉〉EW ) . (11.94)

The inclusive 〈�pT�pT 〉I is similarly given by

〈�pT�pT 〉I =
∑Nev
α=1 S′�pT�pT

α∑Nev
α=1 Nα (Nα − 1)

= 〈S′�pT�pT 〉
〈N (N − 1)〉 (11.95)

with

S′�pT�pT

α =
Nα∑
i=1

Nα∑
j=1, j �=i

(pT,i − 〈〈pT 〉〉I )
(
pT, j − 〈〈pT 〉〉I

)
. (11.96)

As for 〈pT 〉EW , the covariance 〈�pT�pT 〉EW may seem more intuitive because it involves
an average of S�pT�pT

α calculated per pair of particles. The covariance 〈�pT�pT 〉I is, how-
ever, of greater interest because it can be expressed easily as an integral of the two-particle
cross section:

〈�pT�pT 〉I =
∫

accept ρ2�pT,i�pT, j dη1dφ1 pT,1d pT,1dη2 pT,2dφ2d pT,2∫
accept ρ2 dη1dφ1 pT,1d pT,1dη2dφ2 pT,2d pT,2

, (11.97)

with

�pT,i = pT,i − 〈〈pT 〉〉I , (11.98)

and

ρ2 = d6N

pT,1 pT,2 dη1dφ1d pT,1dη2dφ2d pT,2
(11.99)

Defined as a covariance, 〈�pT�pT 〉I features the same properties as regular correlation
functions. It is a robust variable against particle losses due to detection efficiencies and it
scales inversely as the produced particle multiplicity as well as the number of independent
particle sources (see Problem 11.8).

Relation between 〈�pT�pT 〉 and δp2
t

We show that the excess variance, δp2
t , defined by Eq. (11.86) can be expressed in terms

of the correlator 〈�pT�pT 〉 by calculating the first and second moments of the sum SpT

defined by Eq. (11.88).
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For events with a fixed number of particles N , one can write

〈SpT 〉N = 1

N

〈
N∑

i=1

pT,i

〉
= 1

N

N∑
i=1

〈pT,i〉 = 〈pT 〉 (11.100)

〈SpT 〉2
N = 1

N2

N∑
i=1

〈pT,i〉2 + 1

N2

N∑
i �= j=1

〈pT,i〉〈pT, j〉

〈(SpT )2〉N = 1

N2

〈(
N∑

i=1

pT,i

)⎛⎝ N∑
j=1

pT, j

⎞⎠〉

= 1

N2

N∑
i=1

〈p2
T 〉 + 1

N2

N∑
i �= j=1

〈pT,i pT, j〉.

The variance of SpT , for fixed N , is thus

Var [SpT ] = 〈(SpT )2〉N − 〈SpT 〉2
N (11.101)

= 1

N

(〈p2
T 〉 − 〈pT 〉2

)+ 1

N2
〈S′�pT�pT

α 〉.

First, note that the difference 〈p2
T 〉 − 〈pT 〉2 corresponds to the variance σ 2

pT
of the inclusive

pT distribution, in other words, that obtained by plotting a histogram of all measured par-
ticles pT values. Second, note that Var [SpT ] is actually the variance σ 2

data of the histogram
(data) of SpT discussed in §11.3.5. Clearly, the variance of an histogram of SpT accumulated
with mixed events should have the same exact structure except for the fact that none of the
particles composing a mixed-event are correlated. This implies that the quantity 〈S′�pT�pT

α 〉
should be null for mixed events. The variance Var [SpT ] of the mixed event spectrum is thus
simply equal to σ 2

pT
. We conclude that the excess variance δp2

t representing the difference

between the same and mixed-event variance is equal to 1
N2 〈S′�pT�pT

α 〉. One thus obtains the
result

δp2
t = 〈N (N − 1)〉

N2
〈�pT�pT 〉I , (11.102)

which tells us that the excess variance is approximately equal to the integral correlator
〈�pT�pT 〉I . It should be noted, however, that while the quantity 〈�pT�pT 〉I is by con-
struction robust against particle loss due to detector inefficiencies, the quantities δp2

t and
σ 2

pT
are not. It is consequently recommended to conduct pT fluctuations studies on the

basis of 〈�pT�pT 〉I rather than using a mixed-event technique and a combination of the
observables Var [SpT ], and δp2

t and σ 2
pT

. The use of 〈�pT�pT 〉I rather than 〈�pT�pT 〉EW

is also deemed preferable because 〈�pT�pT 〉I maps straightforwardly onto the well-
defined correlation integral (11.97), while 〈�pT�pT 〉EW yields a more convoluted ex-
pression in terms of conditional cross sections, expressed for fixed values of the event
multiplicity.
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11.4 FlowMeasurements

Measurements of the momentum anisotropy of the particles produced in heavy-ion colli-
sions constitute a central component of the RHIC and LHC heavy-ion programs because
they provide tremendous insight into the nature and properties of the matter formed in
these collisions. Theoretical studies indicate that the momentum anisotropy of produced
particles finds its origin in the initial asymmetry of the geometry of the matter produced
in heavy-ion collisions. The development of collective motion, or flow, results in part from
anisotropic pressure gradients, momentum transport, and differential particle energy loss
through the medium. From a practical standpoint, it is convenient to distinguish the ra-
dial and azimuthal components of the collective motion. The radial component, known as
radial flow, may be estimated based of momentum spectra and momentum correlations,
while measurements of the azimuthal component, known as anisotropic flow or simply
flow, are achieved via two- and multiparticle azimuthal correlation functions. Since the
spatial anisotropies vanish rapidly as collision systems expand and evolve, anisotropic flow
is generally considered to be self-quenching and thus expected to originate mostly from
the early phases of collisions, essentially during the first few fm/c (i.e., ∼ 3 × 10−24) of
heavy-ion collisions. Flow measurements are thus particularly sensitive to the early phases
of collisions and the nature of the high-temperature and high-density matter produced in
relativistic heavy-ion collisions. Flow measurements are also increasingly carried out on
simpler colliding systems, such as p–Pb or even p–p to find out whether the energy densi-
ties and gradients produced in these systems are sufficient to produce radial and anisotropic
flow.

11.4.1 Definition of Flow and Nonflow

Since the development of anisotropic flow is dependent on the initial geometry of collision
systems, it is particularly important to clearly define the geometry and coordinates used to
quantify measurements of flow.

Figure 11.10 presents a schematic illustration of the transverse profile of colliding nu-
clei and the participant region created by p–p interactions (which can be viewed as parton–
parton or proton–proton interactions). Note that the use of a classical description (i.e.,
classical particle trajectories) of the nuclei profile is justified by the very high momentum
of the colliding particles, which endows them with very short De Broglie wavelengths. The
reaction plane is defined by the beam direction and the impact parameter vector consist-
ing of a line joining the geometrical centers of the colliding nuclei. Particularly relevant
for flow measurements is the azimuthal angle, "RP, of the reaction plane relative to some
laboratory reference direction (not shown in the figure). The angle "RP cannot be dialed
macroscopically nor observed directly and must consequently be inferred from the distri-
bution of produced particles. All values of "RP are a priori equally probable; the proba-
bility of measuring a given value of "RP can thus be described as a uniform PDF in the
range [0, 2π ]. The initial anisotropic spatial geometry of the system causes anisotropic
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559 11.4 Flow Measurements

Fig. 11.10 The beam axis (extending out of page) and a line passing through the nuclei centers (xRP) define the nominal
reaction plane (RP). Event-by-event fluctuations in the location of p–p (i.e., nucleon–nucleon or parton–parton)
interactions define the participant region with axes of symmetry xPP and yPP. The beam and xPP axes define the
participant plane (PP).

pressure gradients and differential energy losses. As illustrated in Figure 11.6, the energy
and pressure gradient are maximum along the x-axis, and one thus expects the largest par-
ticle production of low momentum particles subjected to flow gradients along this axis.
High-pT particles produced during the earliest stages of a collision might not be driven by
pressure gradients, but must nonetheless penetrate through the spatially anisotropic slower
medium produced by the intersecting nuclei. Interactions with the medium are expected to
produce energy losses. And since path lengths are shorter along the x-axis than along the
y-axis, high-pT particles are expected to suffer differential energy losses. They too should
exhibit azimuthal anisotropies. The particle production cross section is thus expected to
depend on the azimuthal angle φ relative to the orientation of the reaction plane ". One
may express this cross-section as a Fourier series:

E
d3N

d p3
= 1

2π

d2N

pT d pT dy

{
1 + 2

∞∑
n=1

vn cos [n (φ −"RP)]

}
, (11.103)

where the coefficients, vn, are known as flow coefficients or simply as harmonic coeffi-
cients. The introduction of a factor of 2 in the preceding decomposition will be justified in
the discussion that follows.

As in prior sections, it is convenient to define shorthand notations ρ1(φ, y, pT ) and
ρ1(y, pT ) for the single particle density,

ρ1(φ, y, pT ) = 1

2π
ρ1(y, pT )

{
1 + 2

∞∑
n=1

vn cos [n (φ −"RP)]

}
(11.104)

The flow coefficients, vn, may be obtained as the expectation value of cos [n (φ −"RP)],

vn ≡ 〈cos [n (φ −"RP)]〉 (11.105)

=
∫ 2π

0 ρ1(φ, y, pT ) cos [n (φ −"RP)] dφ∫ 2π
0 ρ1(φ, y, pT ) dφ

. (11.106)

The integral in the denominator of Eq. (11.106) yields ρ1(y, pT ). To carry out the integral
in the numerator, with ρ1(φ, y, pT ) given by Eq. (11.104), recall the orthogonality relations
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of cosine and sine functions,∫ 2π

0
cos(nφ) cos(mφ) dφ = πδnm, (11.107)∫ 2π

0
sin(nφ) cos(mφ) dφ = 0, (11.108)

defined for integer values of n,m > 0, and with the Kronecker delta function δnm = 1
for n = m, and null otherwise. One can thus verify easily that the integral in the nu-
merator yields vn × ρ(y, pT ). Note that the factor of 2 originally inserted in the defi-
nition of the Fourier decomposition multiplies the factor π obtained from the integral∫ 2π

0 cos(nφ) cos(mφ) dφ. This consequently yields a factor 2π that cancels the 2π nor-
malization factor of the invariant cross section. One concludes that the expectation value
〈cos [n (φ −"RP)]〉 indeed yields the flow coefficients vn. Further note that Eq. (11.105)
produces flow coefficients, known as differential flow coefficients, that are dependent on
the rapidity, y, and transverse momentum, pT , of the particles. Integrated flow coeffi-
cients, also known as average flow coefficients, may be obtained by further integrating
the particle density over the fiducial rapidity and transverse momentum acceptance of the
measurements. Flow coefficients vanish at null pT and grow approximately linearly at low
pT while the density ρ1(y, pT ) is a steeply decreasing function at large pT . Systematic er-
rors associated with an integrated vn measurement based on a finite pT range can thus be
controlled relatively easily.

Experimentally, the integrals in Eq. (11.105) are replaced by sums over all (or selected)
particles measured in the fiducial acceptance. Given an estimate of the reaction plane angle,
"̂RP, one obtains flow coefficients with

vn =
〈∑Np

i=1 cos[n(φi − "̂RP)]
〉

〈Np〉 , (11.109)

where φi, i = 1,Np, are the azimuthal angles of measured particles and the sum runs over
all Np measured particles in any given event, and the brackets stand for an average over
events. The vn may be obtained in bins of pT and y or integrated over the entire fiducial
range of the measurement.

The Fourier decomposition used in Eq. (11.103) is obviously incomplete. Sine terms
were omitted because, on average, there should be an equal number of particles produced
below and above the reaction plane. Sine terms being odd in φ −"RP are thus expected
to vanish, on average, and are consequently not required for a description of the averaged
particle emission relative to the reaction plane. Fluctuations in the number of particles,
however, take place on an event-by-event basis. One might thus be tempted to introduce
sine terms in the Fourier decomposition (11.103). It is, however, usually deemed more
convenient and physically meaningful to describe collisions on event-by-event using the
notion of participant plane illustrated in Figure 11.10.

The first four harmonic coefficients, v1, v2, v3, and v4 are commonly known as directed
flow, elliptic flow, triangular flow, and quadrangular flow, respectively, given their
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Fig. 11.11 Illustration of the geometrical interpretation of flow coefficients; the sizes of the radial profiles are plotted with
rn(φ) = kn(1 + 2vn cos(nφ)), for given vn values. The scaling coefficients kn are set arbitrarily to facilitate the
visualization of the different flow terms. The thick solid line represents a sum of the four terms.

obvious geometrical interpretation (Figure 11.11). Appellations in terms of dipole,
quadrupole, and so on, should be frowned on since these names are usually reserved for the
multipole expansion of three-dimensional charge or mass distributions, not the harmonic
decomposition in azimuth of a flow field.

The reaction plane angle "RP is not readily accessible macroscopically but may be esti-
mated based on the distribution of produced particles. Several of the techniques commonly
used to estimate this angle and measure the flow coefficients based on two- and multipar-
ticle correlation functions will be described in following sections and their relative merits
discussed in §11.4.3. At this stage, it is important to point out that contributions to these
correlation functions involving two- or n-particle correlations, resulting, for instance, from
resonance decays or the production of jets, and having nothing to do with collective flow,
may enter in the determination of flow coefficients. These contributions are commonly re-
ferred to as nonflow. They are noted δn and can in principle be estimated from two-particle
correlations based on the following expression:

〈cos[n(φi − φ j )]〉 = 〈
v2

n

〉+ δn. (11.110)

Measurements of flow coefficients are further complicated by fluctuations of the magni-
tude of the flow on an event-by-event basis, all other collision properties being equal. The
variations are known as flow fluctuations, σ 2

vn, and formally defined as the variance of the
flow coefficients:

σ 2
vn = 〈

v2
n

〉− 〈vn〉2. (11.111)

From Eqs. (11.110) and (11.111), one gets:

〈cos[n(φi − φ j )]〉 = 〈vn〉2 + σ 2
vn + δn, (11.112)
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which implies that measurements of 〈cos[n(φi − φ j )]〉 are determined by the square of the
magnitude of the (average) flow, the variance of the flow, as well as nonflow effects. It
initially appeared that flow fluctuations might be inextricably linked to nonflow effects.
Recent developments, however, suggest flow fluctuations may largely be determined by
fluctuations in the overlapping nuclei geometry, known as the participant nucleons region.
Theoretical considerations further suggest that the principal axes of the participant region
may in fact deviate substantially from the nominal average overlap region, as schematically
illustrated in Figure 11.10. The flow coefficients measured according to the participant
plane are always larger than those obtained relative to the nominal reaction plane. This
leads to important contributions to the flow fluctuations.

11.4.2 Measurement Methods

In this section, we describe some of the many techniques developed over the years to es-
timate the flow coefficients vn. These techniques vary in applicability based on the size of
the data sample, ease of use, and their capacity to suppress or control nonflow effects.

Standard Event Plane Method

The standard event plane method, also known simply as event plane (EP) method, is the
most basic of all techniques used to determine flow coefficients. Defined by Eq. (11.105),
it requires the estimation of the reaction plane angle, "RP, from the event plane computed
on the basis of selected, or all, measured particles. The event plane determination proceeds
on the basis of a 2D vector, denoted �Qn, and known as the event plane vector of order
n. It is calculated in the transverse plane, event-by-event, on the basis of the following
expressions:

�Qn,x =
Np∑
i=1

wi cos (nφi) (11.113)

�Qn,y =
Np∑
i=1

wi sin (nφi) . (11.114)

The sums run over the Np measured particles. The φi, with i = 1,Np, are the azimuthal
angles of the measured particles in the laboratory reference frame. The coefficients wi are
weights assigned to each particle and designed to yield an optimal estimation of the event
plane vector �Qn, discussed in the text that follows. The event-plane angle, "n, and the
modulus of �Qn are obtained with

"̂n = 1

n
arctan (Qn, y/Qn, x) (11.115)

|Q̂n| =
√

Qn, x2 + Qn, y2. (11.116)

The weights, wi, are positive definite for even values of n, but must satisfy wi(−y) =
−wi(y) for odd harmonics. An optimal determination of the angle "n is achieved if the
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weights are set equal to the flow coefficients, wi = vn(pT , y) [182]. This is rather inconve-
nient because the vn are not known a priori. It is, however, common and legitimate practice
to use the pT of the particles as weight, since the flow coefficients are typically proportional
to the transverse momentum of the particles at low pT . Estimates of the flow coefficients,
noted vobs

n , are obtained by replacing "̂RP by "̂n in Eq. (11.109),

vobs
n =

〈
1

Np

Np∑
i=1

cos[n(φi − "̂n)]

〉
. (11.117)

Note that the orientation of the �Q vector is obviously influenced by the direction of all
particles included in its calculation. As an extreme case, consider that if �Q was determined
on the basis of a single particle, this particle’s momentum vector would be perfectly aligned
with it. This leads to an autocorrelation effect that tends to skew the �Q vector along the
direction of high-pT particles (most particularly if a weight proportional to pT is used),
and as a result inappropriately increases the value of the flow coefficients. To avoid this
auto-correlation bias, one must recalculate the vector �Q, for each particle included in the
vn calculation, to exclude the contribution of this particle to the flow vector. This may be
written

vobs
n =

〈
1

Np

Np∑
i=1

cos[n(φi − "̂ ′
n)]

〉
, (11.118)

where "̂ ′
n is obtained, for each particle, from

"̂ ′
n = 1

n
arctan(Q′

n,y/Q
′
n,x), (11.119)

with

�Q′
n,x = Qn,x − wi cos (nφi) (11.120)

�Q′
n,y = Qn,y − wi sin (nφi) . (11.121)

It is important to notice that for v2, the definition (11.117) does not specify whether
the anisotropy is in- or out-of-plane. Additional information, such as a measurement of
the spectator plane using forward detectors, was required in practice to establish that the
elliptic flow observed in heavy-ion collisions at RHIC and LHC energies is actually in-
plane. It also worth noting that, mathematically, there is no intrinsic or a priori relationship
between the different angles "n. However, the geometry and dynamics of nuclei–nuclei
collisions may impart a finite degree of correlation between these angles. Measurements
of their covariance Cov["m, "n] or average cos("m −"n) are thus of interest and provide
valuable insight about the collision geometry and dynamics.

While the aforementioned procedure corrects for autocorrelation effects, it does not ac-
count for fluctuations associated with the finite number of particles. Indeed, one can show
that Eq. (11.118) produces a biased estimator of the flow coefficient vn because the event
plane vector, Q̂n, randomly deviates from the actual reaction vector due to the finite particle
multiplicity. For large multiplicities, the fluctuations of Q̂n can be shown to be Gaussian in
the Qx–Qy plane, and thus the measured and true Fourier coefficients may be related by the
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following expression: [151]

vobs
n ≡ 〈cos [n (φ −"RP)]〉 (11.122)

= 〈cos [n (φ −"n)]〉 × 〈cos [n ("n −"RP)]〉 (11.123)

= vn × 〈cos [n ("n −"RP)]〉 , (11.124)

from which we conclude that a correction for event plane resolution may be achieved with

vn = vobs
n

Rn
, (11.125)

where the event plane resolution Rn is defined by

Rn = 〈cos [n ("n −"RP)]〉 . (11.126)

The event plane resolution coefficients Rn must be calculated for each harmonic n and
obtained as an average taken over a large ensemble of events. Their magnitude depends
on the strength of the flow vn and the particle multiplicity M . They may be evaluated
analytically if the Q̂n fluctuations are Gaussian according to [151]

Rn(χ ) =
√
π

2
χe−χ2/2

[
I(n−1)/2(χ2/2) + I(n+1)/2(χ2/2)

]
, (11.127)

where χ = vn

√
M , and Ik are modified Bessel functions of order k. The functions Rn(χ )

are plotted in Figure 11.12 for k = 1, k = 2, and so on. Eq. (11.127) is useful to model the
behavior of the event plane resolution relative to the strength of the flow coefficients and
the particle multiplicity, but, it is not readily sufficient for the experimental determination
of the event plane resolution.

The event plane resolution can be estimated directly from the data using the subevent
method, which consists of randomly subdividing the particles of each measured event into
two subevents A and B of (approximately) equal size M/2. One may then calculate the flow
vectors Q̂A

n and Q̂B
n of the two subevents and determine the correlation 〈cos[n("̂A

n − "̂B
n )]〉.

For Gaussian fluctuations and sufficiently large multiplicities, the two angles "̂A
n and "̂A

n

are statistically independent, and one may consequently write〈
cos

[
n
(
"̂A

n − "̂B
n )
]〉 = 〈

cos
[
n
(
"̂A

n − "̂RP
)]〉× 〈

cos
[
n
(
"̂B

n − "̂RP
)]〉

(11.128)

= 〈
cos

[
n
(
"̂A

n − "̂RP
)]〉2
.

The event plane resolution of subevents A (or B) is thus

Rn,sub =
√〈

cos
[
n
(
"̂A

n − "̂B
n

)]〉
. (11.129)

The resolution for a full event may then be estimated from

Rn,full = Rn(
√

2χsub). (11.130)

The use of subevents is a powerful technique that enables a wide range of studies. One
can produce subevents by random selection of particles of actual events, or on the basis of
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Fig. 11.12 Event plane resolution, Rn, as a function ofχ = vn
√
M, where vn is actual flow, andM is the number of particles

involved in the estimation of the event plane resolution. The harmonic number of the correlation n is an integer k
times the harmonic numberm of the event plane.

the (pseudo)rapidity, charge, or any combination of these criteria. The use of a pseudora-
pidity gap, in particular, constitutes a straightforward method for suppressing short-range
correlations and consequently suppressing nonflow effects.

Three techniques, known as φ weighting, recentering, and shifting, are commonly used
to correct for detector artifacts in the evaluation of the event plane angle "n. They are
described in §12.4.4.

Two and Multiparticle Correlation Methods

As discussed in §11.1.2, two-particle densities measured as function of the relative az-
imuthal angle between two produced particles are sensitive to collective flow. One indeed
finds

dNpairs

d�φ
∝ 1 +

∞∑
n=1

2v2
n cos (n�φ) , (11.131)

where all pairs of a particular momentum and rapidity range are selected for the calculation
of this pair spectrum. It is therefore possible to obtain the square of the flow coefficients,
vn, from fits of pair azimuthal distributions. This technique is known as the pairwise corre-
lation method. Experimentally, this can be readily accomplished by taking measurements
of the normalized two-particle density r2(�φ) or the normalized cumulant R2(�φ) since,
by construction, these observables yield measurements that are corrected for detection ef-
ficiencies. The properly normalized pair spectrum is thus

dNpairs

d�φ
= 〈n〉2

〈n(n − 1)〉 r2(�φ), (11.132)

where 〈n〉 and 〈n(n − 1)〉 are the average number of particles and average number of pairs
detected in the nominal momentum and rapidity range of the measurement of r2(�φ),
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566 The Multiple Facets of Correlation Functions

respectively. The factor 〈n〉2/〈n(n − 1)〉 is introduced to account for the fact that the nu-
merator of r2(�φ) is proportional to the number of measured pairs while its denominator
has an n2 dependence on the number of particles.

The two-particle cumulant method is conceptually identical to the pairwise correlation
method. However, instead of carrying out a fit of measured pair spectrum, one evaluates
the average of the square of the flow coefficients directly by a measurement of 〈cos[n(φ1 −
φ2)]〉. Coefficients obtained with this method are denoted

vn{2}2 ≡ 〈cos[n(φ1 − φ2)]〉, (11.133)

where the average is calculated for all (selected) pairs of all (selected) events. It is important
to realize that the coefficients vn{2}2 are actually a measure of the average of the square of
the flow coefficient 〈v2

n〉. They are thus sensitive to fluctuations as well as the magnitude of
the flow coefficients and nonflow effects, as per Eq. (11.112).

It is useful and convenient to introduce the particle unit flow vector un,i, defined in the
complex plane as

un,i ≡ einφi = cos nφi + i sin nφi, (11.134)

where φi, as in prior sections, denotes the azimuthal angle of particle i. Considering that
the number of particles produced below and above the reaction are equal on average, one
may write (see Problem 11.10)3:

〈un,1u∗
n,2〉 = 〈cos nφ1 cos nφ2〉 = v2{2}2 (11.135)

The unit vector un,i consequently provides for an elegant technique to study differential
flow (i.e., the flow dependence on transverse momentum and rapidity), known as the scalar
product method:

vn(pT , y) = 〈Q′
n,iu

∗
n,i(pT , y)〉

2
√

Qa
nQb

n

, (11.136)

where the average 〈Q′
n,iu

∗
n,i(pT , y)〉 is calculated for all particles of interest and averaged

over all events. The event plane vector, hereafter expressed in the complex plane, is calcu-
lated as

Q′
n,i =

∑
j �=i

w jun, j, (11.137)

where the coefficients wi are weights chosen to optimize the event plane determina-
tion. The sum over all particles j excludes particle i in order to avoid autocorrelations.
Computationally, one can avoid the recalculation of Q′

n,i for all particles by first com-

puting Qn = ∑
j w jun, j and using Q′

n,i = Qn − un,i. The factor 2
√

Qa
nQb

n, in the denom-
inator of Eq. (11.136), corrects for the event plane resolution and can be obtained as
〈cos[n("a −"b)]〉.

3 The product un,1u∗
n,2 yields a term proportional to sin nφ1 sin nφ2, which is strictly null only in the absence of

nonflow correlations.
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567 11.4 Flow Measurements

The scalar method is shown in [10] to yield statistical errors that are slightly smaller than
those achieved with the standard event plane method. Indeed, given that the event plane
vector Qn is in principle based on an arbitrary selection of particles, it can be obtained
from single particles. The scalar product then reduces to the event plane method, but with
poorer resolution. Additionally, note that division by the event resolution corrects the mean
vn values obtained but not their statistical fluctuations.

The two-particle correlators defined by Eqs. (11.125,11.133,11.136) are sensitive to col-
lective flow as well as two- and few-particle correlations commonly known as nonflow.
They thus tend to overestimate the flow coefficients vn. To suppress nonflow contributions,
it is thus desirable to utilize correlation functions that are by construction insensitive, or
suppress the effects of two-, or few-particle correlations. We saw in §10.2 that cumulants of
order n, noted Cn, are by construction insensitive to correlations of order m < n. Suppres-
sion of nonflow, dominated by two-particle correlations, in the determination of flow can
thus be accomplished with higher order cumulants. However, note that since the correlators
are obtained by averaging over azimuthal angles in the range [0, 2π [, odd order cumulants
vanish by construction and are thus of little interest in the context of flow measurements.
Measurements of flow, with suppressed nonflow, are thereby achieved with even-order cu-
mulants exclusively. We here restrict our discussion to fourth-order cumulants, but exten-
sions to higher orders are possible and well documented in the literature [182].

The fourth-order cumulant C4 was first introduced in §10.2.2 in the context of generic
particle correlation functions. In the context of azimuthal correlations, it may be written

C4(1, 2, 3, 4) = ρ4(1, 2, 3, 4) −
∑
(4)

ρ1(1)ρ3(2, 3, 4) (11.138)

−
∑
(3)

ρ2(1, 2)ρ2(3, 4) + 2
∑
(6)

ρ1(1)ρ1(2)ρ2(3, 4)

− 6ρ1(1)ρ1(2)ρ1(3)ρ1(4).

The indices 1, 2, 3, and 4 are here used as shorthand notations for the azimuthal angle
φi, i = 1, 2, 3, 4, and the sums are carried over terms consisting of permutations of these
indices. For flow measurements involving a sum over all 4-tuplets of particles, terms that
contain odd-order densities must vanish when calculated for a large event ensemble since
the average cosine of unpaired angles vanishes when average over [0, 2π ]. The averaged
four-cumulant consequently reduces two terms: one involving the four-particle density
ρ4(1, 2, 3, 4) and the other dependent on the product ρ2(1, 2)ρ2(3, 4). Here again, it is
convenient to use particle flow vectors un,i defined in the complex plane. The fourth-order
cumulant may thus be written

〈〈un,1un,2u∗
n,3u∗

n,4〉〉 = 〈un,1un,2u∗
n,3u∗

n,4〉 − 2〈un,1u∗
n,2〉〈un,3u∗

n,4〉 (11.139)

where the double brackets 〈〈〉〉 indicate the correlator is a cumulant. One can verify (see
Problem 11.14) that in the absence of flow fluctuations, the four-cumulant is equal to −v4

n .
One thus defines the fourth-order flow cumulant flow coefficients as

vn{4} = (−〈〈un,1un,2u∗
n,3u∗

n,4〉〉
)(1/4)

. (11.140)
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The vn{4} notation is universally used to identify flow coefficients determined on the basis
of the fourth-order cumulant (11.139). Flow coefficients obtained based on higher order
cumulants are likewise noted vn{6}, vn{8}, and so forth. However, note that because higher
order cumulants involve the combination (subtraction) of several terms, they may yield
negative values resulting from either fluctuations, or limited statistics. Their interpretation
may consequently be somewhat challenging, and measurements of these quantities typi-
cally require substantially larger data samples to achieve the same statistical significance
as that obtained with second-order cumulants.

Cumulants may be determined with generating functions, as discussed in §§2.13 and
10.2.2, or by direct calculation.

Other multiparticle cumulants are also of interest in the context of mixed harmonic stud-
ies. An important example of such studies involves the measurement of the three-particle
correlator

〈un,1un,2u∗
2n,3〉 = v2

nv2n, (11.141)

where the particle flow vectors of particles 1 and 2 are calculated at order n while the flow
vector of the third particle is obtained at order 2n. This correlator was used successfully
at RHIC to suppress nonflow effects in the study of v1 and v4 flow coefficients. Mixed
harmonics are also extremely useful in studies (searches) of the chiral magnetic effect
(CME) [125, 124, 183].

Q-Distribution Method

In previous sections, we showed how the event plane vector �Q may be used to infer the
orientation of the reaction plane of colliding nuclei. But �Q also provides information about
the magnitude of the flow itself. The flow vector �Q may be determined based on a subset of
or all measured particles. Its magnitude and direction are thus effectively determined by a
random walk process, that which consists of the sum of all particle transverse momentum
vectors. In the absence of flow and other forms of particle correlations, the random walk
yields a vector �Q whose magnitude grows in proportion to the square root of the number
of particles M involved in its calculation. But in the presence of flow, that is, for finite
flow coefficients, vn, the magnitude of the vector grows proportionally to Mvn. It is thus
convenient to introduce a normalized flow vector

�qn =
�Q√
M

(11.142)

whose magnitude should be order unity in the absence of flow, and that should scale pro-
portionally to

√
Mvn in the presence of flow. Based on the discussion presented in §2.12.2,

we conclude that |�qn| = vm

√
M〈pT 〉, where 〈pT 〉 is the average transverse momentum of

the particles selected for the calculation of �Q (corresponding to the average step size in the
language of a random walk used in §2.12.2). The magnitude of the flow vector �qn then has
the following probability distribution in the large M limit:

1

N

dN

dqn
= qn

σ 2
n

exp

(
−v2

nM + q2

2σ 2
n

)
Io

(
qnvn

√
M

σ 2
n

)
. (11.143)
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Fig. 11.13 Probability density function of the modulus of the normalized flow vector�qn for selected values of the flow coefficient
vn and the fluctuation parameterσtot.

where Io is a modified Bessel function, vn are flow coefficients, and σn is a measure of
fluctuations.

σ 2
n = 1

2

(
1 + Mσ 2

tot

)
, (11.144)

where

σ 2
tot = δn + 2σ 2

vn (11.145)

As illustrated in Figure 11.13, the presence of flow shifts the distribution toward larger
qn values, while increased fluctuations, determined by σtot, broaden the distribution. The
Q-distribution method thus consists in estimating vn and σn based on a fit of a measured
qn distribution with Eq. (11.143). The method enables the determination of σtot but cannot
discern the effects of nonflow, δn, and flow fluctuations σvn separately.

Lee–Yang Zeros Method

The Lee–Yang zeros method is based on a technique developed in 1952 by Lee and Yang
to detect a liquid–gas phase transition [2, 38, 53]. The technique involves the second-
harmonic flow vector �Q2 projected onto an arbitrary laboratory direction specified by an
angle θ :

Qθ2 =
M∑

i=1

wi cos [2(φi − θ )] . (11.146)

The sum is carried out over selected or all particles i with azimuthal angle φi and weight
wi. Typically, the projection is evaluated for five arbitrary but equally spaced values of θ in
order to suppress detector acceptance effects. The method then entails finding the zero(s)
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of a complex generating function of the form

Gθ2 (ir) =
∣∣∣〈eirQθ2

〉∣∣∣ , (11.147)

where r is variable along the imaginary axis of the complex plane and the average 〈〉 is taken
over all events of interest. One uses the square of the modulus to determine the location of
the first minimum, rθo , corresponding to an angle θ , determined by the integrated flow

V θ
2 = j01/r

θ
o, (11.148)

v2 = 〈
V θ

2

〉
θ
/M, (11.149)

in which j01 = 2.405 is the first root of the Bessel function J0 and M is the multiplicity of
the event. The average 〈〉θ is taken over the lab angles θ and yields the flow coefficient v2

relative to the reaction plane axis. For implementation details and variants of the method,
see, e.g., ref. [182] and references therein.

Fourier and Bessel Transforms Method

Let fo(Qx,n) denote the PDF of the x component of the Qn flow vector in the absence of flow
(i.e., vn = 0) but finite nonflow correlations. Assume that the presence of a flow field does
not otherwise influence the nonflow correlations. By virtue of the central limit theorem,
the distribution of Qn in the presence of flow can then be obtained simply by shifting the
argument of fo by an amount that depends on the reaction plane angle ". Averaging over
all values of this angle, one obtains

f (Qx,n) ≡ 1

N

dN

dQx,n
=
∫

d"

2π
fo(Qx,n − vnM cos(n")). (11.150)

Next calculate the Fourier transform of this function:

f̃ (k) = 〈
eikQn,x

〉
=
∫

d"

2π

∫
dQx,neikQn,x fo(Qx,n − vnM cos(n")) (11.151)

Defining t = Qx,n − vnMcos(n"), Eq. (11.151) may then be written

f̃ (k) =
∫

d"

2π
eikvnM cos(n")

∫
dteikt fo(t ) (11.152)

= J0(kvnM ) f̃o(k),

in which one finds that the flow and nonflow contributions to the Fourier transform f̃ (k) are
factorized: the transform f̃o(k) characterizes the nonflow correlations whereas J0(kvnM )
expresses the dependence on the flow magnitude vn. The zeros of the Fourier transform are
determined by the zeros of the Bessel function J0(kvnM ). One may then get an estimate of
the flow coefficient vn based on the first zero, k1, of the Fourier transform

vn = jo1

k1M
(11.153)
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where, as in the previous section, jo1 corresponds to the first zero of the Bessel function
J0(z), and is equal to j01 = 2.405. This technique, called Fourier and Bessel transforms
method, is equivalent to the Lee–Yang zeros method covered in the previous section.

A similar reasoning can be applied to the two-dimensional Fourier transform of
dN/dQn,xdQn,y. One gets (see Problem 11.15)

f̃ (k) =
∫

dQn,xeikxQn,x dQn,yeikyQn,y
d2N

dQn,xdQn,y
(11.154)

= dQnJ0(kQn)
dN

dQn
∼ J0(kvnM ).

The flow contribution is decoupled from all other correlation contributions. The Bessel
transform, Lee–Yang zeros, and Q-distribution methods are thus similar if not totally equiv-
alent. See [182] and references therein for a more in-depth discussion of this and related
topics.

11.4.3 Pros and Cons of the Various FlowMethods

The methods presented in the previous sections may be compared based on their statistical
accuracy (for equal data samples) and in their capacity to suppress or disentangle nonflow
effects from flow. For instance, two-particle correlations obtained in a relatively narrow
pseudorapidity range, with a single harmonic, measures flow in the participant plane, but
the use of mixed harmonics, for instance the first harmonic from spectator neutrons and
second harmonic for particles produced at central rapidities, should provide elliptic flow in
the reaction plane.

Nonflow contributions, noted δn, are defined by Eq. (11.112) as the excess correlation
from two- or few-particle correlations arising from particle production dynamics not re-
lated to collective effects (collective behaviors resulting from pressure gradients or dif-
ferential attenuation determined by the collision geometry) and thus the collectivity of
particles produced. Nonflow contributions should therefore be more or less independent
of the particles’ direction relative to the reaction plane. Sources of nonflow correlations
include hadronization in jets, decays of short-lived particles, short-range correlations such
as the Hanbury-Brown Twiss (HBT) effect, and energy/momentum conservation. Nonflow
correlations tend to be stronger for particles emitted near one another in momentum space,
particularly rapidity. It is thus possible to reduce the effects of nonflow in the evaluation of
flow coefficients by considering particles emitted in distinct and well separated ranges of
rapidity (pseudorapidity) and transverse momentum, or particle pairs with different charge
combinations. The scalar product method, in particular, lends itself well to such measure-
ments with a large η gap.

Nonflow effects are dominated by two-, three-, and few-particle correlations. As such,
δn primarily scales as the inverse of the produced multiplicity (see §10.2.3) and thus lead
to a nearly constant contribution of M〈u∗〉 on collision centrality while flow’s contribution
rises and fall from peripheral to central collisions. Note, however, that the contribution of
nonflow effects is likely to exhibit a small dependence on collision centrality, in A +A
collisions, as a result of the changing relative probability of rare or high-pT process with
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collision impact parameter. Be that as it may, nonflow contributions to the correlator 〈uQ∗〉
may be subtracted using the so-called AA–pp method given that nonflow contributions to
this correlator should be nearly independent of collision centrality. It is worth noting that
the AA–pp method can be used for any n-particle correlation measurement of harmonic
coefficients.

Another technique commonly used to reduce nonflow effects in the determination of
flow coefficients is the use of multiparticle cumulants, which by construction suppress
by ∼ 1/M for each particle added to a correlator. Indeed, measurements taken at RHIC
indicate that four-particle cumulants remove nonflow effects almost completely [182].

An additional uncertainty in the determination of flow coefficients arises from flow fluc-
tuations. For a given collision system, beam energy, and impact parameter, one expects flow
to reach an expectation value determined largely by the geometry of the collision system.
By the very nature of microscopic systems, fluctuations in the initial geometry or the col-
lision dynamics may occur. One thus expects the flow magnitude to exhibit event-by-event
fluctuations. These fluctuations, however, affect the various flow measurement methods
quite differently. The effects of flow fluctuations can be expressed formally as follows for
two-, four-, and six-particle cumulants:

vn{2} =
√〈

v2
n

〉 = (〈
vn

〉2 + σ 2
v

)1/2
(11.155)

vn{4} = (
2
〈
v2

n

〉2 − 〈
v4

n

〉)1/4
(11.156)

vn{6} = [
(1/4)

(〈
v6

n

〉− 9
〈
v4

n

〉〈
v2

n

〉+ 12
〈
v2

n

〉3)]1/6
(11.157)

and so on, for higher-order cumulants. Clearly, while v{2} is directly sensitive to 〈v〉 and
σv , higher cumulants require knowledge of higher order moments of the distribution in
v. Models can, however, be invoked to estimate the relations between these moments. For
instance, in the limit of a Gaussian flow distribution, one finds [185]

vn{2} = (〈vn〉2 + σ 2
v

)1/2 ≈ 〈vn〉 + σ 2
v /(2〈v〉) (11.158)

vn{4} = (〈vn〉4 − 2σ 2
v 〈vn〉2 − σ 4

v

)1/4 ≈ 〈vn〉 − σ 2
v /(2〈v〉) (11.159)

vn{6} = (〈vn〉6 − 3σ 2
v 〈vn〉4

)1/6 ≈ 〈vn〉 − σ 2
v /(2〈vn〉) (11.160)

We thus conclude that while flow fluctuations increase the magnitude of the coefficients
estimated from two-particle correlations (v{2}), they reduce by an approximately equal
amount the values obtained with four- and six-particle cumulants. The preceding relations
strictly hold only if σv � 〈v〉. However, the flow vector distribution is, as we saw in §11.4.2,
not perfectly Gaussian. Including effects of flow fluctuations, one gets [185]:

1

N

dN

vndvn
= 1

σ 2
n

exp

(
−v2

n + v2
n,o

2σ 2
n

)
Io

(
vnvn,o

σ 2
n

)
. (11.161)

where vn,o is the nominal value of the flow coefficient (i.e., its expectation value, vn,o =
〈vn〉). The v2 cumulants can then be shown to be

v2{2} = v2
2,o + 2σ 2

v , (11.162)

v2{n} = v2,o for n ≥ 4. (11.163)
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Fig. 11.14 Ratio of the elliptical flow coefficients v2 obtained by several methods to those obtained with the event plane method
in the analysis of charged hadrons measured in Au + Au collisions at

√
sNN = 200 GeV [2, 7]. Ratios are shown for the

random subevents, pseudorapidity subevents, scalar product, two-particle cumulants, four-particle cumulants,
Q-distribution, and Lee–Yang zeros sum generating and product generating functions. (Data from STAR
collaboration [182].)

Effects of nonflow on the event plane method are more complicated to evaluate but have
been shown to range from v2{EP} = v2{2} = 〈v2〉1/2 to v2{EP} = 〈v〉, depending on the re-
action plane resolution [19]. The dependence of fluctuations of the Lee–Yang zeros method
and its derivatives are nonlinear [184]. For Bessel–Gaussian distributions in v, these meth-
ods yield the same results as higher cumulants, namely 〈v〉 = vo of the Bessel–Gaussian
distribution. Consequently, if the v2 distribution is Bessel–Gaussian, all multiparticle meth-
ods should yield the same result: 〈v〉 = vo = v2,RP [37].

To summarize, we note that the event plane method is a special case with results ranging
between v2{2} and v2{4} depending on the reaction plane resolution. Higher-order cumu-
lants v2{6} and Lee–Yang zeros results, however, tend to agree quantitatively with v2{4},
as illustrated in Figure 11.14.

11.5 Appendix 1: Numerical Techniques Used in the Study of
Correlation Functions

The calculation of products, such as ρ1 ⊗ ρ1(�φ) and ρ1 ⊗ ρ1 ⊗ ρ1(�φ12,�φ12) re-
quired in the measurements of two-particle cumulant C2(�φ) and three-particle cumulant
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C2(�φ12,�φ12), is in principle based on integrals over coordinates φ1, φ2, and φ3 (see,
e.g., Eq. (11.10)). In practice, the densities ρ1(φi) are estimated on the basis of histograms
with a finite number of bins. One must thus replace the integrals over continuous variables
by sums running over the histograms bins:

ρ1ρ1(�φ12) ≡ ρ1ρ1(m) (11.164)

=
n∑

i, j=1

ρ1(i)ρ1( j)δm, j−i

ρ1ρ1ρ1(�φ12,�φ13) ≡ ρ1ρ1ρ1(m, p)

=
n∑

i, j,k=1

ρ1(i)ρ1( j)ρ1(k)δm, j−iδp,k−i.

The indices i, j, k are used to specify the φ bins of particles 1, 2, and 3, respectively, while
the integer variables m and p correspond to bins in �φ12 and �φ13, respectively. The delta
functions ensure the proper match between�φi j and the difference φi − φ j. This procedure
assumes a one-to-one bin mapping. With nφ bins in φ for each particle, this would require
twice as many bins for the angle difference. However, given the periodicity of the φ and
�φ variable, one may transform the integers m and p according to

if m = i − j < 0 then, replace m by m + nφ. (11.165)

and similarly for p. The number of bins in �φ, is consequently n�φ = nφ . The afore-
mentioned technique may similarly be applied to the determination of the terms ρ2 ⊗
ρ1(�φi j,�φik ) of the C3 cumulant. One gets

ρ2ρ1(m, p)123 =
n∑

i, j,k=1

ρ2(i1, j2)ρ1(k3)δm,i1+ j2δp,i1+k3 (11.166)

ρ2ρ1(m, p)231 =
n∑

i, j,k=1

ρ2(i2, j3)ρ1(k1)δm,i1+ j2δp,i1+k3

ρ2ρ1(m, p)132 =
n∑

i, j,k=1

ρ2(i1, j2)ρ1(k3)δm,i1+ j2δp,i1+k3 ,

where the indices il , jl , and jl refer to bins in φ for particles l and the variables m and p
correspond to bins in �φi j and �φik , respectively, as specified by the delta functions, and
meant to satisfy the periodic boundary condition expressed by Eq. (11.165).

The aforementioned numerical technique is defined for finite width bins in φ and �φ.
This implies a given bin in �φ spans a range wider than its nominal width 2π/n�φ . For
instance, for i = j = 0 one has φi and φ j span the range 2π/nφ . The difference φi − φ j con-
sequently spans the range [−2π/nφ, 2π/nφ] which is obviously wider than [0, 2π/n�φ] for
n�φ = nφ . The signal from a specific �φ bin is thus effectively smeared across three bins
in the numerical integrations of Eqs. (11.164) and (11.166). This effect, commonly known
as bin aliasing, cannot be avoided but may be suppressed by use of a rebinning technique:
first, calculate the integrals with n�φ = nφ , and subsequently rebin the integrated signals to
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have n�φ/m bins using m as an integer multiple of 2. A value of m � 2 will greatly reduce
the effects of the bin sharing. However, this may demand a large amount of statistics if the
rebinning is applied on R2 or R3 to account for instrumental or detection inefficiencies.

The integration techniques expressed in Eqs. (11.164) and (11.166) can readily be ap-
plied to studies of correlations in �η rather than �φ. However, note that since no periodic
boundary can be assumed in �η, one must map the differences η1 − η2 obtained from nη
bins onto n�η = 2nη − 1 bins in �η. This leads to the mapping

m = i − j replaced by m + n�η + 1, (11.167)

where i, j are in the range [1, nη], and m lies in the range [1, n�η], with n�η = 2nη − 1. As
for integrations (11.164) and (11.166), this mapping leads to smearing of the signals across
bins. This effect can be suppressed by rebinding, as for measurements in �φ, but since
n�η is an odd number by construction one must effect a rebinning by an integer multiple
of 3. Averaging in η̄ over a square range of η1, η2 values yields �η values with different
probabilities. One can simply count the relative probabilities of values of m by looping
on all values of i and j and filling a relative probability histogram Hm(m), one can use
to obtain the integrals ρ1 ⊗ ρ1(�η12), ρ1 ⊗ ρ1 ⊗ ρ1(�η12,�η13), or ρ2 ⊗ ρ1(�ηi j,�ηik ).
For instance, for ρ1 ⊗ ρ1(�η12), one gets

ρ1 ⊗ ρ1(m) = 1

Hm(m)

n∑
i, j=1

ρ1(i)ρ1( j)δ(m − i + j + n�η + 1) (11.168)

and with similar expressions for ρ1 ⊗ ρ1 ⊗ ρ1(m, p) or ρ2 ⊗ ρ1(m, p) (see Problem 11.9).

Exercises

11.1 Verify that the difference ν − νstat yields Eq. (11.69).
11.2 Verify the scaling property expressed by Eq. (11.76).
11.3 Verify the scaling property expressed by Eq. (11.77).
11.4 Show that the quantity ωQ defined by Eq. (11.78) tends to unity in the independent

particle production limit.
11.5 Derive the equations (11.80) for the charge conservation limit in elementary or nu-

clear collisions that produce particles over a range of rapidity spanning several units.
11.6 Find an expression similar to Eq. (11.91) for the event-wise average 〈pT 〉 defined

by Eq. (11.89). Hint: Express ρ1(η, φ, pT ) as a sum of conditional cross sections
ρ1(η, φ, pT |m), defined for a fixed event multiplicity m and each with probability
P(m), i.e. ρ1(η, φ, pT ) = ∑

m P(m)ρ1(η, φ, pT |m).
11.7 Find an expression similar to Eq. (11.97) for the event-wise average 〈�pT�pT 〉 de-

fined by Eq. (11.93). Hint: Decompose ρ2(η1, φ1, pT,1, η2, φ2, pT,2) as a sum of con-
ditional cross sections ρ2(η1, φ1, pT,1, η2, φ2, pT,2|m) similar to the decomposition
of ρ1(η, φ, pT ) used in Problem 11.6.
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11.8 Show that the correlation 〈�pT�pT 〉(m)
I applied to a colliding consisting of a

superposition of m independent but identical processes, each with covariance
〈�pT�pT 〉(1)

I , scales as

〈�pT�pT 〉(m)
I = 1

m
〈�pT�pT 〉(1)

I . (11.169)

11.9 Find expressions equivalent to Eq. (11.168) for the averages ρ1 ⊗ ρ1 ⊗
ρ1(�η12,�η13) and ρ2 ⊗ ρ1(�ηi j,�ηik ).

11.10 Verify that the product 〈un,1u∗
n,2〉 averaged over an ensemble events has a vanishing

contribution from sine terms sin nφ1 sin nφ2.
11.11 Define a “triggered” correlation function KT (�φ) in terms of a two-particle cumulant

C2.
11.12 One expects the strength of the ν+−,dyn correlation function to be largely determined

by the charge production mechanism. For instance, the production and decay of neu-
tral resonances, such as the ρ-meson, should have a large impact on net charge fluc-
tuation measured values of ν+−,dyn. This can be illustrated with a simple model that
includes the production of three particle types, π+, π−, and ρo. Assume the three
species are produced independently and with relative fractions p1, p2, and p3 re-
spectively. Ignore effects associated with Bose statistics and assume the probabil-
ity of producing n1 π

+, n2 π
−, and n3 ρ

o may be expressed with a multinomial
distribution:

P(n1, n2, n3; N ) = N!

n1!n2!n3!
pn1

1 pn2
2 pn3

3 . (11.170)

Further assume that all ρos decay into a pair π+ and π− and calculate the magnitude
of dynamic fluctuations ν+−,dyn.

11.13 Verify that Eq. (11.50) is correct in cases where 〈N+〉 = 〈N−〉.
11.14 Verify Eq. (11.139) and show that the fourth-order cumulant equals −v4

n in the ab-
sence of flow fluctuations.

11.15 Demonstrate Eq. (11.154).
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