UNIVALENT HARMONIC RING MAPPINGS VANISHING ON THE INTERIOR BOUNDARY

WALTER HENGARTNER AND JAN SZYNAL

> AbSTRACT. We give a characterization of univalent positively oriented harmonic mappings f defined on an exterior neighbourhood of the closed unit disk $\{z:|z| \leq 1\}$ such that $\lim _{\substack{|z|>1 \\ z \rightarrow e^{i t}}} f(z) \equiv 0$.

1. Introduction. Let K be a compact continuum of the complex plane \mathbb{C} such that $\overline{\mathbb{C}} \backslash K$ is simply connected. Denote by D a domain of \mathbb{C} containing K. We shall call $D \backslash K=V_{e}(K)$ an exterior neighbourhood of K.

Suppose that $f=u+i v$ is a univalent (one-to-one) harmonic ($\Delta f \equiv 0$) mapping defined on $V_{e}(K)$. Then f is either orientation preserving or orientation reversing on $V_{e}(K)$. With no loss of generality we may assume that the first case holds, since if not, replace $f(z)$ by $f(\bar{z})$. This yields to the fact that the function

$$
\begin{equation*}
a(z)=\frac{\overline{f_{\bar{z}}(z)}}{f_{z}(z)} \in H\left(V_{e}(K)\right) \text { and }|a(z)|<1 \text { on } V_{e}(K), \tag{1.0}
\end{equation*}
$$

where $H(E)$ stands for the set of all analytic functions on an open neighbourhood of E. The fact that f is univalent and orientation preserving on $V_{e}(K)$ implies that $0 \notin f_{z}\left(V_{e}(K)\right)$ [1], and that the Jacobian determinant $J=\left|f_{z}\right|^{2}-\left|f_{\bar{z}}\right|^{2}>0$ on $V_{e}(K)$. Moreover, f_{z} and $\bar{f}_{\bar{z}}$ are analytic on $V_{e}(K)$ [3]. Hence, f is locally quasiconformal and pseudoanalytic of the second kind (in the sense of L. Bers [1]) on $V_{e}(K)$. But contrary to the case of quasiconformal mappings it is possible that $\lim _{\substack{z \rightarrow \partial_{f} K \\ z \in V_{e}}} f(z) \equiv 0$. For instance, the harmonic function

$$
\begin{equation*}
f(z)=z-\frac{1}{\bar{z}}+2 A \ln |z|, \quad|A| \leq 1, \tag{1.1}
\end{equation*}
$$

maps the complement $\mathbb{C} \backslash U$ of the unit disk U one-to-one onto $\mathbb{C} \backslash\{0\}$ (see [4]).
Let χ be the conformal univalent mapping from $\mathbb{C} \backslash K$ onto $\mathbb{C} \backslash U$ normalized by $\chi(z)=\alpha z+O(1), \alpha>0$ in a neighbourhood of infinity. Then $f \circ \chi$ is univalent, harmonic and orientation preserving on an exterior neighbourhood $V_{e}(\bar{U})$ of \bar{U}. Therefore, we may restrict our attention to the case $K=\bar{U}$ and $V_{e}(\bar{U})=V_{R}=\{z: 1<|z|<R\}$ for some $R>1$.

The following notion will be used often.

Received by the editors November 26, 1990 .
AMS subject classification: 30C55.
(C) Canadian Mathematical Society 1992.

DEFINITION. We say that a harmonic mapping is positively oriented on an exterior neighbourhood V_{R} of ∂U if f is orientation-preserving and $\xi d \arg f>0$ on any simply closed curve γ in V_{R} winding in the positive sense around the origin.

REMARK. A positively oriented harmonic mapping on V_{R} is orientation-preserving. But the converse does not hold as the example

$$
f(z)=\frac{1}{z}, \quad 1<|z|<2
$$

shows.
As in the case of analytic functions, we say that f is harmonic on a set E if f is harmonic on open neighbourhood of E.

The purpose of this paper is to characterize univalent, positively oriented harmonic mappings f defined on an exterior neighbourhood V_{R} (R is not prescribed) of \bar{U} such that

$$
\begin{equation*}
\lim _{|z|>1} f(z) \equiv 0 . \tag{1.2}
\end{equation*}
$$

In connection with this problem, a modified version of the following result was shown in [4, Theorem 3.3].

Theorem A. Let f be a harmonic mapping defined on $\{z:|z|>1\}$. Then f is positively oriented and univalent on $\{z:|z|>1\}$ satisfying $f(|z|>1)=\mathbb{C} \backslash\{0\}$ if and only iff is of the form

$$
\begin{equation*}
f(z)=C\left[z+B \bar{z}+2 A \ln |z|-\frac{1}{\bar{z}}-\frac{B}{z}\right], \tag{1.3}
\end{equation*}
$$

where $C \in \mathbb{C}, B=c d, A=c+d,|c|<1,|d| \leq 1$.
Observe that we allow that $|d|=1$ but that $|c|$ has to be strictly less than one. Put

$$
h(z)=C\left[z-\frac{B}{z}\right], \quad g(z)=\bar{C}\left[\bar{B} z-\frac{1}{z}\right]
$$

and

$$
\psi(z)=z f_{z}(z)=z h^{\prime}(z)+A C=C\left[z+\frac{B}{z}+A\right] .
$$

Then h and g belong to $H(\mathbb{C} \backslash\{0\})$ and we have the following properties:

$$
\begin{equation*}
h(z)=-\overline{g\left(\frac{1}{\bar{z}}\right)} \text { in } \mathbb{C} \backslash\{0\} \tag{1.4}
\end{equation*}
$$

$$
\begin{equation*}
\psi^{\prime}(z)=C\left[1-\frac{B}{z^{2}}\right] \text { does not vanish on the unit circle } \partial U \tag{1.5}
\end{equation*}
$$

$$
\begin{equation*}
p(z)=\frac{z \psi^{\prime}(z)}{\psi(z)}=\frac{1-\frac{B}{z^{2}}}{1+\frac{B}{z^{2}}+\frac{A}{z}}=1+\sum_{j \in \mathbf{Z} \backslash\{0\}} p_{j} z^{j} \in H(|z|>1) \tag{1.6}
\end{equation*}
$$

satisfies $\operatorname{Re} p \geq k>0$ on $|z|>1$ for some $k>0$.
Indeed, we have for $|z|>1$:

$$
\begin{aligned}
\operatorname{Re} \frac{z \psi^{\prime}(z)}{\psi(z)} & =\operatorname{Re} \frac{1-\frac{d c}{z^{2}}}{\left(1+\frac{c}{z}\right)\left(1+\frac{d}{z}\right)} \\
& =\frac{1}{2} \operatorname{Re}\left(\frac{1-\frac{c}{z}}{1+\frac{c}{z}}\right)+\frac{1}{2} \operatorname{Re}\left(\frac{1-\frac{d}{z}}{1+\frac{d}{z}}\right) \geq \frac{1}{2} \frac{1-\left|\frac{c}{z}\right|}{1+\left|\frac{c}{z}\right|} \geq \frac{1}{2} \frac{1-|c|}{1+|c|}=k>0 .
\end{aligned}
$$

Let f be a harmonic mapping defined on an exterior neighbourhood V_{R} of \bar{U}. Then (Lemma 2.1) $\lim _{\substack{|z|>1 \\ z \rightarrow e^{i t}}} f(z) \equiv 0$ if and only if f is of the form

$$
\begin{equation*}
f(z)=h(z)-h\left(\frac{1}{\bar{z}}\right)+2 A \ln |z|, \quad A \in \mathbb{C} \tag{1.7}
\end{equation*}
$$

where $h \in H\left(\frac{1}{R}<|z|<R\right)$.
A second version of our main result, Theorem 3.2, states the following: The mapping (1.7) is univalent and positively oriented in V_{R} for some $R>1$ if and only if (1.4), (1.5) and (1.6) hold in $V_{\hat{R}}$ for some $\hat{R}>1$, where $\psi(z)=z f_{z}(z)=z h^{\prime}(z)+A$.

The property (1.5) can be replaced by the following condition (Remark 3.5):

$$
\begin{equation*}
\psi \text { has at most one zero on } \partial U, \text { which is of order one. } \tag{1.8}
\end{equation*}
$$

Furthermore, (Lemma 2.5), the statement (1.6) can be replaced by the condition

$$
\begin{equation*}
\oint_{|z|=\rho} d \arg \psi=1, \quad \rho \in(1, \hat{R}) \text { and } \operatorname{Re} p(z) \geq k>0 \text { on } V_{\hat{R}} \tag{1.9}
\end{equation*}
$$

or by ψ is univalent on $V_{\hat{R}}$ satisfying $\operatorname{Re} p(z) \geq k>0$
where $p(z)=\frac{z \psi^{\prime}(z)}{\psi(z)}$.
The functions which appear in our considerations are closely related to the Carathéodory class

$$
\begin{aligned}
P_{q}=\{ & \left\{p \in H(q<|z|<1): p(z)=1+\sum_{j \in \mathbb{Z} \backslash\{0\}} p_{j} z^{j}\right. \\
& \quad \text { and } \operatorname{Re} p(z)>0 \text { on }\{z: q<|z|<1\}\}, \quad 0<q<1,
\end{aligned}
$$

which has been studied by several authors (e.g.) [5], [6], [7]. The class S_{q}^{*} of starlike functions defined by the relation:

$$
F \in S_{q}^{*} \Leftrightarrow \frac{z F^{\prime}(z)}{F(z)} \in P_{q},
$$

was considered in [2] and in [7].
In order to simplify a rather lengthy proof (Section 4) of Theorem 3.1 we state several lemmas in Section 2. Finally, in Section 5 we discuss the region of values of A.
2. Some auxiliary lemmas. We start this section with the following lemma.

Lemma 2.1. Letf be any harmonic function on $V_{R}($ for some $R>1)$ satisfying (1.2). Then f has a harmonic continuation across $\partial U=\{z:|z|=1\}$ which is of the form

$$
\begin{equation*}
f(z)=h(z)-h\left(\frac{1}{\bar{z}}\right)+2 A \ln |z|, \quad A \in \mathbb{C}, \tag{2.1}
\end{equation*}
$$

where $h(z)=\sum_{j \in \mathbf{Z}} a_{j} z^{j} \in H\left(\frac{1}{R}<|z|<R\right)$. Observe that $f\left(\frac{1}{\bar{z}}\right)=-f(z)$ on $\left\{z: \frac{1}{R}<\right.$ $|z|<R\}$.

Conversely, each harmonic mapping on ∂U satisfying (2.1) has the property (1.2).
Proof. Since f is harmonic on V_{R}, f admits the representation

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)}+2 A \ln |z| \tag{2.2}
\end{equation*}
$$

where $A \in \mathbb{C}, h(z)=\sum_{j \in \mathbb{Z}} a_{j} z^{j} \in H\left(V_{R}\right), g(z)=\sum_{j \in \mathbf{Z}} b_{j} z^{j} \in H\left(V_{R}\right)$. This implies that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i t}\right)\right|^{2} d t=\sum_{j \in \mathbf{Z}}\left|a_{j}+\bar{b}_{-j}\right|^{2}=0
$$

and therefore h and g admit an analytic continuation onto $\left\{z: \frac{1}{R}<|z|<R\right\}$ satisfying

$$
\begin{equation*}
g\left(\frac{1}{\bar{z}}\right)=-\overline{h(z)} \text { and } h\left(\frac{1}{\bar{z}}\right)=-\overline{g(z)} . \tag{2.3}
\end{equation*}
$$

In the next Lemma we consider again harmonic mappings having the properties stated in Lemma 2.1. We give a necessary and sufficient condition in order that f is orientationpreserving on an exterior neighbourhood of \bar{U}.

LEMMA 2.2. Let

$$
f(z)=h(z)-h\left(\frac{1}{\bar{z}}\right)+2 A \ln |z|, \quad A \in \mathbb{C}
$$

be harmonic on $\{z:|z|=1\}, f \not \equiv$ const. There is an exterior neighbourhood V_{R} of \bar{U} such that f is orientation-preserving on V_{R} if and only if there exists a constant $k>0$ such that $\psi(z)=z h^{\prime}(z)+A$ satisfies

$$
\begin{equation*}
+\infty>\operatorname{Re} \frac{e^{i t} \psi^{\prime}\left(e^{i t}\right)}{\psi\left(e^{i t}\right)} \geq k>0 \tag{2.4}
\end{equation*}
$$

whenever $\psi\left(e^{i t}\right) \neq 0$.
Proof. By Lemma 2.1. $h \in H\left(\frac{1}{R_{1}}<|z|<R_{1}\right)$ for some $R_{1}>1$. Therefore, the dilatation function

$$
\begin{equation*}
a(z)=\frac{\overline{f_{z}}(z)}{f_{z}(z)}=\frac{\overline{\psi\left(\frac{1}{z}\right)}}{\psi(z)} \tag{2.5}
\end{equation*}
$$

is meromorphic on $\left\{z: \frac{1}{R_{1}}<|z|<R_{1}\right\}$. We may choose R_{1} so close to one such that the only possible zeros of ψ in $\left\{z: \frac{1}{R_{1}}<|z|<R_{1}\right\}$ are on ∂U. Furthermore, we have

$$
\left|a\left(e^{i t}\right)\right|=\left|\frac{\overline{\psi\left(e^{i t}\right)}}{\psi\left(e^{i t}\right)}\right|=1
$$

whenever $\psi\left(e^{i t}\right) \neq 0$. Therefore, the zeros of ψ on ∂U are removable singularities of the function $a(z)$ and we conclude that

$$
\begin{equation*}
a \in H\left(\frac{1}{R_{1}}<|z|<R_{1}\right) \text { and }\left|a\left(e^{i t}\right)\right| \equiv 1 \text { for all } t \in[0,2 \pi] . \tag{2.6}
\end{equation*}
$$

Moreover, by the reflection principle, we have

$$
\begin{equation*}
a(z)=\frac{1}{\overline{a\left(\frac{1}{z}\right)}} \tag{2.7}
\end{equation*}
$$

(a) Suppose now that f is orientation-preserving on V_{R}. Then, by (2.7), $|a(z)|<1$ on V_{R} and $|a(z)|>1$ on $\left\{z: \frac{1}{R}<|z|<1\right\}$, from which follows that $a^{\prime}\left(e^{i t}\right) \neq 0$ for all $t \in[0,2 \pi]$ and therefore $\frac{z a^{\prime}(z)}{a(z)}$ is a nonvanishing analytic function on ∂U. We have, for all $z \in \partial U$,

$$
\begin{equation*}
\frac{z a^{\prime}(z)}{a(z)}=\operatorname{Re} \frac{z a^{\prime}(z)}{a(z)}=\frac{1}{2} \frac{\partial|a|^{2}}{\partial|z|}<0, \tag{2.8}
\end{equation*}
$$

which implies that there is a constant $c>0$ such that

$$
\begin{equation*}
\frac{z a^{\prime}(z)}{a(z)}=\operatorname{Re} \frac{z a^{\prime}(z)}{a(z)}=\frac{1}{2} \frac{\partial|a|^{2}}{\partial|z|} \leq-c<0 \text { for all } z \in \partial U \tag{2.9}
\end{equation*}
$$

Finally, we have from (2.5), whenever $\psi(z) \neq 0$,

$$
\begin{equation*}
\frac{z a^{\prime}(z)}{a(z)}=-\left[\frac{z \psi^{\prime}(z)}{\psi(z)}+\frac{1}{z} \frac{\overline{\psi^{\prime}\left(\frac{1}{\bar{z}}\right)}}{\overline{\psi\left(\frac{1}{\bar{z}}\right)}}\right] \tag{2.10}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\infty>\operatorname{Re} \frac{e^{i t} \psi^{\prime}\left(e^{i t}\right)}{\psi\left(e^{i t}\right)}=-\frac{1}{2} \frac{e^{i t} a^{\prime}\left(e^{i t}\right)}{a\left(e^{i t}\right)} \geq \frac{c}{2}=k>0, \tag{2.11}
\end{equation*}
$$

for all $e^{i t}$ for which $\psi\left(e^{i t}\right) \neq 0$ and (2.4) holds.
(b) Now, suppose that the function ψ satisfies (2.4). Then, by (2.11) and (2.9), we have in the case of $\psi\left(e^{i t}\right) \neq 0$

$$
\begin{equation*}
\frac{e^{i t} a^{\prime}\left(e^{i t}\right)}{a\left(e^{i t}\right)}=\frac{1}{2} \frac{\partial|a|^{2}}{\partial|z|}\left(e^{i t}\right) \leq-2 k<0 . \tag{2.12}
\end{equation*}
$$

Since, by (2.6), $a \in H\left(\frac{1}{R_{1}}<|z|<R_{1}\right)$ and $\left|a\left(e^{i t}\right)\right| \equiv 1$, we conclude that (2.12) holds for all $t \in[0,2 \pi]$. Put $R \in\left(1, R_{1}\right)$ such that $\operatorname{Re} \frac{z a^{\prime}(z)}{a(z)} \leq-k$ on $\left\{z: \frac{1}{R}<|z|<R\right\}$. Then, the relation

$$
\begin{equation*}
\frac{1}{2} \frac{\partial|a|^{2}}{\partial|z|}=\frac{|a|^{2}}{|z|} \operatorname{Re} \frac{z a^{\prime}(z)}{a(z)} \tag{2.13}
\end{equation*}
$$

shows that $|a(z)|<1$ on V_{R}, and Lemma 2.2 is proved.
For the completeness we give a short proof of the following lemma.

Lemma 2.3. Let Φ be in $H\left(\frac{1}{R}<|z|<R\right)$ for some $R>1$, such that Φ is real on ∂U and $\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg z \Phi^{\prime}=1$ for all $\rho \in(1, R)$. Then Φ^{\prime} has exactly two zeros on ∂U which are of order one.

Proof. By the reflection principle, we have

$$
\overline{\Phi\left(\frac{1}{\bar{z}}\right)}=\Phi(z) \text { and }-\frac{1}{z} \overline{\Phi^{\prime}\left(\frac{1}{\bar{z}}\right)}=z \Phi^{\prime}(z)
$$

Since $\Phi(\partial U)$ is a bounded real interval, there exists an $e^{i \beta}$ and an $e^{i \gamma}, e^{i \beta} \neq e^{i \gamma}$, such that $\Phi^{\prime}\left(e^{i \beta}\right)=\Phi^{\prime}\left(e^{i \gamma}\right)=0$. Applying the argument principle, we get for $\rho \in(1, R)$

$$
\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg z \Phi^{\prime}-\frac{1}{2 \pi} \oint_{|z|=\frac{1}{\rho}} d \arg z \Phi^{\prime}=2 \cdot \frac{1}{2 \pi} \oint_{|z|=\rho} d \arg z \Phi^{\prime}=2
$$

and the result follows.
The next lemma gives the important relation of some auxiliary analytic function Φ to a given harmonic mapping f.

Lemma 2.4. Let

$$
f(z)=h(z)-h\left(\frac{1}{\bar{z}}\right)+2 A \ln |z|, \quad A \in \mathbb{C}
$$

be harmonic on $\left\{z: \frac{1}{R}<|z|<R\right\}$ and suppose thatf is orientation-preserving on V_{R}.
Put

$$
e^{i \alpha}= \begin{cases}\bar{A} /|A| & \text { if } A \neq 0 \\ 1 & \text { if } A=0\end{cases}
$$

and define

$$
\Phi(z)=e^{i \alpha} h(z)+e^{-i \alpha} \overline{h\left(\frac{1}{\bar{z}}\right)} .
$$

Then f is univalent on $V_{R_{1}}$ for some $R_{1} \in(1, R)$ if and only if Φ is univalent on $V_{R_{2}}$ for some $R_{2} \in(1, R)$.

Proof. Observe that $\Phi \in H\left(\frac{1}{R}<|z|<R\right)$ and that Φ is real on ∂U. Furthermore we have

$$
\begin{align*}
z \Phi^{\prime}(z) & \left.=z e^{i \alpha}\left[h^{\prime}(z)-e^{-2 i \alpha} \overline{h^{\prime}\left(\frac{1}{\bar{z}}\right.}\right) \frac{1}{z^{2}}\right]+|A|-|A| \\
& =e^{i \alpha}\left[z h^{\prime}(z)+A\right]-e^{-i \alpha}\left[\frac{1}{z} \overline{h^{\prime}\left(\frac{1}{\bar{z}}\right)}+\bar{A}\right] \tag{2.14}\\
& =e^{i \alpha} \psi(z)-e^{-i \alpha} \psi\left(\frac{1}{\bar{z}}\right) \\
& =e^{i \alpha} \psi(z)\left[1-a(z) e^{-2 i \alpha}\right]
\end{align*}
$$

where $\psi(z)=z f_{z}(z)=z h^{\prime}(z)+A$ and $a(z)=\overline{\psi\left(\frac{1}{\bar{z}}\right)} / \psi(z)$. Since f is orientation-preserving on $V_{R},|a(z)|<1$ on V_{R}. Therefore Φ^{\prime} and f_{z} vanishes simultaneously. In other words, Φ is locally univalent on V_{R} if and only if f is locally univalent on V_{R}.
(a) Suppose first that Φ is univalent in $V_{R_{2}}$ for some $R_{2} \in(1, R)$. Put $w=u+i v=f(z)$ and $\zeta=\xi+i \eta=\Phi(z)$. Define

$$
\begin{align*}
w & =F(\zeta)=e^{i \alpha} f \circ \Phi^{-1}(\zeta) \\
& =\zeta-2 \operatorname{Re}\left\{e^{i \alpha} h\left(\frac{1}{\bar{z}}\right)\right\}+2|A| \ln |z| \\
& \left.=\zeta-2 \operatorname{Re}\left\{e^{i \alpha} h\left(\frac{1}{\overline{\Phi^{-1}(\zeta)}}\right)\right\}+2|A| \ln \Phi^{-1}(\zeta) \right\rvert\, \tag{2.15}\\
& =\zeta-q(\zeta),
\end{align*}
$$

where q is real on $\Phi\left(V_{R_{2}}\right)$. Put $J=\Phi(\partial U)$ and let γ be a convex closed Jordan around $J, \gamma \in \Phi\left(V_{R_{2}}\right)$.

Denote by G the doubly connected domain bounded by γ and J. Then, F is locally univalent on G satisfying

$$
\begin{equation*}
v(\zeta)=\operatorname{Im} F(\zeta)=\operatorname{Im} \zeta=\eta \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial u}{\partial \xi}=\operatorname{Re}\left\{\frac{1+a\left(\Phi^{-1}(\zeta)\right)}{1-a\left(\Phi^{-1}(\zeta)\right)}\right\}>0 \text { on } G . \tag{2.17}
\end{equation*}
$$

It follows that F is univalent on $G \backslash\{\zeta: \operatorname{Im} \zeta=0\}$. Let ξ_{1} and ξ_{2} belong to $G \cap\{\zeta$: $\operatorname{Im} \zeta=0\}$ such that, $\xi_{1}<\xi_{2}$. Note that $F\left(\xi_{1}\right)$ and $F\left(\xi_{2}\right)$ are real. We will show that $F\left(\xi_{1}\right)<F\left(\xi_{2}\right)$, from which it follows that F is univalent in G. We can find closed intervals $\Gamma_{n}=\left[\xi_{1}+i \eta_{n}, \xi_{2}+i \eta_{n}\right]$ in G with $\eta_{n} \rightarrow 0$ as $n \rightarrow \infty$. Since, by (2.17), $\operatorname{Re} F$ is strictly increasing on Γ_{n}, we conclude that $F\left(\xi_{1}\right) \leq F\left(\xi_{2}\right)$. On the other hand, $\frac{\partial \mathrm{Re} F}{\partial \xi}\left(\xi_{i}\right)>0$, $i=1,2$, implies that $F\left(\xi_{1}\right)<F\left(\xi_{2}\right)$.

Choose now $R_{1} \in(1, R)$ such that $V_{R_{1}} \subset \Phi^{-1}(G)$. Then f is univalent on $V_{R_{1}}$ and in one direction Lemma 2.4 is proved.
(b) Suppose now that f is univalent on $V_{R_{1}}$. Then, by the same reasoning, we get that Φ is univalent on an exterior neighbourhood $V_{R_{2}}$ of \bar{U}.

Indeed,

$$
\zeta=F^{-1}(w)=\Phi \circ f^{-1}\left(e^{-i \alpha} w\right)=w+q_{1}(w),
$$

where $q_{1}=2 \operatorname{Re}\left\{e^{i \alpha} h\left(1 / \overline{f^{-1}\left(e^{-i \alpha} w\right)}\right)\right\}-2|A| \ln \left|f^{-1}\left(e^{-i \alpha} w\right)\right|$ is real on $f\left(V_{R_{1}}\right)$. Define $G_{1}=\{w: 0<|w|<\gamma\} \subset f\left(V_{R_{2}}\right)$. Then, from the equality

$$
\eta=\operatorname{Im} F^{-1}(w) \equiv \operatorname{Im} w=v
$$

and the condition $\frac{\partial u}{\partial \xi}>0$, it follows that $\frac{\partial \xi}{\partial u}>0$. The rest of the proof goes as in (a) by reversing the role of $w=u+i v$ and $\zeta=\xi+i \eta$ and by replacing F by F^{-1}.

The next lemma is known [7]. For completeness we give a short proof of it.

LEmmA 2.5. Let F be analytic on $A=\left\{z: r_{1}<|z|<r_{2}\right\}, 0<r_{1}<r_{2}$, such that

$$
\begin{equation*}
0<\operatorname{Re} \frac{z F^{\prime}(z)}{F(z)}<\infty \text { on } A \tag{2.18}
\end{equation*}
$$

Then the following statements are equivalent:
(i) F is univalent on A;
(ii) $\frac{1}{2 \pi} \oint_{z \mid=\rho} d \arg F=1$, for some $\rho \in\left(r_{1}, r_{2}\right)$;
(iii) $p(z)=\frac{z F^{\prime}(z)}{F(z)}=1+\sum_{j \in \mathbb{Z} \backslash\{0\}} p_{j} z^{j} \in H(A)$.

Proof. (a) The fact (ii) \Leftrightarrow (iii) follows from the relation

$$
\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg F=\frac{1}{2 \pi i} \oint_{|z|=\rho} \frac{z F^{\prime}(z)}{F(z)} \cdot \frac{d z}{z}=\frac{1}{2 \pi i} \oint_{|z|=\rho} \frac{p(z)}{z} d z
$$

(b) The implication (i) \Rightarrow (ii) is trivial since (2.18) excludes the case $\frac{1}{2 \pi} \oint_{\mid=\rho} d \arg F=$ -1 .
(c) Going to prove (ii) \Rightarrow (i), observe first that F and F^{\prime} do not vanish on A. Indeed, if F has a zero of order m at $z_{0} \in A$, then, by (2.18), F^{\prime} also has to have a zero of order m at z_{0} which is impossible. We conclude therefore that F is locally univalent on A and that

$$
\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg z F^{\prime}=\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg F=1
$$

for all $\rho \in\left(r_{1}, r_{2}\right)$.
Furthermore, using (2.18) and (ii), we conclude that for each $\rho \in\left(r_{1}, r_{2}\right) F$ is univalent on $\{z:|z|=\rho\}$ and that $\Gamma_{\rho}=\left\{F\left(\rho^{i t}\right): 0 \leq t \leq 2 \pi\right\}$ is a simple closed analytic and strictly starlike curve which winds once around the origin. Moreover, for each $r_{1}<$ $\rho_{1}<\rho_{2}<r_{2}$ we have $\Gamma_{\rho_{1}} \cap \Gamma_{\rho_{2}}=\emptyset$. In fact, F is analytic and hence bounded on $\left\{z: \rho_{1} \leq|z| \leq \rho_{2}\right\}$ and the image of it has to be a domain. Therefore, F is univalent on $\left\{z: \rho_{1} \leq|z| \leq \rho_{2}\right\}$. This holds for all $r_{1}<\rho_{1}<\rho_{2}<r_{2}$ and hence F is univalent on A.

We will close this section with the following lemma.
Lemma 2.6. Let F be in $H(|z|=1)$ such that
(i) $\left|F\left(e^{i t}\right)\right| \equiv 1$ and $F^{\prime}\left(e^{i t}\right) \neq 0$ for all $t \in[0,2 \pi]$;
(ii) $\frac{1}{2 \pi} \oint_{z \mid=1} d \arg F=1$.

Then there exists an $R_{1}>1$ such that F is univalent on

$$
\left\{z: \frac{1}{R_{1}}<|z|<R_{1}\right\}
$$

Proof. The fact that $\frac{z F^{\prime}(z)}{F(z)} \in \mathbb{R} \backslash\{0\}$ on ∂U and that

$$
\frac{1}{2 \pi} \oint_{|z|=1} d \arg z F^{\prime}=\frac{1}{2 \pi} \oint_{|z|=1} d \arg F=1
$$

implies that there is a $k>0$ such that $\frac{z F^{\prime}(z)}{F(z)}=\operatorname{Re} \frac{z F^{\prime}(z)}{F(z)} \geq k>0$ and is finite on ∂U. Hence, there is an $R_{1}>1$ such that F is analytic and $0<\operatorname{Re} \frac{z F^{\prime}(z)}{F(z)}<\infty$ on $\left\{z: \frac{1}{R_{1}}<|z|<R_{1}\right\}$. Applying Lemma 2.5, we conclude that F is univalent on $\{z$: $\left.\frac{1}{R_{1}}<|z|<R_{1}\right\}$.

3. A characterization theorem.

Theorem 3.1. Let

$$
f(z)=h(z)+\overline{g(z)}+2 A \ln |z|, \quad A \in \mathbb{C},
$$

be a harmonic mapping defined on the unit circle $\partial U=\{z:|z|=1\}$. Put

$$
\psi(z)=z h^{\prime}(z)+A=z f_{z}(z)
$$

Then there exists an exterior neighbourhood V_{R} of \bar{U} such that f is univalent and positively oriented on V_{R} and $\lim _{\substack{|z|>1 \\ z \rightarrow e^{i t}}} f(z) \equiv 0$, if and only if the following conditions are satisfied:
(a) h and g admit an analytic continuation across ∂U such that $h\left(\frac{1}{\bar{z}}\right)=\overline{-g(z)}$ for all $z, \frac{1}{R}<|z|<R$;
(b) ψ has at most one zero on ∂U which is of order one;
(c) there exists an exterior neighbourhood $V_{\hat{R}}$ of \bar{U} and a constant $k>0$ such that

$$
\begin{equation*}
\infty>\operatorname{Re} \frac{z \psi^{\prime}(z)}{\psi(z)} \geq k>0 \text { on } V_{\hat{R}} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg \psi=1 \text { for all } \rho \in(1, \hat{R}) . \tag{3.2}
\end{equation*}
$$

Let us give some remarks about this Theorem.
REmARK 3.1. The statement (c) says that $\psi(z)=z f_{z}(z)$ maps $\{z:|z|=r\}, 1<$ $r<\hat{R}$, univalently onto an analytic strictly starlike Jordan curve with respect to the origin.

For $r=1, \psi(\partial U)$ is still an analytic curve, but it may pass through the origin as the following example shows: the mapping

$$
f(z)=z-\frac{1}{\bar{z}}+2 \ln |z|
$$

is univalent, harmonic and orientation-preserving on $\mathbb{C} \backslash U$ and $\psi(z)=1+z$ vanishes at $z=-1$. Observe that this zero is of order one.

Remark 3.2. The next example shows that (3.2) is essential. Let $\psi(z)=z+z^{2}$. Then ψ satisfies (b) and (3.1) with $k=\frac{3}{2}$ but not (3.2). The function $h(z)=z+z^{2} / 2$ is analytic in \mathbb{C}, but

$$
f(z)=z+\frac{z^{2}}{2}-\frac{1}{\bar{z}}-\frac{1}{2 \bar{z}^{2}}
$$

is not univalent on any circle $\{z:|z|=r\}, r>1$. Indeed, we have

$$
f\left(r e^{i t}\right)=\frac{r^{2}-1}{r}\left[e^{i t}+\frac{r^{2}+1}{2 r} e^{2 i t}\right] .
$$

Putting $d=\frac{r^{2}+1}{r}>1$ we see that the equation $\eta_{1}+d \eta_{1}^{2}=\eta_{2}+d \eta_{2}^{2}$ has a solution for $\left|\eta_{1}\right|=\left|\eta_{2}\right|=1, \eta_{1} \neq \eta_{2}$.

REmARK 3.3. The condition (3.1) cannot be replaced by

$$
\operatorname{Re} \frac{e^{i t} \psi^{\prime}\left(e^{i t}\right)}{\psi\left(e^{i t}\right)} \geq 0
$$

Indeed, consider the function $\psi(z)=z+\frac{1}{2} z^{2}$. Then we have

$$
a(z)=\frac{1}{z^{3}} \cdot \frac{z+\frac{1}{2}}{1+\frac{1}{2} z},
$$

and, for ε positive close to zero,

$$
a(-(1+\varepsilon))=1+2 \varepsilon^{3}+0\left(\varepsilon^{4}\right)>1
$$

Therefore f is not orientation-preserving on V_{R}.
Remark 3.4. Put $p(z)=\frac{z \psi^{\prime}(z)}{\psi(z)}$. By Lemma 2.5 the statement (c) is equivalent to:
(c^{\prime}) There exists an exterior neighbourhood $V_{\hat{R}}$ of \bar{U} and a constant $k>0$ such that

$$
p \in H\left(V_{\hat{R}}\right), p(z)=1+\sum_{j \in \mathbf{Z} \backslash\{0\}} p_{j} z^{j} \text { and } \operatorname{Re} p(z) \geq k \text { on } V_{\hat{R}} .
$$

REmARK 3.5. The statements (b) can be replaced by
(b') $\psi^{\prime}\left(e^{i t}\right) \neq 0$ for all $t \in[0,2 \pi]$.
In fact we have:
(α) (a), (b) and (c) imply (a), (b') and (c).
If $e^{i t_{0}}$ is a zero of order 1 of ψ then evidently $\psi^{\prime}\left(e^{i t_{0}}\right) \neq 0$. Let $\psi\left(e^{i t}\right) \neq 0$. By (a), ψ is analytic and hence bounded on ∂U and by (c) we have $0<k \leq \operatorname{Re} \frac{e^{t} \psi^{\prime}\left(e^{i t}\right)}{\psi\left(e^{i}\right)}<\infty$, which implies that $\psi^{\prime}\left(e^{i t}\right) \neq 0$ for all $t \in[0,2 \pi]$.
(β) (a), (b'), (c) imply (a), (b), (c).
Note that $\psi \in H(\partial U)$ and that all zeros of ψ on ∂U are of order one. On the other hand, if $\psi\left(e^{i t}\right) \neq 0$, then we conclude by (c) that

$$
\begin{equation*}
0<k \leq \operatorname{Re} \frac{e^{i t} \psi^{\prime}\left(e^{i t}\right)}{\psi\left(e^{i t}\right)}<\infty \tag{3.3}
\end{equation*}
$$

Furthermore, for $\rho \in(1, \hat{R})$, we have

$$
\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg z \psi^{\prime}=\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg \psi=1
$$

and, from (b^{\prime}), we conclude that $\frac{1}{2 \pi} \oint_{z \mid=1} d \arg z \psi^{\prime}=1$. Suppose that $\eta_{k}=e^{i t_{k}}, 1 \leq k \leq$ N, are the zeros of ψ on ∂U. Then, by (3.3),

$$
\frac{1}{2 \pi} \int_{\left(t_{k}, t_{k+1}\right)} d \arg \left(z \psi^{\prime}\right)\left(e^{i t}\right)=\frac{1}{2 \pi} \int_{\left(\eta_{k}, \eta_{k+1}\right)} d \arg z \psi^{\prime}>\frac{1}{2}, \quad \eta_{N+1}=\eta_{1},
$$

and therefore

$$
\begin{aligned}
1 & =\frac{1}{2 \pi} \oint_{|z|=1} d \arg z \psi^{\prime} \\
& =\frac{1}{2 \pi} \sum_{k=1}^{N} \oint_{\left(\eta_{k}, \eta_{k+1}\right)} d \arg z \psi^{\prime}+\frac{1}{2 \pi} \sum_{k=1}^{N} \Delta\left[\arg \left(z \psi^{\prime}\right)\left(\eta_{k}\right)\right]
\end{aligned}
$$

Since the zeros of ψ are of order one, we get $\Delta \arg \left(z \psi^{\prime}\right)\left(\eta_{k}\right)=0$. Therefore $N=0$ or 1 .
Together with Remarks 4 and 5, Theorem 3.1 can be restated as follows.
Theorem 3.2. Let

$$
f(z)=h(z)+\overline{g(z)}+2 A \ln |z|, \quad A \in \mathbb{C},
$$

be a harmonic mapping defined on the unit circle $\partial U=\{z:|z|=1\}$. Put $\psi(z)=$ $z f_{z}(z)=z h^{\prime}(z)+A$ and $p(z)=\frac{z \psi^{\prime}(z)}{\psi(z)}$. Then there exists an exterior neighbourhood V_{R} of \bar{U} such that f is univalent, positively oriented on V_{R} and $\underset{\substack{|z|>1 \\ z \rightarrow e^{H}}}{ } f(z) \equiv 0$, if and only if the following conditions are satisfied:
(a) h and g admit an analytic continuation across ∂U such that $h\left(\frac{1}{\bar{z}}\right)=\overline{-g(z)}, z \in$ $\left\{z: \frac{1}{R}<|z|<R\right\} ;$
(b) $\psi^{\prime}\left(e^{i t}\right) \neq 0$ for all $t \in[0,2 \pi]$;
(c^{\prime}) there is an exterior neighbourhood $V_{\hat{R}}$ and a constant $k>0$ such that $p \in H\left(V_{\hat{R}}\right)$, is of the form $p(z)=1+\sum_{j \in \mathbf{Z} \backslash\{0\}} p_{j} z^{j}$ and satisfies the condition $\operatorname{Re} p(z) \geq k>0$ on $V_{\hat{R}}$.
4. Proof of Theorem 3.1. Necessity: suppose that f is a univalent, positively oriented and harmonic mapping defined on an exterior neighbourhood V_{R} of \bar{U} such that $\lim _{|z|>1} f(z) \equiv 0$.
$\stackrel{z^{2}+e^{i t}}{\underline{i t}}$ the statement (a) has been already proved in Lemma 2.1.
Let us prove (3.2) of the statement (c). Since f is univalent and positively oriented we have for $\rho \in(1, R)$:

$$
1=\frac{1}{2 \pi} \oint_{|z|=\rho} \arg \left[i z f_{z}-i \bar{z} f_{\bar{z}}\right] .
$$

Recall that $f_{z} \neq 0$ on V_{R} and, since f is orientation-preserving, we have

$$
a(z)=\frac{\overline{f_{z}}(z)}{f_{z}(z)} \in H\left(V_{R}\right) \text { and }|a(z)|<1, \quad z \in V_{R} .
$$

Therefore, we get for $\rho \in(1, R)$

$$
\begin{align*}
1 & =\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg \left[i z f_{z}-i \bar{z} f_{\bar{z}}\right]=\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg z f_{z}\left[1-\bar{a} \frac{\bar{z}}{z} \frac{\overline{f_{z}}}{\overline{f_{z}}}\right] \tag{4.1}\\
& =\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg z f_{z}=\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg \psi,
\end{align*}
$$

and (3.2) is shown.
Next we show (b). We apply Lemma 2.2. By (2.6), we have $\left|a\left(e^{i t}\right)\right| \equiv 1$ for all $t \in$ [$0,2 \pi$], and (2.9) implies that

$$
\begin{equation*}
\frac{1}{2 \pi} \oint_{|z|=1} d \arg a=\frac{1}{2 \pi i} \oint_{|z|=1} \frac{z a^{\prime}(z)}{a(z)} \cdot \frac{d z}{z}<0 . \tag{4.2}
\end{equation*}
$$

Now, by Lemma 2.4, we know that Φ is univalent on $V_{R_{1}}$ for some $R_{1} \in(1, R)$ and, from the formula

$$
\begin{equation*}
z \Phi^{\prime}(z)=e^{i \alpha} \psi(z)\left(1-a(z) e^{-2 i \alpha}\right)=e^{i \alpha} \psi(z)-e^{-i \alpha} \psi\left(\frac{1}{\bar{z}}\right) \tag{2.14}
\end{equation*}
$$

we obtain

$$
\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg z \Phi^{\prime}=\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg \psi=1 \text { for all } \rho \in\left(1, R_{1}\right)
$$

Lemma 2.3 implies that the function Φ^{\prime} has exactly two zeros on ∂U which are of order one. This information together with (4.2) leads to the conclusion that either

$$
\frac{1}{2 \pi} \oint_{|z|=1} d \arg a=-2 \text { and } 0 \notin \psi(\partial U)
$$

or

$$
\frac{1}{2 \pi} \oint_{|z|=1} d \arg a=-1
$$

and then ψ has exactly one zero of order one on ∂U. Therefore (b) has been established.
It remains to show the statement (3.1). If ψ does not vanish on ∂U then, by Lemma 2.2, there is a $k_{1}>0$ such that

$$
\operatorname{Re} \frac{z \psi^{\prime}(z)}{\psi(z)} \geq k_{1} \text { on } \partial U
$$

Choose \hat{R} such that $\operatorname{Re} \frac{z \psi^{\prime}(z)}{\psi(z)} \geq k=k_{1} / 2$ on $V_{\hat{R}}$ and (3.1) is shown.
Suppose now that $\psi\left(e^{i \beta}\right)=0, \psi^{\prime}\left(e^{i \beta}\right) \neq 0$ and $\psi\left(e^{i t}\right) \neq 0$ on $\partial U \backslash\left\{e^{i \beta}\right\}$.
By Lemma 2.2 we have

$$
0<k \leq \operatorname{Re} \frac{z \psi^{\prime}(z)}{\psi(z)}<\infty \text { on } \partial U \backslash\left\{e^{i \beta}\right\}
$$

and therefore $\psi^{\prime}\left(e^{i t}\right) \neq 0$ for all $t \in[0,2 \pi]$ (by the same reasoning as in the first part of Remark 3.5).

Consider now the function

$$
m(z)=\frac{\psi(z)}{z \psi^{\prime}(z)}
$$

Then $m \in H(\partial U)$ and satisfies the condition

$$
\left|m\left(e^{i t}\right)-\frac{1}{2 k}\right| \leq \frac{1}{2 k} .
$$

Let $K=\left\{z:\left|z-e^{i \beta}\right| \leq \kappa\right\}$, where $\kappa>0$ is so small that $m(z)$ is analytic and univalent on K and such that either $m(K \cap\{z:|z|<1\})$ or $m(K \cap\{z:|z|>1\})$ is in the disk $\left\{w:\left|w-\frac{1}{2 k}\right|<\frac{1}{2 k}\right\}$ (this is possible since $m^{\prime}\left(e^{\prime \beta}\right) \neq 0$). The condition $e^{i \beta} m^{\prime}\left(e^{i \beta}\right)=1$ implies that the second case holds.

Therefore, we have $\infty>\operatorname{Re} \frac{z \psi^{\prime}(z)}{\psi(z)} \geq k$ on $\left[\partial U \backslash\left\{e^{i \beta}\right\}\right] \cup[K \cap\{z:|z|>1\}]$. Hence there exists an exterior neighbourhood of $\bar{U} \cup K$ and hence an exterior neighbourhood $V_{R_{2}}, R_{2} \in(1, R)$, such that $\operatorname{Re} \frac{z \psi^{\prime}(z)}{\psi(z)} \geq k / 2$.

Therefore (3.1) holds, and the proof of the necessity of the statements (a), (b), (c) is finished.

Sufficiency: we now show the sufficiency of the statements (a), (b) and (c). Let $h \in$ $H(\partial U)$ and suppose that $\psi(z)=z h^{\prime}(z)+A, A \in \mathbb{C}$, satisfies the statements (b) and (c) of Theorem 3.1, i.e. there is an $\hat{R}>1$ such that $h \in H\left(\frac{1}{\hat{R}}<|z|<\hat{R}\right), \infty>\operatorname{Re} \frac{z \psi^{\prime}(z)}{\psi(z)} \geq$ $k>0$ on $V_{\hat{R}}, \frac{1}{2 \pi} \oint_{z \mid=\rho} d \arg \psi=1$ for $\rho \in(1, \hat{R})$ and ψ has at most one zero on ∂U which is of order 1 .

Put

$$
e^{i \alpha}= \begin{cases}\bar{A} /|A| & \text { if } A \neq 0 \\ 1 & \text { if } A=0\end{cases}
$$

and define:

$$
\begin{gathered}
\left.\Phi(z)=e^{i \alpha} h(z)+e^{-i \alpha} \overline{\frac{1}{\frac{z}{z}}}\right), \quad z \in V_{\hat{R}}, \\
f(z)=h(z)-h\left(\frac{1}{\bar{z}}\right)+2 A \ln |z|, \quad z \in V_{\hat{R}} .
\end{gathered}
$$

Evidently, f is harmonic on $\left\{z: \frac{1}{\hat{R}}<|z|<\hat{R}\right\}$ and $f(z) \equiv 0$ on ∂U.
First, we observe that f is orientation preserving on an exterior neighbourhood of \bar{U}. This follows from the fact that $\operatorname{Re} \frac{e^{i t} \psi^{\prime}\left(e^{i t}\right)}{\psi\left(e^{i t}\right)} \geq k>0$ for all t for which $\psi\left(e^{i t}\right) \neq 0$ and from Lemma 2.2. Call this exterior neighbourhood $V_{R_{1}}, R_{1} \in(1, \hat{R})$.

Next, we will show that f is univalent on V_{R} for some $R \in\left(1, R_{1}\right)$. Indeed, since by (2.14) $z \Phi^{\prime}(z)=e^{i \alpha} \psi(z)\left(1-a(z) e^{-2 i \alpha}\right)$, the condition (3.2) implies that for all $\rho \in\left(1, R_{1}\right)$

$$
\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg z \Phi^{\prime}=\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg \psi=1
$$

By Lemma 2.3, we conclude that Φ^{\prime} has exactly two zeros of order one on ∂U; call them $e^{i \beta}, e^{i \gamma}, e^{i \beta} \neq e^{i \gamma}$.

Denote by J the bounded real interval

$$
\Phi(\partial U)=\left[\Phi\left(e^{i \beta}\right), \Phi\left(e^{i \gamma}\right)\right] .
$$

Next, define the function

$$
\zeta(s)=\frac{\Phi\left(e^{i \gamma}\right)-\Phi\left(e^{i \beta}\right)}{4}\left(s+\frac{1}{s}\right)+\frac{\Phi\left(e^{i \gamma}\right)+\Phi\left(e^{i \beta}\right)}{2},
$$

and let $s=q(\zeta)$ be the univalent inverse function of $\zeta(s)$ which maps the exterior of $(\mathbb{C} \backslash J$) onto the exterior of the unit disk. Put $Q=q \circ \Phi$. Then Q satisfies the conditions of Lemma 2.6 and we conclude that there is an $R_{2} \in\left(1, R_{1}\right)$, such that Q is univalent. Hence Φ is univalent on $V_{R_{2}}$. Finally, Lemma 2.4 shows that f is univalent on some $V_{R}, R \in\left(1, R_{2}\right)$.

It remains to show that f is positively oriented. We already have seen that f is oreintation-preserving. By (3.2), we have for $\rho \in(1, R)$:

$$
\begin{aligned}
\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg \left(i z f_{z}-i \bar{z} f_{\bar{z}}\right) & =\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg \psi\left(1-a(z) \frac{\bar{z}}{z} \frac{\overline{f_{z}}}{z} \frac{\bar{f}_{z}}{z}\right) \\
& =\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg \psi=1 .
\end{aligned}
$$

Since f is univalent, $f(|z|=\rho), 1<\rho<R$, are disjoint positively oriented Jordan curves. It remains to show, that they wind around the origin.

Since f is harmonic on ∂U and $f(\partial U) \equiv 0, f_{\rho}(t)=f\left(\rho^{i t}\right)$ converges uniformly to $f_{1} \equiv 0$ on $[0,2 \pi]$ as $\rho \downarrow 1$. Using the fact that f is univalent on V_{R} we conclude that

$$
\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg f=1 \text { for all } \rho \in(1, R)
$$

and Theorem 3.1 is proved.
5. On the region of values of A. Let $h \in H(\partial U)$ and consider the harmonic mapping

$$
f(z)=h(z)-h\left(\frac{1}{\bar{z}}\right)+2 A \ln |z|, \quad A \in \mathbb{C} .
$$

Denote by E_{h} the set of all $A \in \mathbb{C}$ for which f is univalent and positively oriented on V_{R} for some $R>1$ (which may depend on A). Evidently E_{h} can be empty as the example $h(z)=z+\frac{1}{2} z^{2}$ or $h(z)=z^{2}$ shows. We have the following result.

THEOREM 5.1. Let $h \in H(\partial U)$. If E_{h} is nonempty, then we have the following properties:
(a) E_{h} is a convex set.
(b) If, in addition, $z h^{\prime}(U)$ is a convex set, then the bounded component G of $\mathbb{C} \backslash\left[z h^{\prime}(\partial U)\right]$ belongs to $-E_{h}$.

Proof. (a) Let A_{1} and A_{2} be in E_{h}. Since E_{h} is non-empty, we conclude from Theorem 3.1 and Remark 3.5 that (a), (b^{\prime}) and (c) are satisfied. Observe that (a) and (b^{\prime}) are
independent of A. Therefore we have only to consider the relation (c). There is a $k>0$ and an $R>1$ such that for $i=1,2$

$$
\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg \left(z h^{\prime}+A_{i}\right)=1, \quad \rho \in(1, R)
$$

and

$$
\operatorname{Re} p_{i}(z)=\operatorname{Re} \frac{\left(z h^{\prime}(z)\right)^{\prime}}{z h^{\prime}(z)+A_{i}} \geq k>0 \text { on } V_{R}
$$

Put $A=\lambda A_{1}+(1-\lambda) A_{2}$ for some $\lambda \in(0,1)$. Then we have for all $z \in V_{R}$.

$$
\frac{1}{p_{i}(z)}=\frac{z h^{\prime}(z)+A_{i}}{\left(z h^{\prime}(z)\right)^{\prime}} \in D=\left\{w:\left|w-\frac{1}{2 k}\right| \leq \frac{1}{2 k}\right\} .
$$

Since D is convex

$$
\frac{1}{p(z)}=\frac{z h^{\prime}(z)+A}{\left(z h^{\prime}(z)\right)^{\prime}} \in D
$$

and therefore, $\operatorname{Re} p(z) \geq k$. Furthermore, since $\Gamma_{\rho}=z h^{\prime}(|z|=\rho), \rho \in(1, R)$, is a positively oriented Jordan curve which is strictly starlike with respect to $-A_{1}$ and $-A_{2}$, it is also strictly starlike with respect to $-A$. Hence,

$$
\frac{1}{2 \pi} \oint_{|z|=\rho} d \arg \left(z h^{\prime}+A\right)=1
$$

which shows that E_{h} is a convex set.
(b) Put $\psi_{0}(z)=z h^{\prime}(z)$. Since $E_{h} \neq \emptyset, \psi_{0}(\partial U)$ is an analytic closed Jordan curve. (This follows from (b), (c), (b^{\prime}) and (c^{\prime}) applied to $\psi_{0}+A$ for an $A \in E_{h}$). Suppose, in addition, that $\psi_{0}(\partial U)$ is also a convex curve, i.e. that the bounded component G of $\mathbb{C} \backslash \psi_{0}(\partial U)$ is a convex domain. Let $-A$ be in G and put $\psi=\psi_{0}+A$. Since $0 \notin \psi(\partial U), 0 \notin \psi^{\prime}(\partial U)$ and $\operatorname{Re} \frac{z \psi^{\prime}(z)}{\psi(z)}>0$ on ∂U, we conclude that (c) holds on $V_{R_{1}}$, for some $R_{1}>1$. The statements (a) and (b) hold already, since $E_{h} \neq \emptyset$. Therefore $-G \subset E_{h}$.

We finish this section with the following remarks.
Remarks 5.2. (i) Define $\psi_{0}(z)=z h^{\prime}(z)$ and suppose that $E_{h} \neq \emptyset$. Let, as before, G be the bounded component of $\mathbb{C} \backslash\left[\psi_{0}(\partial U)\right]$. Then $-E_{h} \subset \bar{G}$. Therefore, E_{h} is a bounded set.
(ii) We cannot conclude that E_{h} is closed (and hence compact) as the following example shows: Consider $h(z)=\frac{1}{1-z / 2}$. Then $\psi_{0}(z)=z h^{\prime}(z)=\frac{1}{2} \cdot \frac{z}{(1-z / 2)^{2}}$ and $\frac{z \psi_{0}^{\prime}(z)}{\psi_{0}(z)}=\frac{1+z / 2}{1-z / 2}$. It follows then that $0 \in E_{h}$. There is even a disk $\{A:|A|<r\}, r>0$, which belongs to E_{h}. On the other hand $A=\frac{4}{9} \notin E_{h}$. Let $\hat{A}=\lim \sup \left\{A: A>0, A \in E_{h}\right\}$. Then, \hat{A} violates (3.1) and is therefore not in E_{h}.

References

1. L. Bers, Theory of pseudo-analytic functions, Lecture notes (mimeographed), New York University 1953; An outline of the theory of pseudo-analytic functions, Bull. Amer. Math. Soc. 62(1956), 291-331.
2. L. E. Dundučenko, Certain extremal properties of analytic functions given in a circle and in a circular ring, Ukrain. Mat. ž., 8(1956), 377-325.
3. W. Hengartner and G. Schober, Harmonic mappings with given dilation, J. London Mat. Soc. (2) 33(1986), 473-483.
4. \qquad Univalent harmonic exterior and ring mappings, J. Math. Anal. Appl. 156(1991), 154-171.
5. Y. Komatu, On analyticfunctions with positive real part in an annulus, Kodai Math. Rep. 10(1958), 84-100.
6. A. E. Livingston and J. A. Pfaltzgraff, Structure and extremal problems for classes of functions analytic in an annulus, Colloq. Math., 43(1980), 161-181.
7. V. A. Zmorovič, On some classes of analytic functions in a circular ring, Mat. Sc. 32 (74) (1953), 633-652.

Département de Mathématiques
Université Laval
Québec G1K7P4

