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Abstract

Iterative methods for solving systems of linear equations may be accelerated by coarse
mesh rebalance techniques. The iterative technique, the Method of Implicit Non-sta-
tionary Iteration (MINI), is examined through a local-mode Fourier analysis and com-
pared to relaxation techniques as a potential candidate for such acceleration. Results of a
global-mode Fourier analysis for MINI, relaxation methods, and the conjugate gradient
method are reported for two test problems.

1. Introduction

The finite difference (or finite element) approximation to many problems of
mathematical physics requires the efficient solution of large sparse systems of
linear equations. While direct solution techniques are attractive for solving
Ax =b in many practical cases (particularly now that large computational
facilities are available), the iterative techniques remain the most promising means
of solving the extremely large systems of linear equations that arise in many
applications. This is particularly true in neutron diffusion studies where equations
of the order 10° are commonplace.

One recently devised iterative technique, the Method of Implicit Non-sta-
tionary Iteration (MINI) (Barry and Pollard [2, 3, 4]) has undergone considerable
testing and use with the three-dimensional nuclear code POW3D (Barry, Harring-
ton and Pollard [1]). The method essentially uses an implicit estimate on each
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(2] Coarse mesh rebalancing 191

iterative pass to update the solution at all points of the grid not yet updated.
In a point form the Gauss-Seidel iterative scheme

1 -
2a, x4+ g, x("D + Fa, xM=b,
J<i Jj>1

improves upon the Jacobi method by using all the latest information available to
it. MINI seeks to improve upon the Gauss-Seidel method by improving the terms
associated with the nth pass with an implicit weighted correction determined from
the increment to the ith unknown; as yet undetermined. A point version of MINI
is
3 a, x4 a,x"0 + Fa (x4 y(xHY = xM)) = b, (1.1)
j<i j=>

The weighting factors 7:(1") are determined through an algorithm outlined by
Barry and Pollard (2], and may change on each iterative pass. Suffice it to say at
this stage, each v is subject to the restriction 0 < y{ < 1. This was found to be
essential when MINI was formulated for specific application in neutron diffusion
studies, where a positive solution is essential. Like all relaxation schemes MINI
can be used in a block form, and the improved convergence performance
anticipated is realised.

Unlike the more traditional iterative methods such as successive over-relaxation
(SOR), where considerable accumulated knowledge exists (Varga [19] and Young
[21]), little is known about MINI. All iterative methods, however, are known to
decrease error in estimates of the solution in proportion to the absolute magni-
tude of each eigenvalue, when the error is expanded in terms of the eigenvectors
of the iteration matrix. This expansion has limited use in studies of error removal
because the eigenvectors and eigenvalues can be specified directly for only the
simplest forms of differential operators.

It has been traditional in reactor physics (following Wachspress [20]) to use
variational acceleration techniques and so hasten convergence of the ordinary
iterative process. Methods such as SOK (Pollard [16]) are employed along with
more sophisticated ‘finite element like’ approximations reported by Nakamura
[11-14]).

This process of effective acceleration, known eventually as coarse mesh rebal-
ancing, remained largely ignored outside reactor physics until recently, and still
lacks a solid mathematical backing. One justification for its success is based on
the assumption that, for a particular iteration matrix, the geometric frequencies of
the eigenvectors and the magnitude of the eigenvalues are inversely related,;
Nakamura [14] established that coarse mesh rebalancing for a particular choice of
weighting vectors completely removes the low eigenvector components of error
from the solution estimate. Unfortunately these weighting vectors are the eigen-
vectors of the iteration matrix and so are unavailable in practical situations.
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Nevertheless, somewhat arbitrary correction vectors, computed on a coarse mesh,
and with even trivial weighting vectors, are well known to be a worthwhile way of
accelerating the fine mesh iterations.

In a more recent approach, Brandt [6] describes a multigrid scheme for
hastening the rate of convergence for several iterative methods. This approach
rests on the assertion that the fine mesh iterative scheme rapidly reduces the high
frequency error components in the solution estimate {(and ilie hope ihai ihe more
difficult low frequency components can be removed by iterating over a series of
grids of increasing coarseness when difficulty in convergence on the fine grid is
observed). Support for this assertion is based on what Brandt [6] and Nicolaides
[15] describe as a ‘local mode’ error analysis of some iterative approaches.

In this analysis a smoothing factor u(#) is used as a measure of the decay
induced in each Fourier component of the error by an iterative step. The analysis
is performed at a single grid point far removed from the boundary. A similar
analysis is given here for the point version of MINI. Smoothing factors for other
schemes are quoted and compared. Brandt’s approach is somewhat artificial in
that it distorts the structure of the actual matrix involved by ignoring the
boundary conditions. Although the local mode analysis technique comes in for
some mathematical criticism as to its general applicability, the insight and
agreement with other analyses of error it provides are sufficient justification to
report on it here.

Four methods of coarse mesh rebalancing are subjected to a Fourier analysis in
this work. The four methods form part of the support system for the nuclear code
POW3D, where they have been extensively tested on real reactor configurations.
These reactor calculations led to the conclusions that, at worst, coarse mesh
rebalancing does not penalise the working of the code, the solution time for most
reactor models is shortened, and, for more difficult reactor configurations, some
form of coarse mesh rebalancing is essential.

2. A ‘local mode’ Fourier analysis

Consider a general equation of the form

2 2
g 0%

o Tayr TY) @

subject to appropriate Dirichlet or Neumann boundary conditions. This equation
can be approximated at a mesh point with indices (a, B) situated away from the
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boundary by the following finite difference representation:
a(_Ua+l B + 2Ua B Ua-—l ﬁ) + b(_Ua B+1 + 2Ua B Uu ﬂ——l) = tha B>
(2.2)
where an evenly spaced mesh of width A is assumed about (a, B).

Let u and @ represent the (n) and (n + 1) iterate approximations respectively
for U during a MINI iteration, where the solution procedure already has passed
through the points (a, 8 — 1) and (a — 1, B). Applying MINI to the form given
in equation (2.2) (and, for convenience, dropping the iteration dependence of y)
gives
a(_ua+l I: Ya+1 B(ﬁa 8 Uy B) + Zaa B aa—l B)

+b(—'ua 8+1 " Ya p+|('7a g U, ﬂ) + 24, I: u, B—I) = tha B (2-3)

The finite difference approximation (2.2) may be altered by the inclusion of
two zero terms Y, .. g(U, g — U, g) and v, g+ (U, g — U, p) respectively to

a(_Ua+l B Ya+1 ﬂ(Ua B Ua ﬁ) + 2Ua B Ua—l ﬁ)
+b(_Ua B+1 Ya B-H(Uu B Ua B) + 2Ua B Ua B—l) = tha B (24)
Let the error between the solution U and the two subsequent iterates u and u be
written as
=U-u
and
v=U-—u.
Subtracting equation (2.3) from equation (2.4) gives
a(— a+1 8 Ya+l p(‘-’a B Vg p) + 20, : 2 Og—y p)
+b(_va g+l — Yq ﬁ+l(6a 8~ Ua B) +20,5— 0, p—n) =0 (25)
as an expression of error about the point (a, 8).

The ys are assumed to be constant in any direction (that is positionally
independent) for the following analysis. (In normal practice this is not generally
the situation and so the analysis is necessarily restrictive). Consequently v, g
and v, g, are written as v, and vy, respectively to indicate the independence.
Now, in a Fourier study, the (8,,6,) components of the error vectors on
subsequent iterations are

U, 5= 2 2 Agpet B
6, 6,
and

= — e {ab,+B8,)
Oap =2 DAgge ™t F.
6, 6,
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Substitution into the linear relation (2.5) and use of the linear independence of
the Fourier vectors to separate coefficients yields

}folgz(—ayx +2a— by, + 2b — ae™'% — be'”z)

+A0|02(—ae’0' + ay, — be'®? + byy) =0,

for all §, and 6,.

A smoothing coefficient (or damping factor) u(#,, 8,) is introduced to measure
the damping effect on a particular Fourier term after one iteration. It is defined
as the ratio of the absolute magnitude of the Fourier coefficients after an iteration
to those before, i.e.

|4g.0,]
[Ag0,|"

.“'(01’ 02) =

For the point version of MINI

[ae'® + be'®z — ay, — by, |
|2a + 2b ~ ay, — by, — ae™% — be~%|

#MlNl(el’ 6,) =

(2.6)

Note that this ‘local mode’ error analysis is for the five point linear relation
(2.5) and not the full MINI iterative process (1.1). This form of analysis is capable
only of giving some idea of what might happen to the error components at mesh
points away from the boundary. For most reactor systems the grids are relatively
fine, so the majority of points fit into this category. Any attempt to extend the
explanation to the full process encounters problems that are identified in the
following treatment (Doherty [8§]).

Consider the linear system

Au=s
with the following splitting of 4
A=M—N,
which allows the linear system to be expressed
Mu = Nu +s. (2.7)
This leads to the iterative scheme
uth = MINU + Ms, (2.8)
Subtracting (2.7) from (2.8) yields
u"* ) — g = MIN@U™ — u). (2.9)
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Assuming the completeness of the set of eigenvectors w, of M ~'N the error vector
at step (n + 1) may be expanded
(" = w = Safw

H

or
(u'™ — u) = Wal",

where W is a (square) matrix whose columns are the eigenvectors w,, and the
components of al™ are the coefficients of the error expansion. Then

A" = W (u™ — u)
and hence
anth = W—I(u(n+l) — u)

=W 'M'N@u'" — u)

= WM 'NWa'™m = Ta", (2.10)
Here, T is a diagonal matrix whose elements are the eigenvalues of the matrix.
Under these conditions, it seems natural to analyse the iterative technique in
terms of the coefficients of the eigenvector expansion of error. For the simple case
of a and b constant in (2.2), the orthogonal eigenvectors of the Jacobi scheme are
the Fourier terms, and the local mode analysis is justified rigorously. For more
complex elliptical systems, the completeness of the set of eigenvectors is no longer
assured, nor is it clear that for MINI the analysis could have been applied due to
the uncertainty about the eigenvectors of the iteration matrix. Consequently, the
separation of error components, as performed in the point analysis (2.6), cannot
be rigorously justified by an analysis of the iterative scheme, although there is
ample empirical evidence of its success. The approach is pursued, however, for the
insights it provides into the various iterative schemes.

The smoothing factor for SOR with relaxation parameter w may be found
similarly to the way in which (2.6) was derived for MINI (Barry [5)).

lae®® + be'> — 2a(w — 1) /w — 2b(w ~ 1) /w|
12a/w + 2b/w — ae™" — be™'%|

psor(0y, 0;) = . (2.11)

Consideration of a formal connection between point MINI and SOR (Barry and
Pollard [2]) demonstrates the necessary degree of equivalence between (2.6) and
(2.11). Point methods, however, are seldom used in fine mesh calculations because
the rate of convergence is inferior to block or line versions. For two-dimensional
problems, a line version of MINI (LMINI) (Barry and Pollard [3]) or SOR
(SLOR) generally solves along each mesh line in turn. This requires the solution
of a tridiagonal system of linear equations. For three-dimensional problems, such
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as those tackled by the nuclear code POW3D (Barry, Harrington and Pollard [1)),
the blocking is usually in terms of (x, y) planes, which in turn are solved by line
techniques (LMINI or SLOR).

The way in which the smoothing factors for the line and block oriented
schemes are obtained is similar to that for point methods, (Barry [S]). The
smoothing factors for LMINI and SLOR with lines taken parallel to the x-axis
are given by

|be’®s — by, |
6,,0,) = - , (212
#LMINI( 1 2) 12a + 2b — byy — ge'® — ge~ — be-lozl ( )
and
a(w - 1) [e’”' — 24+ e-,o.] 1 pe'ts — 2b(‘*’ _ 1),
w w
Psior(0),8,) = 2 . 2 )
(—[e’”' — 24 e ] — ==+ pe?:
w w
(2.13)
respectively. For the three-dimensional analogue of (2.1),
0%u 0%u 0%u
-a———~b——c—=F(x, y, z), 2.14
ot 2oy o (x, y, 2) (2.14)

the block forms of MINI (BMINI) and SOR (SBOR) have the following smooth-
ing factors provided the plane iterations are converged

I‘BMlNl(al» 0, 03)

= e — cx.| (2.15)
|2a + 2b + 2¢ — ¢y, — ae™"® — be %2 — ge'0r — be'®2 — ce™%|’
and
I"snon(an 6,, 03)
_ Iap[e’a' — 2+ e+ bp[e® — 2+ %] + ce'® — 2cpi (2.16)

Ll —2+e0] + k[e”"2 —2+e%] ~ 20 4 omits
w w w

where p = (w — 1)/w.

Inspection of (2.6), (2.11), (2.12), (2.13), (2.15) and (2.16) reveals, in general,
that while 8 increases for most a, b (and ¢) p(#) decreases and is less than 1. (No
such strong smoothing is indicated for the six schemes when 8 is small; in fact as
60— 0,ud)—1)
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There are some minor violations of this phenomenon of smoothing, such as
occur with point MINI, where p(6) is also dependent upon y. For the case of any
a,b,and @ fory =1,
|ae® + be'®> — a — b _

|ae® + be "2 — a — b| ;

(61, 6;) =

The result is no reduction for any of the error component frequencies. For-
tunately with MINI, although y =1 is permitted, it is a value that arises
infrequently in practice, and because it is recalculated after every iteration the
probability of its persistence is even lower. The same behaviour is observed for
SOR, SLOR and SBOR as w — 2. Brandt {6] notes the Gauss-Seidel case for
a < b, where p(w/2,0) > 1 as a —» 0. An appropriately oriented line version,
however, overcomes this shortcoming of the point iterative approach, as consider-
ation of (2.13) reveals.

In Figure 1 the smoothing factor is plotted as a function of y and w for the
highest frequency component of error with point MINI and SOR methods. The
results are shown for the operator —v?2 on a 16 X 16 finite difference grid over a
square region of side length 7. Both point and line methods are displayed, and the
expected advantage of the line approach is realised. Although not immediately
obvious from Figure 1, MINI and SOR are equivalent if w = 2/(2 — v). For the
line version, the superiority of MINI appears more marked. This is predicted
from the point theory (Barry and Pollard [2]). No such simple theoretical
relationship exists for the line or block versions of the two methods (Barry [5]).

An examination of MINI (2.6) with the local mode approach reveals that no
smoothing occurs for y > 1. This supports the upper restriction placed on y for
MINI (discussed in Section 1) and found to be desirable in practice. The
theoretical upper bound on w for SOR is suggested similarly by the smoothing
factor (2.11).

The smoothing factor u(8,, 8,) (with 8, and 8, again chosen equal) is plotted
once more for the same operator equation in Figure 2. This time three different
frequency components are shown as functions of y for point MINI and LMINIL.
The components chosen represent low (8, = #/15), middle (8, = 77/15) and
high (8,, = 147 /15) frequency divisions of the spectrum. The comparison sug-
gests that the high frequencies will be removed more quickly by the iterative
scheme, and that the lower ones will persist. The smoothing factors for SOR and
SLOR (calculated with the optimal w in each case) are superimposed in the figure
for the same frequency components. There appears to be little difference between
point MINI and SOR for the lower frequencies, but at higher frequencies the
differences are more marked for a large portion of the range of admissible ys. For
the line version of MINI, this tendency is even more pronounced. The greatest
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()

00

FIGURE 1. Smoothing factor as a function of y and w for the high frequency error component

(8 = 147/15) of the operator -(3%u/dx? + 32u/3y?) on a square region of side =.

smoothing for the low frequency error of MINI coincides with the corresponding
smoothing factor for optimal SOR. The graph demonstrates that, for this particu-
lar value of vy, the other high smoothing components for MINI also coincide with
the optimal SOR smoothing factor. For line MINI and SLOR, a similar coinci-
dence is suggested for low frequency error but is not repeated for high frequency
error, not a surprising outcome because there is no such simple equivalence
between the line versions.

The results show conclusively that MINI handles the high frequency error
terms more efficiently than it does the lower components.

Examination of (2.15) and a three-dimensional analogue of (2.6) suggests that
the block form of MINI is more smoothing than point MINI for the three-dimen-
sional problem. A similar examination of (2.13) and (2.11) supports the same
suggestion for line MINI over point MINI for the two-dimensional problem.
When MINI was introduced in the nuclear code, the block forms were expected
to have a higher rate of convergence. In the absence of a formal analysis of the
convergence of MINI, this expectation based on local mode analysis is reassuring.

In Figure 3 the smoothing factor is shown as a function of y when § = 7 /15,
5w /15, Tn/15, and 147 /15, for the point and line versions of MINI on a
two-dimensional 16 X 16 grid with the previous operator. In addition, a smooth-
ing factor for the three-dimensional operator (equation (2.13)) is included, where
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FIGURE 2. Smoothing factor as a function of y for MINI with the operator —(3%u/3x2 + 9%u/dy?)

for the error component frequencies 8, = jm /15.

the solution process is block MINI, on a 16 X 16 X 16 grid. In Figure 4, a similar
situation is displayed for the smoothing factor of the successive over-relaxation
forms, shown as a function of w. The smoothing factors for block MINI and
SBOR apply to the outer level (i.e. z-direction iterative scheme) for the two-level
block process. Figure 3 demonstrates clearly (for all frequencies displayed), that
the block MINI process for the third spatial dimension possesses superior
smoothing qualities to those of the simpler line or point form on a two-dimen-
sional grid of comparable order.
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u(e?-o MINI

LMINI

LMINI

BMINI
LMINI

BMINI

BMINI

00 0 vy
FIGURE 3. Smoothing factors for the two-dimensional Laplacian operator with MINI and LMINI.
The smoothing factor for the three-dimensional Laplacian is shown for BMINI.

It is well known that blockings of the relaxation methods are more efficient,
however, it is not immediately obvious (because of algebraic difficulties) that
smoothing with the relaxation approach is superior with blocking for all w and 8.
Specific examples shown in Figure 4 suggests it is so for SOR and SLOR.

The block form of relaxation on a three-dimensional problem appears to have a
greater potential for smoothing (over a significant portion of the w range) than
does either SLOR or SOR on a comparable two-dimensional problem. As the
mesh becomes more tightly coupled and the value of w selected increases, the
smoothing terms move together for various frequencies.

https://doi.org/10.1017/5033427000000401X Published online by Cambridge University Press


https://doi.org/10.1017/S033427000000401X

{12} Coarse mesh rebalancing 201

10 20 ¥

FIGURE 4. Smoothing factors for the two-dimensional Laplacian operator with SOR and SLOR.
The smoothing factor for the three-dimensional Laplacian is shown for SBOR.

It also follows with the relaxation technique, that for w somewhat greater than
Wopt» there appears to be only a small difference in the smoothing factor predicted
by local mode analysis. This is related to SOR theory, where all eigenvalues of the
iterative process become equal in absolute value for w = .

The maximum smoothing, predicted with local mode analysis for the low
frequency components in Figure 4, coincides with the value of w obtained by
theory for SOR, and is not far from it for SLOR. In Table 1, the optimal values
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Grid size SOR SLOR
nxn wopt mopt: wopt wopt
n theory local mode theory local mode
4 1.23 1.26 1.03 1.15
8 1.48 1.49 1.27 1.36
io 1.65 i.69 1.55 1.60
32 1.82 1.82 1.75 1.76
64 1.91 1.91 1.86 1.87
128 1.95 1.95 1.93 1.93

TABLE 1. w,,, evaluated from theory and predicted from a local mode analysis of lowest frequency

components of error

of w given by theory and predicted through the local model analysis are displayed
for various grid subdivisions.

A ‘local mode’ examination of the block form of MINI and the relaxation
techniques on three-dimensional problems, confirms that these methods have
their work distributed between iterating in the (z) direction and in the block
(x, y) planes. The analysis, in general, suggests that BMINI has a greater ability
to smooth in the (z) direction than SBOR. The calculation of some large
three-dimensional reactor models (Barry and Pollard {4] and Barry [5]) confirm
this prediction. The Incomplete Choleski Conjugate Gradient (ICCG) technique
has some potential for reactor studies, however, it is not a block form. Because
the block forms (BMINI and SBOR) have to work harder than ICCG to converge
the (x, y) plane, it is anticipated there might be a tradeoff against ICCG in the
third dimension. The results referred to above support this suggestion. Unfor-
tunately, it is difficult to extend the ‘local mode’ approach to handle the conjugate
gradient method or any of its more recent variations.

Comparison of the smoothing factors (2.12) and (2.15) is an inadequate
measure of the effectiveness of the two separate MINI processes for the three-di-
mensional calculations, because MINI in the (z) direction perturbs the diagonal
terms of the (x, y) plane MINI matrix. The modified smoothing factor for the
inner MINI process (based on this method) is

|be“9z - byyl
|2a + 2b + 2¢ — ¢y, — by, — ae'’ — ae™® — be%2|’

I“?ﬁi&l(ap 6,) =

A comparison of p}YGR1(6,, 8,) and pppgni(8), 6, 65) with (v, =v,) and (a = b
= ¢), for convenience, suggests that MINI in the (z) direction will remove higher
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frequency components faster than the inner plane MINI iterative process, and
that it may have trouble with the lower frequencies for certain vs.

The modified smoothing factor for the inner relaxation step is obtained
similarly for this situation

ap[e'® — 2 + e7®] + be'® — 2bp — 2¢p|

Lle® —2+ 0] - 26 2¢, po-m.
w ©  w

#3or(6:,6;) = I

The ‘local mode’ Fourier analysis of the many relaxation techniques supports
the hypothesis that their performances are limited by an inability to remove low
frequency error components as rapidly as higher terms, for suboptimal estimates
of w,,. Owing to difficulties in obtaining a precise determination of w,,, the
performance of relaxation schemes may be enhanced (for low estimates) by a
method which removes low order error components. The Jacobi scheme, as noted
by Nicolaides [15] is an exception to the above observation; however, a weighted
Jacobi technique is appropriate for a multigrid algorithm.

The ‘local mode’ analysis for MINI is more clear cut; for all vy, there is a
general inability to cope with low frequency error relative to the higher frequen-
cies.

Because the Fourier analysis is local in concept and does not accommodate
boundary conditions, any interpretation of the results should be qualified accord-
ingly!

In spite of these limitations the local mode analysis suggests MINI is a most
likely candidate to benefit from coarse mesh rebalancing, because of the greater
relative difficulty it has in suppressing the low frequency error components. The
same conclusion cannot be drawn for successive overrelaxation techniques when
accurate estimates of w,, are available. Experience over the years with relaxation
methods for practical reactor configurations, however, has shown that, when
CMR is applied, computational effort is considerably reduced. The benefit most
likely arises either from a reduction in low frequency error components (when a
suboptimal approximation to w,, is used), or simply from the better approxima-
tion to the true solution produced by CMR.

In an attempt to overcome criticism levelled at conclusions drawn from the
localised study, recourse is made to Fourier transforms to permit a ‘global’ study
of the frequency approach to convergence.

3. A global mode Fourier analysis of iterative methods

To investigate, in a global sense, the effect of the various iterative schemes on
high frequency error components, the fast Fourier transform (Brigham [7]) is used

https://doi.org/10.1017/5033427000000401X Published online by Cambridge University Press


https://doi.org/10.1017/S033427000000401X

204 J. M. Barry, J. H. Jenkinson and J. P. Pollard (15}

to determine the Fourier coefficients of the error vector at various stages of the
iterative process. For this work, the subroutine DHARM (IBM [9)) is used in a
two-dimensional mode to obtain the inverse series

Ni—1 Ny—1
1 | E - )
Aky, ky) = 2 2 X(jl’ jz)e‘z’”(hkn/Nerzkz/Nz)’
NN, Nn=0 j,=0

where X(j,, j,) denotes the error component of the trial vector at the (j;, j,)th
mesh point.

Two sample problems are analysed by the Fourier expansion. The first problem
is

_vzu(x’ .Y) :f(x’ y)’ (31)

where the boundary condition u = 0 is applied on all sides of a square region, of
side 7. The right-hand side is computed from a solution u(x, y) = sin x sin y over
an equally spaced five-point finite difference approximation, used on 17 X 17
grid which includes the boundaries. A trial solution

5
ug(x, y) = u(x, y) + X sin kxsin ky
k=1

was selected because it represents a wide selection of error frequencies of the same
magnitude. A second problem

—Vzu(x, y) + G(X, y)u(x’ y) :f(x’ y)

was selected, subject to the same boundary conditions and trial solution. The
right-hand side f(x, y) is calculated numerically to conform to the solution
u(x, y) = sin xsin y, and o(x, y) is a function (equivalent to a neutron loss for
the reactor physics problem) returning a random value in the range (0, 1).

Results are shown in Tables 2 and 3 after one, three, five and seven iterative
steps with the four schemes MINI, ICCG, SLOR and Gauss-Seidel (GS). For
MINI, the ys are redetermined continuously by the algorithm described in Barry
and Pollard [2]. On the first MINI pass, a Gauss-Seidel iteration is used to
commence the process. For SLOR, the optimal relaxation factor is used from the
start. This is done because a numerical estimate of w,, may not have been
obtained by the seventh iteration, and by then the GS process would have
reduced the error too much for the purposes of comparison. Although w may be
obtained directly for problem 1, a numerical estimate (Pollard [17]) obtained from
separate calculations is used in both problems.
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Iterative |Iteration EM EA FF

Method Count (0,2) (3,4) 5,6) 7.7
MINI 1 2.83 0.457 0.48 0.23 0.18 0.11
3 0.977 0.353 0.76 0.13 0.07 0.03

5 0.609 0.248 0.80 0.11 0.06 0.02

7 0.397 0.146 0.82 0.10 0.06 0.02

ICCG 1 1.31 0.413 0.57 0.21 0.13 0.09
3 0.597 0.277 0.77 0.14 0.06 0.03

5 0.401 0.183 0.79 0.13 0.05 0.02

7 0.266 0.119 0.80 0.13 0.05 0.02

SLOR 1 5.02 0.602 0.26 0.24 0.30 0.20
3 2.53 0.390 0.26 0.25 0.29 0.20

5 1.09 0.183 0.27 0.24 0.29 0.20

7 0.436 0.087 0.27 0.23 0.30 0.20

GS 1 2.83 0.457 0.48 0.23 0.18 0.11

3 1.06 0.375 0.79 0.12 0.06 0.03

5 0.770 0.318 0.85 0.09 0.05 0.02

7 0.625 0.272 0.85 0.08 0.05 0.02

TaBLE 2. A Fourier analysis of four iterative schemes for problem |

To assist the interpretation of an otherwise massive number of Fourier coeffi-
cients in the error expansion

15 15

. : — 20i(f 1k, /16413ka /1
v(]l’ ./2) = 2 2 Ak,kze mi(jrky/16+12k,/16)
k=0 ky=0

0=/,
0=<j,

N n

the Fourier coefficients 4, , are grouped and analysed by range. The range
(n,, n,) is defined to include all terms whose indices k, and k, satisfy

n<k <n, forO<k,<n,

and

n<k,<n, forO0<k, <n,.
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Iterative jIteration EM EA FF
Method Count (0,2) (3,4) (5,6) (7,7)
MINI 1 2.59 0.320 0.44 0.25 0.20 0.11
3 0.423  0.093 0.69 0.17 0.10 0.04
5 0.09%0 0.010 0.67 0.18 0.10 0.04
7 0.030 0.003 0.60 0.24 0.11 0.05
ICCG 1 0.989 0.222 0.50 0.24 0.15 0.11
3 0.103 0.030 0.55 0.28 0.13 0.04
5 0.013 0.004 0.56 0.28 0.12 0.04
7 0.002  0.0005 0.57 0.28 0.11 0.04
SLOR 1 3.28 0.299 0.29 0.24 0.28 0.19
3 0.422 0.064 0.36 0.21 0.25 0.18
5 0.070 0.0l10 0.44 0.20 0.21 0.14
7 0.010 0.002 0.49 0.20 0.18 0.12
GS 1 2.59 0.320 0.44 0.25 0.20 0.11
3 0.533 0.125 0.71 0.16 0.09 0.04
5 0.188 0.051 0.78 0.10 0.08 0.04
7 0.070  0.020 0.76 0.12 0.08 0.04

TABLE 3. A Fourier analysis of four iterative schemes for problem 2

The fraction that all Fourier coefficients in the range (n,, n,) form of all the
Fourier components after an iterative step is shown as FF(n|, n,), Le.

20 2 A, |

15 15 71 ¢’
21,=0 §:/2=0|A/,12|

(3.2)

FF(n,, ny) =

where unspecified summation is taken to be over the range (n,, n,). The maxi-
mum variation between iterations E,, = max|u{"™D — u{"| and average varia-
tion E, = 223", |ul"* D — u{"|/256 are reported also.

The error in the initial estimate has a wide distribution of error components
across the frequency spectrum. Consideration of FF(n,, n,) reveals a significant
shift in the proportion of frequency terms that comprise the new error after even
one iteration with MINI (= GS), and ICCG. After three iterations for both

problems considered, the proportion of the various frequency terms comprising
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the error stabilises, the high frequency components being almost insignificant.
For problem 1 with SLOR, the distribution of frequency components remains
fairly static, while for problem 2, a small relative decrease in the contribution
made by the high frequency error components is observed. This is in keeping with
the theoretical understanding and expectations of SLOR. In problem 1, the error
components belong to the set of eigenvectors of the associated Jacobi iterative
matrix, and these eigenvalues have a reasonably uniform distribution. A selection
of w = w,,, ensures that all the eigenvalues of the iteration matrix are transformed
to lie on the complex circle of radius w — 1 (Young [21]). Even if small errors
occur in the estimate of w,,, the distribution of Jacobi eigenvalues is such that
most, if not all, the transformed eigenvalues still fall on the circle.

When w,, is known exactly, the eigenvalues of the iterative scheme are
identical in magnitude. This is confirmed in problem 1 and it seems pointless to
search for a scheme which facilitates removal of low frequency error alone. A
Fourier study involving a 10 per cent lower estimate of w,,,, however, reveals a
difference in the relative rate of error reduction.

For problem 2, a more selective elimination of frequency components is
achieved through the iterative process. For less straightforward iterative matrices
than those of problem 1, eigenvalues may cluster and errors in the precise
determination of w,, may affect the number of eigenvalues which are trans-
formed to lie on the circle. This in turn will influence the relative decay rate of the
Fourier terms. Under these circumstances, consideration of coarse mesh rebalanc-
ing techniques may be worthwhile. Reactor physicists traditionally have benefited
from accelerating SLOR with rebalance techniques.

4. Coarse mesh rebalancing (CMR)

The iterative solution for the N X N linear system Ax = b, arising from a finite
difference, or finite element, discretisation of a continuous problem is accelerated
by imposing a coarse K X K grid over the fine grid. Starting with an initial
estimate x of X, a new estimate x is sought such that

x, = f(xq, P,c¢),

where x is computed so as to minimise the residual r = Ax — b. The precise
definition of f, P and ¢ depends upon the particular form of CMR. Here, P is a
matrix operator which partitions the fine mesh into a coarse mesh structure while
the components of ¢ are determined by the weighted residual method of Nakamura
{14]. (The number of elements of ¢ varies with the type of CMR, but is
proportional to K 2.) The positioning of the coarse mesh grid points relative to the
fine mesh points depends upon the type of partitioning,.
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A discrete Fourier analysis is performed on four coarse mesh rebalance
schemes of the nuclear code POW3D for two sample problems. Results for the
two test problems are reported in Tables 4 and 5. The first problem and its
boundary conditions are as given by (3.1), where the right-hand side is calculated
numerically for a solution U'(x, y) = (7 — x)(7 — y)xy over a 17 X 17 grid
which includes the boundaries. For the second problem a solution U?(x, y) =
sin x sin y is selected and the right-hand side evaluated similarly.

For the first exampie, the triai solution Uyj(x, y) = U'(x, y) + sin xsin y is
used, while for the second Uf(x, y) = U¥x, y) + (7 — x)(7m — y)xy is
employed. Both trial estimates were chosen because the error involved is not
fluctuating rapidly. Care was taken to avoid an error component that is an exact
multiple of the solution itself, because the multiplicative schemes completely
remove the error from the trial solution under these circumstances (Barry [5]).

For the rebalancing operation, the coarse grid imposed on the 17 X 17 fine
mesh satisfied the following criteria for the four methods analysed:

(i) the order of the reduced system of linear equations is the same for each
method,

(ii) the number of coarse mesh points for each axis is approximately the square
root of the number of fine mesh points (5 and 4 for the disjunctive and pyramid
partitioning methods respectively),

(iii) the coarse mesh points are positioned as symmetrically as possible.

The error vector before and after rebalancing is analysed by the fast Fourier
inverse transform. This time the reported quantity FF(n,, n,) defined previously
by (3.2) is the fraction that all Fourier coefficients in the range (n;, n,) form of
all the Fourier coefficients of error after application of the coarse mesh rebalance
procedure.

It is worth reporting two additional parameters. The first is represented by
FR(n,, n,) and is the fraction (of the original error) to which all the diminished
Fourier components in the range (n,, n,) are reduced, ie.,

2, 20 {14k | =1k, 1) | [ Ay i |
FR(n,,n,)=1— —— 22 for all <,
(my. m2) 20, 2, i, | | Ak i, |

where the unspecified summation is again over the range (n,, n,), and where
Ay, and A_,\.I,‘2 represent the Fourier coefficients before and after rebalancing
respectively. (A small value of FR indicates considerable reduction in the error
component.) The final quantity is the proportion of all terms within a range
(n,. n,y) which are reduced by CMR, and this is expressed as a percentage.

The four CMR methods tested are:
Method 1. Multiplicative disjunctive partitioning-disjunctive weighting.
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The rebalanced vector x,, is given by

(K=1)?

X, = 2 (ckPk)XO'
k=1

The N X N diagonal matrices P, satisfy
®
diag(P,), { = 1 for all Pomts in the k th coarse mesh partition
= 0 otherwise, and

(ii) The coarse mesh grid points lie between fine mesh points (Figure 5). The
(K — 1)? disjunctive weighting vectors (of length N?) are given by w, = P1,
where 1is a vector of length N? with unit components. The parameters c, satisfy
the (K — 1)? inner product linear system

(K=1)?
kz (W, APXoYe, = (w,b)  (I=1,2,..., (K —1)).
=1

1 2 K
123 N

FIGURE 5. Coarse grid for disjunctive partitioning.
Method 2. Multiplicative pyramid partitioning-disjunctive weighting.

The elements of P, are defined by bilinear functions which are of unit height at
the kth coarse mesh grid point and zero on the boundaries of the surrounding
rectangular coarse grid. The coarse grid points this time actually coincide with
fine mesh grid points (Figure 6). The corrected vector x,, is given by

KZ
X, = 2 (ckPk)xo,
k=1
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while elements of the K2 weighting functions used for the weighted residual
method are defined to be unity if the corresponding diagonal component of P, is
non-zero, and zero otherwise.

F1GURE 6. Coarse grid for pyramid partitioning.

Method 3. Additive pyramid partitioning-disjunctive weighting.
The rebalanced vector x,, is given by

KZ

X, =Xt 2 ¢, diag(P,),
k=1

where the P, and w, are as defined for Method 2, but the weighted residual
scheme requires solution of the system of X ? linear equations

KZ
S (w, Adiag(P)) e, = (w,b—4x,)  (I=1,2,....,K?).
k=1

Method 4. Additive pyramid partitioning-Galerkin weighting.

This is the same as Method 3, except for Galerkin weighting.

The disjunctive method is a variation of that proposed first by Wachspress [20],
while the other three are more recent, influenced perhaps by developments in
finite element applications. Nakamura [14] gives a more detailed description and
refers to other possible schemes as well.

Of the three methods involving non-Galerkin weighting, the multiplicative
pyramid and disjunctive partitioning schemes show a significant reduction in the
error of the estimate after CMR is applied. There appears to be a very significant
reduction of error in the low frequency groups as indicated by FR(0, 2). For these
two methods every individual Fourier component was reduced.
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The high values of FF reported for the low frequency components may appear
to be disappointing at first sight. They are a little misleading on their own and
this is why the second quantity FR was computed subsequently. The value of FF
is high for low frequency terms, simply because the original error in the ap-
proximate solution is made up of predominantly low frequency components itself.
After the rebalance, the error still has a high relative proportion of the low
frequency terms even though they are reduced absolutely in magnitude (a fact
refiecied in FR). To some extent, a high value of FF indicates that the rebalance
process does not have a significant parasitic effect of exciting high frequency error
components in these examples.

The reduction in the error is not restricted to the low end of the spectrum (as
indicated by FR). The non-linear multiplicative nature of the schemes allows for
this, whereas the same effect is less likely with simpler mapping operations
between coarse and fine grids. This is verified by the two additive forms, where
the value of FR for the high frequency terms is significantly higher.

The additive pyramid approach without Galerkin weighting seems of little
value compared with the other three procedures. In fact, many of the Fourier
coefficients are increased by this rebalancing.

Significant improvement occurs for the additive method if Galerkin weighting
vectors are selected instead of disjunctive weights. Almost all the Fourier terms
are reduced, and a marked reduction in low frequency terms (relative to the
higher frequencies) is observed for the two examples. Such vectors, however,
require additional computation.

The location of the 4 X 4 coarse grid system achieved by the criteria above for
the pyramid partitioning is not as favourable to the additive forms of rebalance,
because the point (7/2, w/2) at which the error is a maximum is not a coarse
mesh grid point. An alternative coarse mesh grid that exploited this knowledge
overcame the seemingly high maximum and average error reported for sample
problems with additive rebalance (provided Galerkin weighting was used). The
results with the newer coarse grid mesh for the first problem with three of the
CMR routines are presented in Table 6. The results indicate little change for the
very satisfactory multiplicative pyramid form, even though additional coarse
mesh lines are introduced to pass through (7 /2, w/2). The additive form involv-
ing Galerkin weighting showed a dramatic improvement which made it compara-
ble to the multiplicative pyramid form. The multiplicative forms seem less
sensitive to the positioning of the coarse grid for the class of problems considered.
This undoubtedly is due to the multiplicative nature of the rescaling process. For
the pyramid form there is an effective increase in the polynomial order of the
approximation. Despite their better performance, there is considerably more
computational overhead in employing the multiplicative schemes.
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When the initial estimate is
Up(x,y) =(m—x)(m—y)xy +e

where e = sin kxsin ky, the coarse mesh rebalance no longer shows the same
improvement as k increases. Once k exceeds the order of the coarse mesh grid,
application of CMR actually increases the error in the solution estimate. A good
computational strategy, where the error is known to be highly oscillatory, is to
undertake a few ordinary iterations on the fine grid to remove much of the high
frequency spectrum and then apply CMR. The findings suggested by Tables 4
and 5 are supported in general by many other examples when subjected to the
same analysis. It is possible to choose error components where the additive
approach is advantaged; however, actual reactor computations performed to date
with POW3D indicate superior performance with multiplicative forms.

5. Conclusions

Despite certain limitations of the ‘local mode’ approach, it provides some
interesting insights into the removal of error components with the iterative
approaches. These insights are supported by the more conventional ‘global’
approach. Predictions from ‘local mode’ analysis do not contradict well-estab-
lished results for the relaxation methods.

In addition, the Fourier approach suggests the MINI technique will converge
provided 0 < y < 1. Practical experience has demonstrated the need for an upper
limit of unity; however, a theoretical investigation based on the approaches
adopted for relaxation methods (Varga [19]), has so far, only guaranteed conver-
gence for therange 0 <y < 1/2.

The conjugate gradient and MINT iterative schemes appear to be well suited to
the rapid removal of high frequency error components. Each of them seems an
ideal candidate for use with the secondary acceleration provided by the low
frequency error removal from CMR.
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