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SUMMARY

Equine grass sickness (EGS) is a largely fatal, pasture-associated dysautonomia. Although the

aetiology of this disease is unknown, there is increasing evidence that Clostridium botulinum type

C plays an important role in this condition. The disease is widespread in the United Kingdom,

with the highest incidence believed to occur in Scotland. EGS also shows strong seasonal

variation (most cases are reported between April and July). Data from histologically confirmed

cases of EGS from England and Wales in 1999 and 2000 were collected from UK veterinary

diagnostic centres. The data did not represent a complete census of cases, and the proportion of

all cases reported to the centres would have varied in space and, independently, in time. We

consider the variable reporting of this condition and the appropriateness of the space–time

K-function when exploring the spatial-temporal properties of a ‘thinned’ point process. We

conclude that such position-dependent under-reporting of EGS does not invalidate the Monte

Carlo test for space–time interaction, and find strong evidence for space–time clustering of EGS

cases (P<0.001). This may be attributed to contagious or other spatially and temporally localized

processes such as local climate and/or pasture management practices.

INTRODUCTION

Equine grass sickness (EGS) is a largely fatal, pasture-

associated dysautonomia of unknown aetiology. The

acute disease is characterized primarily by failure of

normal alimentary function. The highest incidence of

EGS is believed to occur in Scotland where the disease

was first identified in 1907, although the disease also

occurs throughout England and Wales (for a review

see [1]). The temporal pattern of EGS has also been

well described, with most cases occurring between

April and July [2–4]. However, to date, little has been

done to explore the spatial patterns of EGS in

England and Wales. In addition, no studies have

considered the joint distribution of EGS cases in

space and time.

The well-described spatial distribution might arise

as a result of regional variation in the population at

risk, reporting bias and other static variables associ-

ated with the onset of disease (e.g. soil type, habitat

and altitude). Likewise, the temporal pattern might be

attributed to seasonal variation in risk factors such as

temperature and pasture growth. However, we were

interested in exploring the possibility that these

spatial and temporal processes interact to provide

space–time clustering. Such a situation can arise if

there is a contagious element or spatially and tem-

porally localized variation in other ‘driving’ variables.
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Estimating the extent of clustering might assist in the

formulation of disease-prevention strategies in the face

of a confirmed case.

There are many approaches to the exploration of

space–time clustering in human and animal diseases.

The Mantel test, Barton’s method, nearest-neighbour

test and Knox’s test are techniques useful for in-

vestigating space–time interaction. These and other

methods are reviewed in refs [5–7]. Most of these tests

concentrate solely on testing the null hypothesis of no

space–time interaction and do not consider the scale

or nature of space–time interaction. Diggle et al. [8]

suggested an alternative approach, which provided a

formal, edge-corrected test for space–time interaction

and informal graphical methods for describing the

nature and scale of space–time clustering. This

method extends the use of K-functions [9] (previously

used to describe purely spatial point patterns) to

spatial–temporal processes. The technique has been

used to describe sporadic cases of human disease

but has rarely been used in veterinary epidemiology

[10, 11]. We use K-function analysis to examine

space–time clustering of EGS in England and Wales

and consider the effects of position-dependent under-

reporting on the validity of the space–timeK-function.

METHODS

Data on EGS

Data from histologically confirmed cases of EGS in

England and Wales were collected from UK veterin-

ary diagnostic centres. Cases that were diagnosed

from clinical signs only were excluded from the study

due to the possibility of misdiagnosis. The date used

was the date the horse first showed clinical signs or the

date the horse was admitted to a veterinary hospital

(if applicable). The former was used in preference.

Because this is an acute-onset disease the difference

between the two was likely to have been less than

2 days. The geographical location where the case

occurred was identified as the nearest village or town

to the premises where the horse originated. This

would have been within 1–2 km of the premises (client

confidentiality restricted the authors access to exact

premises locations). Each location was converted into

a four-figure Ordnance Survey grid reference using

the Ordnance Survey Gazetteer of Great Britain (third

edition). Information was collected on 133 histologi-

cally confirmed cases of grass sickness in the years 1999

and 2000. Two datasets were used in the analysis. The

first comprised all reported cases including multiple

cases from the same premises. The second was a

slightly smaller (119 cases) database comprising only

the first case to be reported on each of the premises

during the study period. This smaller dataset was

analysed to examine space–time clustering in the

absence of very local (i.e. same premises) effects.

Space–time K-function analysis

The technique is fully described by Diggle et al. [8].

Briefly, the observed spatial–temporal point pattern is

compared with a pattern that has the same temporal

and the same spatial properties as the original data,

but no space–time interaction. Like the Knox test this

method does not require knowledge of the underlying

population at risk. This involves the estimation of

three component processes, i.e. K-functions:

K(s, t)=lx1 E [number of further events occurring

within distance s and time t of an arbitrary event of

the process],

K1(s)=l1
x1 E [number of further events occurring

within distance s of an arbitrary event of the

process],

K2(t)=l2
x1 E [number of further events occurring

within time t of an arbitrary event of the process],

where E refers to the edge-corrected expected value

[e.g. for K1(s) it is the mean number of events within

distance s of an arbitrary event, adjusted for edge-

effects], l is the expected number of events per unit

space per unit time (intensity of the disease process),

and l1 and l2 are the spatial and temporal intensities

respectively.

The product of the spatial and temporal K-func-

tions K1(s)K2(t) is the expected K-function under the

hypothesis of no space–time interaction and is used as

a benchmark for comparison with the observed

space–time K-function: K(s, t).

In addition to providing an edge-corrected Monte

Carlo test for space–time interaction (see [8] for full

details), the method can be used to estimate and

describe proportional and absolute increases in

disease risk, attributable to space–time interaction,

for a range of spatial and temporal separations. This

is achieved by graphing three diagnostic functions.

The edge-correction and the additional interpretation

of the nature of space–time interaction are advantages

of this method over the Knox test.

D̂D(s, t)=K̂K(s, t)xK̂K1(s)K̂K2(t): (1)
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This function is proportional to the increased num-

bers of cases within distance s and time t by com-

parison with a process with the same spatial and

temporal structures but no space–time interaction. It

is analogous to the risk difference in epidemiology

and is plotted against s and t.

D̂D0(s, t)=D̂D(s, t)={K̂K1(s)K̂K2(t)}: (2)

This is proportional to the relative increase in cases

within distance s and time t compared with a process

with the same spatial and temporal structures but no

space–time interaction. It is analogous to the relative

risk and is plotted against s and t.

R(s, t)=D̂D(s, t)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{V(s, t)}

p
, (3)

where V(s, t) is the variance of D̂(s, t) [see [8] for the

calculation of V(s, t)]. When plotted against K1(s)K2(t)

this is analogous to a plot of the standardized

residuals against fitted values. If the spatial and

temporal processes were independent (i.e. there was

no space–time interaction) then we would expect

approximately 95% of the values to lie between the

values ¡2. A disadvantage of this plot is that the

spatial and temporal scales are no longer explicit and

the ‘residuals ’ are highly interdependent. Rather than

a ‘cloud’ of points, this lack of independence may

produce obvious patterns (e.g. lines of points) within

the plot. We suggest that for most applications, the

function D̂0(s, t) will be of most interest.

Considering the effects of position-dependent thinning

(systematic under-reporting)

The data used in this analysis were not a complete

census of all cases inEngland andWales. Furthermore,

the proportion of all cases of EGS included in the

analysis varied according to geographical location

and may also have varied over time. This is termed

‘position-dependent thinning’ and arises from the

variation in case reporting throughout the region

studied (for example it is likely that proportionally

more cases were ascertained in areas closer to the

contributing diagnostic centres). This means that the

spatial distribution of the cases used in this analysis

does not represent the true underlying spatial

distribution of EGS cases in England and Wales.

Likewise there may be times of the year when

proportionally fewer cases are reported. Although

tests for purely spatial or purely temporal clustering

would be affected by position-dependent thinning or

temporal-dependent thinning respectively, we show

that the Monte Carlo test for space–time interaction

used in this analysis is not invalidated by such

thinning, provided the spatial and temporal thinning

operate independently.

For a more formal consideration of the effect of

position-dependent thinning on the test of no

space–time interaction we consider a spatio-temporal

dataset (xi, ti) : i=1, …, n generated by a process with

no space–time interaction. Hence the complete set of

spatial locations, X=(x1, …, xn) is independent of the

complete set of temporal locations, T=(t1, …, tn). A

spatio-temporal thinning is defined by a function

p(x, t) denoting the probability that a point survives

in the thinned process, given that it is at space–time

location (x, t). If spatial and temporal thinnings

operate independently, then p(x, t)=p1(x)p2(t). If we

assume that spatial and temporal thinnings are inde-

pendent we can imagine the thinning to take place in

two stages : the first according to the spatial thinning

function p1(x) ; the second thinned from the survivors

of the first stage according to the temporal thinning

function p2(t). If we call the temporal locations which

survive the first stage of thinning T*, and the surviv-

ing spatial locations X*, then under the stated

assumptions, T* consists of a random sample from

the original set T. Since T is independent of X, it

follows that T* is independent of any subset of X

chosen without reference to T, and in particular is

independent of X*. Hence X* and T* are independent

and a test of no space–time interaction in the data X*,

T* is a valid test of no space–time in the original data

X, T. If we repeat the argument, applying a second

thinning to X*, T* according to the temporal thinning

function p2(t), and reverse the roles of the spatial and

temporal locations, we produce thinned data X**,

T**. A test of no space–time interaction in X**, T**

is also a valid test of no space–time interaction in X*,

T* and hence in the original data X, T.

However, if we reject the null hypothesis of no

space–time interaction, we cannot always interpret

the estimated space–time interaction in the thinned

process as an estimate of the space–time interaction

in the original process. To do this we need to make

the stronger assumption that p(x, t)=p, as K(s, t) is

invariant under this form of ‘homogeneous’ thinning.

However, preliminary simulation studies have shown

that for the mechanism by which position-dependent

thinning of EGS takes place, both the absolute

and relative differences between the estimated and

theoretical K-functions were small [12].
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All analyses were performed using the SPLANCS

library [13] in S-PLUS (Insightful Corporation,

Seattle, WA, USA).

RESULTS

Temporal and spatial patterns of EGS

Figure 1 shows a peak in May in the temporal pattern

of the 133 EGS cases used in this study. Figure 2

shows the spatial distribution of the 133 histologically

confirmed cases of EGS used in this study. The

apparent spatial clustering of EGS cases in several

parts of England and Wales is potentially misleading.

This is most likely due to uneven, clustered reporting

of cases, particularly around the major contributing

diagnostic centres. Hence purely spatial thinning p(x)

is a plausible feature of the problem.

Space–time K-function analysis

When all cases were considered together there was

strong evidence of space–time clustering of EGS

cases. The Monte Carlo test for space–time interac-

tion computed a P value of <0.001 providing formal

evidence for space–time interaction. The residual plot

(Fig. 3) ; referring to spatial separations up to 30 km

(in 5-km increments) and temporal separations up to

90 days (in 4-day increments), revealed that almost all

of the residuals were >2. This indicated space–time

interaction over wide spatial and temporal separ-

ations, but particularly for lower values of K1(s)K2(t)

corresponding to shorter spatial and temporal dis-

tances. This is confirmed by the D̂(s, t) plot which

showed a sharp rise over the first 10 km and 20 days

(not shown) and demonstrated further in the D̂0(s, t)

plot (Fig. 4) which showed the greatest proportional

increase within these distances. High values on the

z axis of the D̂0(s, t) plot indicates that there are many

more outbreaks within the given spatial and temporal

separation than would be expected if there were no

space–time clustering.

When multiple cases were excluded from the

analysis this left 119 EGS outbreaks (incident cases).

The R(s, t) and D̂0(s, t) plots of the 119 EGS

outbreaks (Figs 3 and 4) also showed that a large

proportion of incident cases within 10 km and 20 days

of each other could be attributed to space–time

clustering. Thus the exclusion of multiple cases still

revealed significant evidence of clustering. The Monte

Carlo test for space–time interaction computed a

P value of 0.016.

DISCUSSION

By providing both an edge-corrected test for space–

time interaction and an estimate of the nature and

extent of the process, the K-function has advantages

over the Knox test. Furthermore, this method comp-

lements the many other approaches to the analysis
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Fig. 1. Seasonal distribution of 133 histologically confirmed
cases of equine grass sickness during 1999 (%) and 2000 (&)

in England and Wales.
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Fig. 2. The spatial distribution of 133 histologically con-
firmed cases of equine grass sickness during 1999 and 2000
in England and Wales.
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of data with both a spatial and temporal dimension.

For example, the space–time scan statistic [14] is use-

ful for identifying the location of individual clusters

or ‘galaxies ’ of disease in space–time cylinders. In

contrast, K-function analysis helps to describe the

more general properties of a space–time process.

In this study it was highly likely that the proportion

of cases reported varied across and within regions due

to variable degrees of under-reporting by veterinary

surgeons and pathologists. Temporal variation in the

degree of under-reporting could also occur if, for

example, a diagnosis was less likely to be made

outside the high-risk months of April, May and June.

K-function analysis is not invalidated by random

under-reporting or ‘thinning’. Furthermore, the test

for space–time interaction is not invalidated by

position-dependent under-reporting, provided the

spatial and temporal thinning were independent.

Therefore, unless there was an interaction between

spatial and temporal variation in reporting (e.g. a

veterinary surgeon reported all cases within a small

area over a short time period and only a fraction of

other cases encountered) under-reporting would not

have invalidated the test for space–time clustering.

This study provided strong evidence for space–time

clustering of grass sickness cases in the United

Kingdom. Space–time clustering was evident both

when individual EGS cases and individual outbreaks

of EGS were investigated. The presence of a space–

time interaction on such a local scale is consistent with

either an infectious aetiology, and/or risk factors that

localize both spatially and temporally.

The causal agent of EGS has yet to be determined

but there is increasing evidence for the role of

Clostridium botulinum type C [15, 16]. It is possible,

therefore, that the observed space–time clustering is

due to contagious spread of this organism. However,

it has been reported that only one horse in a field of

many develops the disease and the occurrence of dis-

ease does not follow a typical spread of an infectious

disease. It seems more likely that the onset of EGS is

attributable to risk factors that are localized in both

space and time. Tocher et al. [17] mapped the spread

of the disease in Scotland and reported that no theory

could explain the spread of disease and was undecided

whether the distribution of cases resembled that of a

contagious epidemic disease or a disease arising from

the spread of a sporing organism. We hypothesize

that environmental factors, possiblymeteorological, in

particular geographical areas, trigger the development

5
10

15
20

25
30 Distance in km

20
40

60
80

Time in days

0

5

10
15
20

25

30

D0

D0

5
10

15
20

25
30 Distance in km

20
40

60
80

Time in days

0

5

10

15

20

(a)

(b)

∧

∧

Fig. 4. A 3-dimensional plot of the D̂0(s, t) function for

(a) all 133 cases and (b) 119 incident cases of equine grass
sickness reported during 1999 and 2000 in England and
Wales.
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Fig. 3. Residual plots of R(s, t) against K1(s)K2(t) for (a) all

133 cases and (b) 119 incident cases of equine grass sickness
reported during 1999 and 2000 in England and Wales.
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of disease in susceptible individuals. It is possible that

Cl. botulinum type C is more prevalent in certain areas

of the United Kingdom and that disease is triggered in

susceptible animals under conditions that stimulate

toxin production in vivo. This might explain the space–

time clustering of EGS cases found in this study.
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