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Let A and B be function algebras. We generalise the Nagasawa theorem by proving
that the Banach-Mazur distance between the underlying Banach spaces of A and B, is
close to one if and only if they are almost isomorphic, that is if and only if there is a
linear map T from A onto B such that WT'^Tf- Tg)-fg\\<^e\\f\\\\g\\.

In this paper we define two kinds of perturbations of the algebraic structure of a
Banach algebra and prove that they coincide for function algebras.

By an a-perturbation (algebraic perturbation) of a Banach algebra (A, •) we mean an
associative multiplication x defined on the Banach space A such that

| | /xg — / 'gll^ ell/||lkll for all fg in A. (1)

The £-perturbations were studied by R. V. Kadison, D. Kastler [4] and J. Phillips [6],
and in a more general situation by B. E. Johnson [3] and I. Raeburn and J. L. Taylor
[7]. They investigate whether all multiplications on a Banach algebra (A, •) near the
given multiplication share any of the properties of the original one. The best possible
situation happens if every sufficiently small perturbation produces a new algebra which
is algebraically isomorphic to the original one. Such an algebra is called rigid or
algebraically stable. Johnson, and Raeburn and Taylor proved that an algebra A is rigid
if the second and the third groups of cohomology of A vanish. Johnson also gave
several examples and counter-examples of rigid Banach algebras, for example he
obtained rigidness of the algebra C(S) of all continuous functions on a compact metric
space S. Using another method R. Rochberg [8] proved this and some other results
concerning e-perturbations. Rochberg investigated perturbations of function algebras,
that is, of the commutative Banach algebras with unit such that ||/2| | = | |/ | |2 for any
element / of the algebra. Some of his results were generalised in [2].

For function algebras one can define, in a natural way, another type of perturbation.
To this end, let us recall the Nagasawa theorem.

Theorem ([5]). Two function algebras A and B are isometric if and only if they are
algebraically isomorphic.

Accordingly, we shall call a function algebra B an e-metric perturbation of a function
algebra A if and only if the Banach-Mazur distance between the underlying Banach
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spaces of A and B is smaller than 1 + e. A function algebra A will be called metrically
stable if and only if all sufficiently small metric perturbations of A are isomorphic with
A. Let us now fix some terminology. If A and B are Banach algebras and if T is a
homomorphism of the underlying Banach spaces of A into the underlying Banach
spaces of B then we call T a linear homomorphism; if T is also a homomorphism of
algebras then we call it an algebraic homomorphism.

Notice that if T is any linear isomorphism between the underlying Banach spaces of
algebras A and B then T defines another multiplication x on A:

fxg=T~1(Tf-Tg) for fig in A.

Notice also that if x is a commutative e-perturbation of the Banach algebra (A, x)
then the Gelfand transformation of the algebra (A, x) is a linear map from a Banach
space A into a function algebra C(M(AX)), M(AX) being the maximal ideal space of the
algebra (A, x).

Our main theorem is

Theorem 1. For any function algebra (A,-) the following holds:

(i) if x is an e-algebraic perturbation of A and if e<l, then the multiplication x is
commutative, the Gelfand transformation of the algebra (A, x) is an isomorphism from A
onto a closed subalgebra B of C(M(A x)) and the Banach-Mazur distance between A and
B is less than (l + £)/(l-e);

(ii) if a continuous linear isomorphism T between A and a function algebra B defines an
e-metric perturbation of A, then there exists a linear isomorphism T between A and B such
that ||T||||7'~1||^l+e'(e) and such that the multiplication on A defined by T is an e'(e)-
algebraic perturbation of the original multiplication of A, and e'(e)->0 as e->0. Moreover, if
TeA = eB then f equals T.

This theorem was proved by R. Rochberg ([8], p. 102) in the special case when the
Shilov and the Choquet boundaries of A coincide and when every point of the Shilov
boundary of A is a G3 set. Before proving this theorem let us formulate, as immediate
consequences, the following theorems, the first of which generalises the Nagasawa
theorem.

Theorem 2. Function algebras A and B are e-almost isometric (this means that there
exists T:A-*B:\\T\\\\T~i\\^l+E) if and only if they are e'-almost algebraically isomorphic
(this means that there exists a linear isomorphism T of A onto B such that \\T~1(Tf -Tg)
— fg\\^e'\\f\\\\g\\ for all fig in A), where e and e' tend to zero simultaneously.

Proof. The "only if" part is just Theorem 1 (ii). To get the converse implication
assume

| for all fig in A,

where
f*g=T-\Tf-Tg).
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By Theorem 1. (i) there is a continuous algebra isomorphism " from (A, x ) onto some
function algebra C. The maps * « r ' and T o " " 1 being algebraic isomorphisms
between two function algebras B and C are isometric and hence

Notice that we do not assume the continuity of T but we get it from the condition

for e<l .

Theorem 3. A function algebra A is algebraically stable if and only if it is metrically
stable.

Before passing to the proof of Theorem 1 we derive one more theorem which we shall
need later. This theorem is valid for arbitrary Banach algebras not necessarily function
algebras and seems to be interesting in itself. It allows for a significant simplification
when checking whether a new multiplication is an e-perturbation of the original
multiplication of the Banach algebra.

Theorem 4. Let A be a Banach space and let •, x be two multiplications on A with
identity elements e and e. Assume that (A, •) is a Banach algebra. There is a function
c:R+->IR+ such that limc(e) = 0 as 8->0 and if

M N f°ral1 f'SinA, (2)
then

\\e~^f^g-f-g\\^c{£)\\f\\\\g\\ for any f,ginA; (3)

where e~y is the inverse element of e in the algebra {A, x).

Proof. Replace / in (2) by the element exp(A/) where A is a complex number and
exp is the exponential function in the Banach algebra {A, •), and replace g by
g-exp(-lf). We get

A/)-s]|| I^£IH ||exp(-A/)||-||cxpA/||

This gives

£exp(2|A|||/||)]

l2p/2\ + ...) x(g-Xfg/U + X2f2g/2l-.. .)

= \\exg-(fxg-ex(fg))X/V.+(...)X2/2\ + ...\\.
EMS—E
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Now let F be any linear functional on the Banach space A of norm equal to one. We
have

\F(exg)-X/V.F(fxg-ex(fg)) + A2/2\F(.. .) + ...|

This shows that the modulus of the entire function

= F(e xg)-l/V.F(fxg-ex (/g)) + 12/2\F(...)-...

on the unit disc D = {AeC:|l|<l} is not greater than ||g||[£exp2||/|| + l] , hence the first
derivative at the point zero of this function has modulus not greater than this constant
too. Because F is an arbitrary functional of norm 1, it follows that

for any fig in A. (4)

Fix elements / and g in A both of norm 1, and let a= — -jlogE>0. From (4) we get

| | / x g-e x ( / -g)\\ = ||(fl50 x (s/a) - e x ((a/) • (g/a))\\

for 0 < £ < l . This shows the existence of a positive number e1 = e1(e)= — 4/log£ such that
£!(£)->() as £-»0 and

| for any fig in A. (5)

Now let us estimate the norm of the unit e of the algebra (A, x). From (2) we have

ilHI-lk1M=llkx^-INIII^#l
and hence

Setting f=g = e in (5) we find

\\e-ex{e-e)\\^B,\\ef^Bj{\-EY.

By (2)

| | /x* | |S( l+e) | | / | | | | s | | for all fig in A

which implies that if (1 + e)e1||c||2< 1 then e is an invertible element of (A, x). Further if

lie —x||^e1l|er||2< l/(l-|-e)
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then

Ik'WII+E \\(e-x)x...x(e-x)\\
n = l » y '

n times

so that

provided e^l + e)(l —e)"2< 1. Moreover, for each / and g in A we have

( l -e ) - 3

logs + 4(H-e)(l-e) - 2

Corollary. Let {A, •) be a Banach algebra with identity. Assume that on the underlying
Banach space of A there is defined another multiplication x such that \\f xg | | = | | / " g | | for
all f, g in A. If both multiplications x and • possess the same identity, then they coincide.

Proof of Theorem 1.

Let us first prove the easy part of Theorem 1. Let x be an e-perturbation of A. For
any / in A we have

and hence

By induction

2" times

The above inequalities prove
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Proposition 1. / / x is an e-perturbation of a function algebra A then the spectral
radius of any element f of the algebra (A, x ) is contained between (1—a) | | / | | and

From this proposition and the theorem of Hirschfeld-Zelazko [1] we deduce the
commutativity of x if e< l . Denote by " the Gelfand transformation of the algebra
(A, x). By Proposition 1 it is an isomorphism of the algebra (A, x) onto a closed
subalgebra B of C(M(A x)) such that

For the proof of the second part of Theorem 1 we need the following lemma.

Lemma. Let T be a continuous .linear isomorphism of a function algebra A onto a
function algebra B with ||T|| = 1 and \\T~i\\^l+e<l.5. Then there exists a dense subset
Q of the Shilov boundary of A such that for each x in Q there is y in the Shilov boundary
of B such that

|T/G,)|£|/(x)|-2e||/ | | for all f in A. (6)

Proof. Denote by dA, dB the Shilov boundaries of A and B and by Ch A, Ch B the
Choquet boundaries of these algebras. We will call a net (gx) of the elements of the
function algebra B a peaking net at a point y e Ch B if and only if

W ^ ) = l for all a

and

(gj tends uniformly to zero outside any neighbourhood of y.

We shall denote by Qy the subset of dA consisting of all points x0 admitting a net
(#<*)c B peaking at y and a net (xa) a dA converging to x0 and such that

| T " V a M ^ l - e for all a.

Since | |r| | = 1 and because the set dA is compact it iollows that the set Qy is non-v6id.
Notice now that for any f in A and for a suitable net (nx) of complex numbers of

modulus one we have

hence
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Thus, by definition of (&J we obtain

for any function / in A of norm 1.
So, we have proved that (6) is satisfied for any y in Ch B and any x0 in Qy. It remains

to prove that Qo= \J {Cl/.yeChB} is a dense subset of dA. Suppose that it is not. Then
there exists an open subset V of dA such that V n fi0 = 0. Fix 0 < 3 < 1 — 2e and an
element ft from A such that

i|| = l and |/i(x)|<5 for xedA-V.

Take yt eChB such that

and let (gJcB be a net peaking at yt. For a suitable net (<!;J of complex numbers of
modulus one we have

Hence

so by the definition of fu there exists a net (xa) c F such that

^xJ^l-e. (8)

Because V is a compact subset of dA we can assume that the net (xj converges to
xoeV, which leads in view of (8) to the conclusion that x0eVr\£l0. But this contradicts
the assumption Vn£lo = <l) and therefore proves the lemma.

Let us now return to the proof of the second part of Theorem 1. To this end let A
and B be function algebras and let T be a continuous linear isomorphism from A onto
B such that 11 T"|111T x11 Ŝ1 -I- c Without loss of generality, we can assume that ||T|| = 1
and ||T" A[|̂ = 1 +e. From the lemma, for any f,g in A, we have

\\Tf- 7*11 = sup |r/(y)rg(y)|^sup(|/(x)|
yedB xetl

so that

\\Tf-Tg\\-\\fg\\Z-4e\

for i
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Now put T1 = T~l/\\T~1\\ and / i = T1"
1/, gl = T^1g. From the lemma, in the same

manner as above we derive

Hence

for ^
We get

where f xg=T~\Tf Tg).
Now denote by e, eA, eB the units of the algebras (A, x), {A, •) and B, respectively.

Notice that Te=eB. From (9) and Theorem 4 we have

"kll
where e j 1 is the inverse of the element eA in the algebra (A, x). Let us define an
operator S:A-*A by Sf = eA

1 x f. From (9) and (10) we see that

I \MH\f\\ 1 = 1 KWHI/ I I |£| \\e-Sxfxe\\-\\f-e\\ | + | ||/-*||-||/x*|| |

Hence

^ l ^ l + c^e) with limc1(e) = 0 as e-*0. (11)

Let T = T-S. By (11), since ||T||||T~ 1|| = 1 +s, we have||f||||f " ^ ^ l+c2(e) with
limc2(e) = 0 as e^O. Moreover Te^ = eB. Hence by following the same argument that was
applied above for T we get

| | /og-/-* | |gc(e) | | / | | | |g | | for any f,g in A,

where fog=f-1(Tf-Tg).
Notice that Theorem 1 does not settle the question whether small algebraic and

metric perturbations of a function algebra produce the same class of algebras in a limit
situation. More precisely, Theorem 1 does not show whether the Banach-Mazur
distance between two function algebras is equal to one if and only if these algebras are
algebraically isomorphic. The answer is negative and can be found in [2].
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