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Abstract
Elevated plasma concentrations of several one-carbon metabolites are associated with increased CVD risk. Both diet-induced regulation and
dietary content of one-carbonmetabolites can influence circulating concentrations of thesemarkers.We cross-sectionally analysed 1928 patients
with suspected stable angina pectoris (geometric mean age 61), representing elevated CVD risk, to assess associations between dietary
macronutrient composition (FFQ) and plasma one-carbon metabolites and related B-vitamin status markers (GC–MS/MS, LC–MS/MS or
microbiological assay). Diet-metabolite associations were modelled on the continuous scale, adjusted for age, sex, BMI, smoking, alcohol and
total energy intake. Average (geometric mean (95 % prediction interval)) intake was forty-nine (38, 63) energy percent (E%) from carbohydrate,
thirty-one (22, 45) E% from fat and seventeen (12, 22) E% from protein. The strongest associations were seen for higher protein intake, i.e. with
higher plasma pyridoxal 5’-phosphate (PLP) (% change (95 %CI) 3·1 (2·1, 4·1)), cobalamin (2·9 (2·1, 3·7)), riboflavin (2·4 (1·1, 3·7)) and folate (2·1
(1·2, 3·1)) and lower total homocysteine (tHcy) (–1·4 (–1·9, −0·9)) and methylmalonic acid (MMA) (–1·4 (–2·0, −0·8)). Substitution analyses
replacing MUFA or PUFAwith SFA demonstrated higher plasma concentrations of riboflavin (5·0 (0·9, 9·3) and 3·3 (1·1, 5·6)), tHcy (2·3 (0·7, 3·8)
and 1·3 (0·5, 2·2)) andMMA (2·0 (0·2, 3·9) and 1·7 (0·7, 2·7)) and lower PLP (–2·5 (–5·3, 0·3) and−2·7 (–4·2,−1·2)). In conclusion, a higher protein
intake and replacing saturated with MUFA and PUFA were associated with a more favourable metabolic phenotype regarding metabolites
associated with CVD risk.
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Several metabolite markers have been associated with risk
of CVD, including one-carbon metabolites such as total
homocysteine (tHcy)(1), methylmalonic acid (MMA)(2–4), dime-
thylglycine (DMG)(5–7), cystathionine(8–10) and choline(7,11–14).
One-carbon metabolism comprises all metabolic reactions
involving the transfer of one-carbon units and includes the
methionine-homocysteine cycle, the transsulfuration pathway,

the folate cycle and the choline oxidation pathway (Fig. 1).
Changes in one-carbon metabolites may result from altered
metabolic states in different tissues, which in turn may depend
on dietary intake of energy-yielding nutrients. More specifically,
protein restriction in both healthy subjects, as well as in subjects
with inborn errors of the metabolism of sarcosine, leading to
elevated plasma concentrations of sarcosine, increased the
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remethylation of homocysteine to methionine(15,16). Moreover,
inverse associations with plasma tHcywere reported for a higher
protein intake, as well as for intakes of fish and eggs(17). Total
protein intake was also reported to be positively associated
with plasma cystathionine and total cysteine, and a higher intake
of plant protein in particular was reported to be inversely
associated with tHcy(18). Some studies also suggest that different
protein sources may elicit opposite effects on plasma tHcy, as
they report diets high in plant protein to be inversely associated
with tHcy and diets high in animal protein to be positively
associated with tHcy(19,20).

Food sources of protein are commonly good sources of
vitamin B6, and protein intake is positively related to vitamin B6

status(21). Dietary PUFA have also been reported to be inversely
associated with plasma tHcy(17) and randomised controlled
dietary intervention trials with increasing PUFA intakes and/or
altered intakes of methionine and cysteine affected plasma
concentrations of several metabolites related to transmethyla-
tion, transsulfuration and B-vitamin status(22,23). Further, supple-
mentation with krill oil, which is rich in phosphatidylcholine and
n-3 fatty acids, reduced tHcy and increased the concentration of
choline oxidation pathway metabolites in healthy adults(24). In
rats, increasing dietary fat intake has been shown to upregulate

genes involved in the choline oxidation pathway and to
downregulate both enzymes of the transsulfuration pathway(25).
Further, when combined with methionine restriction, betaine
induced betaine-homocysteinemethyltransferase (BHMT)mRNA
in rats(26). For choline, dietary sources include eggs, milk, lean fish
and leafy vegetables, and dietary total choline has moreover been
reported to be positively associated with plasma choline,
methionine, cystathionine, cysteine and DMG and inversely
associated with plasma tHcy, glycine and serine(27,28). Total
carbohydrate intake is also positively associated with circulating
tHcy concentrations, while the opposite has been seen for
vegetables and whole grain(17). Indeed, whole-grain cereals are a
main source of betaine(29), and whole-grain intake has been
associated with higher plasma betaine concentrations(30).

Taken together, there is an established connection between
one-carbon metabolites and CVD and evidence implicating a
role of diet in the regulation of these metabolic pathways. This
underscores the relevance of our study, where the aim was to
explore associations between dietary macronutrient composi-
tion and plasma concentrations of one-carbon metabolites and
associated B-vitamin status markers. To deepen our under-
standing of the interplay between diet and one-carbon
metabolism, we here leverage a large cohort of patients with

Fig. 1. An overview of central metabolic pathways in one-carbon metabolism. (a) The folate cycle, (b) the methionine-homocysteine cycle, (c) the transsulfuration
pathway and (d) the choline oxidation pathway. Themetabolites are shown in bold text, and B-vitamin cofactors are shown in black circles. The enzymes are presented in
grey boxes.Methionine is an important precursor to the central methyl donorS-adenosylmethionine.WhenS-adenosylmethionine donates amethyl group, it is converted
to SAH, which is hydrolysed to homocysteine. Homocysteine can be further remethylated back to methionine or go through the irreversible transsulfuration pathway
forming cystathionine and cysteine. The remethylation of homocysteine back to methionine is dependent on the donation of a methyl group and can occur in two ways.
The folate-dependent remethylation pathway uses 5-methyltetrahydrofolate as the methyl donor and is catalysed by the vitamin B12-dependent enzyme, methionine
synthase, generating methionine and tetrahydrofolate. Tetrahydrofolate can go through the folate cycle again to form 5-methyltetrafolate, which again can be used in the
remethylation of homocysteine. The second homocysteine remethylation pathway uses betaine from the choline oxidation pathway as the methyl donor, forming
methionine and DMG, catalysed by betaine-homocysteine methyltransferase (BHMT). DMG can then be further demethylated in the mitochondrion, forming sarcosine,
glycine and serine through several enzymatic reactions using B-vitamins as cofactors. BADH, betaine aldehyde dehydrogenase; BHMT, betaine-homocysteine
methyltransferase; CBS, cystathionine-β-synthase; CGL, cystathionine-γ-lyase; CHDH, choline dehydrogenase; DMG, dimethylglycine; DMGDH, dimethylglycine
dehydrogenase; GNMT, glycine-N-methyltransferase; Hcy, homocysteine; Met, methionine; MS, methionine synthase; MTHF, 5,10-methylenetetrahydrofolate;
MTHFD1, methylenetetrahydrofolate dehydrogenase complex 1; MTHFR, methylenetetrahydrofolate reductase; MT, methyltransferases; mTHF, 5-methyltetrahydrofolate;
SAH, S-adenosylhomocysteine; S-adenosylmethionine, S-adenosylmethionine; SARDH, sarcosine dehydrogenase; SHMT, serine hydroxymethyltransferase; THF,
tetrahydrofolate. Created with BioRender.com.
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stable angina pectoris who are at increased CVD risk and where
both dietary and metabolite data are available.

Methods

Study population

This cross-sectional study utilises data from theWestern Norway
B-vitamin Intervention Trial consisting of 3090 participants
randomised to receive tHcy-lowering B-vitamins (Clinical
Trials Identifier NCT00354081)(31). The source population for
Western Norway B-vitamin Intervention Trial was patients
referred to coronary angiography for suspected coronary
artery disease between 2000 and 2004. The analyses in the
present study only include patients diagnosedwith stable angina
pectoris (n 2573).

Participants filled out an FFQ at baseline. Participants were
excluded if they did not complete the FFQ (n 485), left more than
one page blank (n 80) or reported very high (> 15 000 kJ/d
(> 3585 kcal/d) for women and> 17 500 kJ/d (> 4182 kcal/d) for
men) or low (< 3000 kJ/d (< 717 kcal/d) for women and
< 3300 kJ/d (< 788 kcal/d) for men) total energy intake (n 27) to
improve accuracy of the dietary data and account for potential
misreporting as well as under- and overreporting. The cut-offs
we used for very high and low total energy intake have
previously been shown to perform equally well in identifying
implausible total energy intakes compared with other more
advanced methods(32). Furthermore, fifty-two participants
reporting> 10 energy percent (E%) from alcohol and one
participant with missing data for all biomarkers of interest were
excluded list-wise, leaving 1928 participants eligible for analysis.
A flow chart depicting the participant flow is provided in online
Supplementary Fig. 1.

This study was conducted according to the guidelines in the
Declaration of Helsinki, and all procedures involving patients
were approved by the Regional Committee for Medical Research
Ethics (2010/267/REK West), the Norwegian Medicines Agency
and the Data Inspectorate. Written informed consent was
obtained from all patients.

Dietary assessment

Dietary intake was assessed by administering a 169-item semi-
quantitative FFQ developed at the Department of Nutrition,
University of Oslo(33,34). Participants received the FFQ at baseline
visit and returned it by mail or at the one-month follow-up visit.
The FFQ was designed to assess habitual food intake in the
Norwegian adult population for the prior year. Frequency of
consumption was collected per day, week or month depending
on the food item, and portion sizes were reported as household
measures. Daily intakes of food and nutrients were calculated by
using a software system developed at the Department of
Nutrition, University of Oslo, which is based on the Norwegian
food composition table (Kostberegningssystem, version 3·2,
University of Oslo, Norway). The FFQ has previously been
evaluated towards weighed food records for the intake of
energy, macronutrients, fatty acids and riboflavin(33), which
showed that the intake of energy, protein, total fat and PUFA

measured by the FFQ and the weighed food records did not
differ significantly. Dietary exposure variables of interest in the
current study were reported intake of carbohydrate, fat and
protein.

Biochemical analyses

Blood samples (35 % fasting) were collected at baseline and
stored at –80°C until analysed. Routine biochemical analyses
were conducted on fresh blood samples at the laboratories in the
recruiting hospitals, and study-specific analyses were performed
by Bevital AS, Bergen, Norway (http://www.bevital.no)
between 2000 and 2006. All metabolites were quantified using
gas or liquid chromatography coupled with tandem mass
spectrometry, with the exception of folate and cobalamin,
which were analysed by microbiological assay(35–39). Outcome
variables of interest were related to the methionine-homocys-
teine cycle (methionine and tHcy), the transsulfuration pathway
(cystathionine and cysteine), the choline oxidation pathway
(choline, betaine, DMG, sarcosine, glycine and serine) and
markers of related B-vitamins (riboflavin, nicotinamide (NAM),
methylnicotinamide (mNAM), pyridoxal, pyridoxal 5-phosphate
(PLP), pyridoxic acid, PA-ratio (PAr), folate, cobalamin and
MMA). The within-day CV was 4 % for both cobalamin and
folate, 3 % for PLP, 6 % for riboflavin, 1 % for tHcy and 2 % for
MMA and ranged from 1 % to 2 % for cysteine, methionine,
serine, glycine, cystathionine and sarcosine and 3 % to 6 % for
choline, betaine and DMG. The between-day CV was 5 % for
both cobalamin and folate and ranged from 6% to 8 % for PLP
and riboflavin, 2 % for tHcy, 3 % for MMA and 2 % to 4 % for
cysteine, methionine, serine, glycine and cystathionine, and 3 %
to 6 % for choline, betaine and DMG.

Statistical methods

Characteristics of the study cohort are shown as geometric
mean (gMean), and the 95 % prediction interval characterised
by the gMean and the geometric standard deviation (gMean/
gSD1·96, gMean × gSD1·96) for continuous variables and counts
(%) for categorical variables. Dietary variables were energy-
adjusted using the density method and expressed as E% or
g/1000 kcal.

Partial Pearson correlation analyses adjusted for reported
energy intake was used to assess the relationship between the
dietary composition of macronutrients and the intake of different
food groups, e.g. fruit and berries, grains and meat expressed as
g/1000 kcal.

Associations between macronutrient intake and plasma
metabolite concentrations were assessed by linear regression.
Model 1 was adjusted for reported energy intake, and model 2
was further adjusted for age, sex, BMI, smoking and alcohol
intake (E%). Confounding variables were identified a priori,
based on current subject matter literature, using a directed
acyclic graph approach. Metabolite concentrations were log-
transformed before analysis, and the regression coefficients
were subsequently back-transformed to provide estimates of the
% change in the response variable per 1 E% increase in the
exposure nutrient, accompanied by their 95 % CI. As the models
are adjusted for total energy intake, an implicit concomitant
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isocaloric decrease of another unspecified nutrient is
assumed(40). The continuous associations were explored visually
adjusted for Model 2 covariates, and the uncertainty was
visualised by plotting hypothetical associations from boot-
strapped samples (n 25).

Finally, we performed substitution models by modelling the
specific substitutions between the macronutrients, e.g. by
increasing protein intake while simultaneously reducing either
carbohydrate or fat intake(41). In nutritional epidemiologic
research, the use of substitution models has become more
prevalent(42), in part because they can mimic feeding studies that
modify macronutrient composition. The substitution models
were adjusted for Model 2 covariates, as well as all macro-
nutrients except the one being replaced. For example, when
modelling the effect of consuming more protein at the expense
of carbohydrates, protein was included in the model together
with fat and total energy intake. By keeping fat and total energy
intake fixed, the coefficient for protein is interpreted as the
estimated effect of a 1 E% increase in protein while simulta-
neously reducing carbohydrate intake by 1 E%. We modelled all

potential macronutrient substitutions, as well as all substitutions
between SFA, MUFA and PUFA.

All statistical analyses were performed using R v3.5.1(43) and
the packages within the Tidyverse(44). The hypothetical outcome
plots were generated with the ungeviz package(45). BioRender
was used to make vector graphics.

Results

Baseline characteristics

Baseline characteristics of the full study cohort and stratified by
sex are presented in Table 1. Geometric mean (95 % prediction
interval\) age was 61 (44, 85) years, BMI was 26 (20, 34) kg/m2

and 80 % were males.
Self-reported dietary intake data are presented in Table 2. The

distribution of energy intake (gMean (95 % prediction)) in the
populationwas 49 (38, 63) E% from carbohydrate, 17 (12, 22) E%
fromprotein and 31 (22, 45) E% from fat (of which 11 (7·3, 18) E%
from SFA). Correlations between increasing proportions of total

Table 1. Baseline characteristics of full cohort and across sexes*

Full cohort Female Male

n % n % n %

n 1928 390 1538
Male 1538 79·8%
Age, years
Geometric mean 61 63·2 60·4
95% prediction interval 43·9, 84·8 45·2, 88·4 43·7, 83·7
Fasting 671 34·8% 128 32·8% 543 35·3%
Smoking† 559 29·0% 109 27·9% 450 29·3%
Diabetes‡ 592 30·7% 117 30·0% 475 30·9%
Hypertension§ 911 47·3% 200 51·3% 711 46·2%

Geometric
mean

95% prediction
interval

Geometric
mean

95% prediction
interval

Geometric
mean

95% prediction
interval

Waist Circumference, cm 95·7 75·9, 120·8 88·3 66·6, 117 97·7 80·1, 119·2
BMI, kg/m 26·1 19·8, 34·4 25·8 18, 37 26·2 20·3, 33·7
CRP, mg/l 1·69 0·2, 14·43 1·82 0·21, 15·97 1·66 0·2, 14·05
eGFR, ml/min/1·73 m 88·1 59, 131·5 83·9 54, 130·4 89·2 60·6, 131·2
Methionine, μmol/l 26·5 15·6, 44·9 23·9 14·4, 39·7 27·1 16·1, 45·8
Total homocysteine, μmol/l 10·4 5·8, 18·6 9·65 5·23, 17·83 10·5 6, 18·7
Cystathionine, μmol/l 0·27 0·083, 0·86 0·24 0·076, 0·76 0·27 0·086, 0·88
Cysteine, μmol/l 286 224, 366 287 220, 375 286 224, 363
Choline, μmol/l 9·58 5·83, 15·73 9·09 5·62, 14·69 9·71 5·91, 15·94
Betaine, μmol/l 39·2 21·4, 71·6 33·2 17·2, 64·1 40·8 23·3, 71·5
DMG, μmol/l 4·05 2·15, 7·6 3·69 1·91, 7·14 4·14 2·24, 7·66
Sarcosine, μmol/l 1·51 0·76, 2·98 1·37 0·67, 2·81 1·55 0·79, 3·01
Glycine, μmol/l 203 127, 324 226 119, 428 198 133, 293
Serine, μmol/l 103 70, 150 104 68, 159 102 71, 147
Riboflavin, nmol/l 12·2 2·9, 51·6 12·8 3, 55·8 12·1 2·9, 50·6
Nicotinamide, nmol/l 363 142, 929 355 135, 936 365 144, 927
Methylnicotinamide, nmol/l 85·3 29·6, 245·6 93·5 31·5, 278·2 83·3 29·3, 236·8
Pyridoxal, nmol/l 9·88 3·59, 27·16 9·88 2·79, 34·98 9·88 3·87, 25·2
Pyridoxal 5-phosphate, nmol/l 41·6 14·4, 120·3 39·9 11·4, 139·7 42·1 15·4, 115·1
Pyridoxic acid, nmol/l 26·3 9·5, 72·5 27·4 7·8, 95·8 26 10·1, 66·9
PA-ratio 0·5 0·22, 1·1 0·54 0·25, 1·2 0·5 0·22, 1·1
Folate, nmol/l 10·6 3·6, 30·8 11·7 3·6, 37·9 10·3 3·7, 29·1
Cobalamin, pmol/l 336 144, 784 352 144, 857 332 144, 765
Methylmalonic acid, μmol/l 0·16 0·082, 0·32 0·16 0·086, 0·32 0·16 0·081, 0·32

* Continuous variables are given as geometric mean (95%prediction interval) and categorical variables as n (%). CRP indicates C-reactive protein and eGFR is estimated glomerular
filtration rate.

† Based on self-report and cotinine concentrations> 85 nmol/l.
‡ Diagnosed or assessed according to baseline serum glucose> 7·0 or non-fasting glucose> 11·1 mmol/l or HbA1c> 6·5.
§ Defined as preexisting diagnosis of hypertension.
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energy intake from the different macronutrients and intake of the
different food groups are shown in Fig. 2.

A higher carbohydrate intake was mainly associated with
higher intakes of fruit and berries (r= 0·41), grains (r= 0·41) and
potatoes (r= 0·18) and lower intakes of meat (r= –0·44), fish
(r=−0·28), eggs (r=−0·25) and cheese (r=−0·2) (Fig. 2).

Higher intake of fat was associated with higher intakes of
meat (r= 0·31), egg (r= 0·21) and cheese (r= 0·19) and lower

intakes of fruit and berries (r=−0·4), potatoes (r=−0·14) and
vegetables (r=−0·11) (Fig. 2).

Higher protein intake was associated with higher intakes of
fish (r= 0·62), meat (r= 0·32), milk (r= 0·24), vegetables
(r= 0·27) and cheese (r= 0·17) and lower intakes of fruit and
berries (r=−0·13), grains (r=−0·13) and potatoes (r=−0·13)
(Fig. 2).

Associations between macronutrient intakes and one-
carbon metabolites

Point estimates (% change (95 % CI)) for the associations
between macronutrient intakes and plasma concentrations of
metabolites related to one-carbon metabolism per increment of
1 E% of the exposure nutrient are shown in Table 3. Protein
showed the strongest association with the outcome metabolites.
Each isoenergetic increment in protein intake of 1 E% was
associated with higher PLP (3·1 (2·1, 4·1)), cobalamin (2·9 (2·1,
3·7)), riboflavin (2·4 (1·1, 3·7)), PA (2·2 (1·3, 3·2)) and mNAM
(2·1 (1·1, 3·1)) and lower tHcy (–1·4 (–1·9, −0·9)) and MMA (–1·4
(–2·0, −0·8)). Less strong associations were observed for other
metabolites, such as sarcosine (1·0 (0·3, 1·6)), methionine (1·0
(0·5, 1·4)), glycine (–0·9 (–1·3, −0·5)), DMG (–0·7 (–1·3, −0·1))
and PAr (–0·7 (–1·4, 0·1)).

The continuous associations between protein intake and all
outcome metabolites are summarised in Fig. 3.

The strongest association observed per isoenergetic incre-
ment of carbohydrate and fat intake of 1 E % was with mNAM,
which was lower with increasing carbohydrate (–0·9 (–1·3,
−0·5)) and higher with increasing fat intake (0·6 (0·2, 1·1)). The
continuous associations with increasing carbohydrate or fat

Table 2. Dietary intake in full cohort and across sexes

Full cohort Female Male

Geometric
mean

95% prediction
interval

Geometric
mean

95% prediction
interval

Geometric
mean

95% prediction
interval

n 1928 390 1538
Male
n 1538
% 79·8%
Energy intake, kcal 1995 1066, 3734 1548 830, 2887 2128 1217, 3721
Energy intake, kJ 8347 4460, 15 623 6477 3473, 12 079 8903 5092, 15 569
Carbohydrate, E% 49 38, 63 50 39, 64 49 37, 63
Fat, E% 31 22, 45 31 22, 44 32 22, 45
SFA, E% 11 7·3, 18 12 7·2, 18 11 7·3, 18
MUFA, E% 10 6·8, 15 9·8 6·7, 14 10 6·9, 15
PUFA, E% 7·0 4·1, 12 6·5 3·9, 11 7·1 4·2, 12
Protein, E% 17 12, 22 17 13, 23 16 12, 22
Fiber 12 7·1, 20 13 8·2, 21 12 6·9, 19
Dairy 115 17, 772 124 23, 662 113 16, 798
Meat 49 16, 152 47 19, 118 50 15, 160
Fish 45 8·7, 230 46 12, 173 44 8·1, 245
Egg 5·3 0·2, 117 5·9 0·3, 131 5·1 0·2, 113
Vegetables 84 17, 409 113 27, 469 78 16, 381
Fruit and berries 98 17, 578 122 26, 578 93 15, 566
Grains 103 52, 203 100 44, 226 104 55, 197
Potatoes 51 5·9, 446 45 3·8, 539 53 6·6, 421

E%, energy percent.
All dietary values are given as geometric mean (95% prediction interval), and as g/1000 kcal unless otherwise noted. Dairy refers to the total intake of milk, yoghurt and cheese. Meat
refers to the total intake of white and red meat, including processed meat products.

Fig. 2. Partial Pearson correlations between the isoenergetic increases in the
intake of macronutrients and the intake of different food groups (n 1928). Meat
refers to the total intake of white and red meat, including processed meat
products. The model is adjusted for reported energy intake. The intake of the
different food groups, e.g. fruit and berries, grains and meat, is expressed as
g/1000 kcal.
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Table 3. Association between dietary intake and outcome metabolites*

Carbohydrate Fat Protein

Model 1† Model 2‡ Model 1† Model 2‡ Model 1† Model 2‡

%
change

95% confidence
interval

%
change

95% confidence
interval

%
change

95% confidence
interval

%
change

95% confidence
interval

%
change

95% confidence
interval

%
change

95% confidence
interval

Methionine, μmol/l –0·1 –0·3, 0·1 –0·1 –0·3, 0·1 –0·1 –0·4, 0·1 –0·1 –0·3, 0·1 0·9 0·4, 1·4 1·0 0·5, 1·4
Homocysteine, μmol/l 0·1 –0·1, 0·3 –0·0 –0·2, 0·2 0·3 0·1, 0·5 0·3 0·1, 0·5 –1·6 –2·1, −1·1 –1·4 –1·9, −0·9
Cystathionine, μmol/l 0·4 –0·0, 0·8 0·1 –0·3, 0·6 –0·3 –0·7, 0·2 –0·2 –0·7, 0·3 0·3 –0·8, 1·3 0·3 –0·8, 1·3
Cysteine, μmol/l 0·1 –0·0, 0·1 0·0 –0·1, 0·1 –0·0 –0·1, 0·1 –0·0 –0·1, 0·1 0·0 –0·2, 0·3 0·1 –0·2, 0·3
Choline, μmol/l 0·1 –0·1, 0·3 0·0 –0·1, 0·2 –0·0 –0·2, 0·2 0·0 –0·2, 0·2 –0·5 –1·0, −0·1 –0·4 –0·8, 0·0
Betaine, μmol/l 0·4 0·2, 0·7 0·3 0·1, 0·6 –0·5 –0·7, −0·2 –0·4 –0·6, −0·1 –0·6 –1·1, −0·1 –0·1 –0·6, 0·4
DMG, μmol/l 0·1 –0·1, 0·4 0·0 –0·2, 0·3 0·2 –0·1, 0·4 0·1 –0·1, 0·4 –0·9 –1·4, −0·3 –0·7 –1·3, −0·1
Sarcosine, μmol/l –0·1 –0·4, 0·1 –0·1 –0·4, 0·2 –0·1 –0·4, 0·1 –0·1 –0·4, 0·2 0·6 0·0, 1·3 1·0 0·3, 1·6
Glycine, μmol/l 0·4 0·2, 0·6 0·2 0·0, 0·4 –0·1 –0·3, 0·1 –0·0 –0·2, 0·1 –1·2 –1·6, −0·7 –0·9 –1·3, −0·5
Serine, μmol/l 0·0 –0·1, 0·2 –0·0 –0·2, 0·1 0·0 –0·1, 0·2 0·0 –0·1, 0·2 –0·0 –0·4, 0·3 0·1 –0·3, 0·4
Riboflavin, nmol/l 0·0 –0·5, 0·5 –0·2 –0·7, 0·4 –0·5 –1·1, 0·1 –0·3 –0·9, 0·3 2·3 1·0, 3·7 2·4 1·1, 3·7
NAM, nmol/l –0·5 –0·9, −0·2 –0·3 –0·7, 0·1 0·3 –0·1, 0·7 0·2 –0·1, 0·6 0·9 0·0, 1·7 0·5 –0·3, 1·4
mNAM, nmol/l –1·1 –1·5, −0·7 –0·9 –1·3, −0·5 0·6 0·2, 1·0 0·6 0·2, 1·1 2·3 1·4, 3·3 2·1 1·1, 3·1
PL, nmol/l –0·2 –0·6, 0·2 –0·2 –0·5, 0·2 –0·5 –0·9, −0·1 –0·2 –0·6, 0·2 1·4 0·5, 2·4 1·8 0·9, 2·7
PLP, nmol/l –0·3 –0·7, 0·0 –0·2 –0·6, 0·2 –0·8 –1·2, −0·3 –0·4 –0·9, 0·0 2·8 1·8, 3·8 3·1 2·1, 4·1
PA, nmol/l –0·1 –0·4, 0·3 –0·2 –0·6, 0·2 –0·5 –1·0, −0·1 –0·3 –0·7, 0·1 1·9 0·9, 2·8 2·2 1·3, 3·2
PAr 0·3 –0·0, 0·6 0·0 –0·3, 0·3 0·2 –0·2, 0·5 0·1 –0·2, 0·4 –0·7 –1·4, 0·1 –0·7 –1·4, 0·1
Folate, nmol/l –0·3 –0·7, 0·1 –0·3 –0·7, 0·2 –0·4 –0·9, 0·0 –0·2 –0·6, 0·3 1·9 1·0, 2·9 2·1 1·2, 3·1
Cobalamin, pmol/l –0·1 –0·4, 0·2 –0·2 –0·5, 0·2 –0·4 –0·8, −0·1 –0·4 –0·8, −0·1 2·8 2·0, 3·6 2·9 2·1, 3·7
MMA, μmol/l 0·3 0·1, 0·6 0·1 –0·2, 0·3 0·2 –0·1, 0·4 0·2 –0·0, 0·5 –1·7 –2·3, −1·1 –1·4 –2·0, −0·8

DMG, dimethylglycine; MMA, methylmalonic acid; mNAM, methylnicotinamide; NAM, nicotinamide; PA, pyridoxic acid; PAr, PAr-index; PL, Pyridoxal; PLP, Pyridoxal 5’-phosphate.
* Estimates are given as % change (95% confidence interval) in the outcome metabolite per isoenergetic increment of 1 E% in the exposure nutrient.
†Model 1 is adjusted for reported energy intake.
‡Model 2 is adjusted for reported energy intake, alcohol intake (E%), age, sex, BMI and smoking.
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intake are shown in online Supplementary Fig. 2 and Fig. 3,
respectively.

Substitution analyses

The substitution analyses revealed associations of similar
strength regardless of whether protein replaced either carbohy-
drate or fat (online Supplementary Table 1), with the strongest
associations observed for higher PLP (3·1 (2·2, 4·1) and 3·6 (2·5,
4·7) for carbohydrate and fat, respectively), cobalamin (2·9 (2·1,
3·7) and 3·4 (2·5, 4·3)) and riboflavin (2·4 (1·1, 3·8) and 2·7 (1·2,
4·2)). Modelling the substitution of fat with carbohydrate yielded
only weak associations, with the largest effects being increased

PLP (0·5 (0·0, 0·9)) and riboflavin (0·3 (–0·3, 0·9)) and decreased
mNAM (–0·6 (–1·1, −0·2)).

The observed associations when substituting between
different fatty acids are shown in Table 4. The strongest
associations were observed when SFA replaced MUFA or
PUFA, with higher riboflavin (5·0 (0·9, 9·3) and 3·3 (1·1, 5·6)
for MUFA and PUFA, respectively) as well as lower PLP
(–2·5 (–5·3, 0·3) and −2·7 (–4·2, −1·2)), pyridoxal (–2·5 (–5·1,
0·3) and −2·6 (–4·0,−1·1)) and folate (–2·2 (–5·0, 0·7) and −2·1
(–3·6, −0·5)). Further, replacing MUFA or PUFA with SFA
was associated with higher plasma tHcy (2·3 (0·7, 3·8) and 1·3
(0·5, 2·2), respectively) and MMA (2·0 (0·2, 3·9) and 1·7
(0·7, 2·7)).

Fig. 3. The continuous association between protein intake and plasma concentrations of one-carbon metabolites and markers of B-vitamin status assessed by linear
regression, adjusted for age, sex, BMI, alcohol intake and total energy intake (n 1928). Metabolite concentrations were log-transformed before analysis and back-
transformed to provide estimates of the%change in the response variable per 1 E% increase in the exposure nutrient. The grey lines represent hypothetical associations
from twenty-five bootstrapped samples of the data, illustrating uncertainty. DMG, dimethylglycine; MMA, methylmalonic acid; mNAM, methylnicotinamide; NAM,
nicotinamide; PA, pyridoxic acid; PL, pyridoxal; PLP, pyridoxal 5’-phosphate; PAr, PA-ratio; tHcy, total homocysteine.
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Table 4. Substitution analyses for the associations between different dietary fatty acid classes*

MUFA substituting PUFA substituting SFA substituting

PUFA SFA MUFA SFA MUFA PUFA

%
change

95% confidence
interval

%
change

95% confidence
interval

%
change

95% confidence
interval

%
change

95% confidence
interval

%
change

95% confidence
interval

%
change

95% confidence
interval

Methionine, μmol/l –2·5 –4·0, −0·9 –2·5 –4·0, −0·9 1·9 0·4, 3·4 –0·1 –0·9, 0·8 1·7 0·3, 3·2 0·0 –0·8, 0·7
Homocysteine, μmol/l –0·9 –2·5, 0·7 –2·2 –3·9, −0·6 1·0 –0·6, 2·6 –1·3 –2·2, −0·5 2·3 0·7, 3·8 1·3 0·5, 2·2
Cystathionine, μmol/l –2·8 –6·1, 0·6 –2·5 –5·9, 1·1 2·2 –1·2, 5·6 0·3 –1·5, 2·2 1·6 –1·6, 4·9 –0·4 –2·1, 1·3
Cysteine, μmol/l –1·0 –1·6, −0·3 –0·8 –1·4, −0·1 0·8 0·2, 1·5 0·2 –0·2, 0·6 0·6 –0·1, 1·2 –0·2 –0·5, 0·1
Choline, μmol/l –0·7 –2·1, 0·7 –0·6 –2·0, 0·9 0·7 –0·6, 2·1 0·2 –0·6, 0·9 0·5 –0·8, 1·9 –0·1 –0·9, 0·6
Betaine, μmol/l –0·6 –2·3, 1·2 0·8 –1·0, 2·6 –0·3 –1·9, 1·4 1·3 0·3, 2·2 –1·6 –3·2, −0·0 –1·4 –2·3, −0·6
DMG, μmol/l –1·8 –3·6, 0·0 –1·2 –3·0, 0·7 1·1 –0·6, 2·9 0·6 –0·4, 1·6 0·4 –1·3, 2·1 –0·7 –1·6, 0·2
Sarcosine, μmol/l –1·6 –3·6, 0·4 –0·1 –2·1, 2·0 0·6 –1·3, 2·6 1·4 0·4, 2·5 –0·9 –2·8, 0·9 –1·6 –2·6, −0·6
Glycine, μmol/l –0·0 –1·3, 1·3 0·5 –0·8, 1·9 –0·2 –1·4, 1·0 0·5 –0·2, 1·2 –0·7 –1·9, 0·5 –0·6 –1·2, 0·1
Serine, μmol/l 0·1 –1·0, 1·2 0·2 –1·0, 1·4 –0·4 –1·5, 0·7 0·0 –0·6, 0·7 –0·5 –1·6, 0·5 –0·1 –0·7, 0·4
Riboflavin, nmol/l –0·2 –4·4, 4·1 –3·2 –7·5, 1·2 2·0 –2·1, 6·3 –2·8 –5·0, −0·5 5·0 0·9, 9·3 3·3 1·1, 5·6
NAM, nmol/l 0·2 –2·6, 3·0 0·1 –2·8, 3·0 0·3 –2·4, 3·0 –0·1 –1·6, 1·5 0·4 –2·2, 3·1 0·2 –1·2, 1·6
mNAM, nmol/l –0·2 –3·3, 2·9 1·8 –1·5, 5·2 1·0 –2·0, 4·1 2·2 0·4, 3·9 –1·0 –3·8, 2·0 –1·8 –3·3, −0·2
PL, nmol/l –0·6 –3·5, 2·4 2·1 –1·0, 5·3 0·1 –2·7, 3·0 2·6 1·0, 4·3 –2·5 –5·1, 0·3 –2·6 –4·0, −1·1
PLP, nmol/l –0·9 –3·9, 2·2 1·9 –1·3, 5·2 0·1 –2·8, 3·1 2·7 1·0, 4·4 –2·5 –5·3, 0·3 –2·7 –4·2, −1·2
PA, nmol/l –0·7 –3·6, 2·2 1·9 –1·1, 5·1 0·8 –2·1, 3·7 2·7 1·1, 4·4 –1·8 –4·5, 0·9 –2·5 –3·9, −1·0
PAr 0·1 –2·2, 2·5 0·0 –2·4, 2·5 0·6 –1·6, 2·9 0·0 –1·3, 1·3 0·7 –1·5, 3·0 0·2 –1·0, 1·4
Folate, nmol/l –0·1 –3·2, 3·0 2·0 –1·2, 5·4 –0·2 –3·1, 2·9 2·1 0·4, 3·9 –2·2 –5·0, 0·7 –2·1 –3·6, −0·5
Cobalamin, pmol/l –2·0 –4·4, 0·5 –0·6 –3·1, 2·0 1·3 –1·1, 3·7 1·3 –0·0, 2·7 –0·2 –2·5, 2·2 –1·4 –2·6, −0·1
MMA, μmol/l –0·3 –2·2, 1·7 –2·0 –3·9, −0·0 0·4 –1·5, 2·2 –1·7 –2·7, −0·7 2·0 0·2, 3·9 1·7 0·7, 2·7

DMG, dimethylglycine; MMA, methylmalonic acid; mNAM, methylnicotinamide; NAM, nicotinamide; PA, pyridoxic acid; PAr, PAr-index; PL, pyridoxal; PLP, pyridoxal 5’-phosphate.
* Estimates are given as% change (95%CI) in the outcomemetabolite per isoenergetic substitution of 1 E% in the exposure nutrient for the replacement nutrient. Themodel is adjusted for reported energy intake, age, sex, BMI, smoking and
the non-substituted nutrients.
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Discussion

In patients with stable angina pectoris, we observed that self-
reported intakes of protein, carbohydrate and fat were
associated with circulating concentrations of metabolites related
to one-carbon metabolism and related B-vitamin cofactors. The
strongest associations were observed between increasing
protein intake and higher plasma concentrations of PLP,
cobalamin, riboflavin and mNAM and lower tHcy and MMA.
Our observations did not appear to be affected by whether
protein replaced carbohydrate or fat. Moreover, dietary fatty acid
composition was associated with plasma concentrations of
several biomarkers, most notably higher plasma concentrations
of riboflavin, tHcy andMMA, as well as lower pyridoxal, PLP and
folate when SFA replaced MUFA or PUFA.

Possible mechanisms

The mechanisms underlying our observations may be directly
related to dietary composition and differences in intakes of one-
carbon metabolites and B-vitamins or indirectly due to potential
metabolic alterations in response to dietary intake.

Higher protein intake was positively associated with the
intake of fish and meat, which are major sources of niacin,
vitamin B6, folate and cobalamin, as well as with dairy products,
which are major dietary sources of riboflavin. These food items
may have directly contributed to the higher plasma concen-
trations of these B-vitamins. Higher concentrations of vitamin B6

markers following increased protein intake are consistent with
the literature(21). This is also reflected by a slight yet linear
decrease in PAr in our study, which could indicate lower cellular
inflammation, as a high PAr has been associated with increased
systemic inflammation and vitamin B6 catabolism(46). Several
studies have also shown that increased intakes of folate, vitamin
B6 and cobalamin lower plasma tHcy(47–49), which was also seen
with increasing protein intake in the present study. Further, we
observed higher plasma concentrations of cobalamin and lower
plasma concentrations of MMA with increasing protein intake.
During a cobalamin-deficient state, the cobalamin-dependent
enzyme methylmalonyl-CoA mutase, which catalyses the
formation of succinyl-CoA frommethylmalonyl-CoA is inhibited,
leading to an accumulation of MMA as an alternate mechanism.
MMA is thus regarded as a functional marker of cobalamin status.
The observation that increased plasma concentration of
cobalamin is simultaneously observed with lower plasma
concentration of MMA is therefore expected(50).

Higher protein intake in our study was also associated with
higher methionine and lower plasma tHcy concentrations, the
latter being in line with a prior report investigating dietary factors
associated with tHcy in an elderly population(51). Previously,
protein restriction has been reported to increase the partitioning
of homocysteine towards remethylation as a means of
conserving methionine(15,16,52). Excess methionine intake, how-
ever, was shown to reduce remethylation and increase
homocysteine catabolism through the transsulfuration path-
way(53). This may be related to methionine being a precursor for
the universal methyl donor, S-adenosylmethionine, which
inhibits remethylation and stimulates transsulfuration(54).
Further, plasma tHcy concentrations are believed to be highly

dependent on the rate of synthesis during transmethylation
reactions, and endogenous production of creatine and phos-
phatidylcholine are generally thought to be the main metabolic
sources of plasma tHcy(55). Higher dietary intakes of preformed
creatine and choline, of which the main dietary sources are
animal foods, such as meat, fish and eggs, could consequently
reduce the requirement for their endogenous synthesis, limiting
homocysteine production. However, increased cellular
S-adenosylmethionine concentrations stimulate glycine-N-
methyltransferase (GNMT) in the liver, which catalyses an
S-adenosylmethionine-dependent methylation of glycine
forming sarcosine and S-adenosylhomocysteine, the precursor
of homocysteine (Fig. 1). The GNMT reaction has been
suggested to be a key regulator of cellular methylation status(56).
Scavenging of excessmethyl groups throughGNMT is consistent
with the observed inverse association between protein intake
and glycine concentrations, as well as the positive association
with sarcosine. Together, a reduced demand for choline and
creatine synthesis could possibly counteract the tHcy elevating
effect of increased GNMT flux.

A higher protein intake was also associated with higher
concentrations of plasma folate, while for a higher intake of
carbohydrate (online Supplementary Fig. 2), fat (online
Supplementary Fig. 3) and SFA, the opposite was observed.
Interestingly, as protein-rich foods in general are not the main
dietary sources of folate, the increase in plasma folate may be
indirect and result from a metabolic response to increased
protein intake. For instance, it could be related to other factors
such as increased intake and/or availability of the cofactors
riboflavin, NADH and NADPH, necessary for the conversion of
5-methylenetetrahydrofolate tomTHFby theMTHFR enzyme, as
a higher protein intake also demonstrated higher plasma
concentrations of these metabolites.

Although we did not measure peroxisome proliferator-
activated receptor (PPAR) α activity in the current study, it
could be speculated that some of the observed associations, in
particular those estimated with changing fat composition, may
be partly mediated through altered PPARα activity. The nuclear
receptor PPARα is a central nutritional sensor and regulator of
energy metabolism(57). Evidence from both rodent and human
studies has linked PPARα to transcriptional regulation of several
key enzymes in the one-carbonmetabolism pathways, including
downregulation of GNMT and both enzymes in the trans-
sulfuration pathway, leading to altered metabolite concentra-
tions in plasma(58–66). PPARα activation has also been linked to
circulating markers of B-vitamin status, such as higher concen-
trations of niacin(58,63,66), vitamin B6

(58,66,67) and MMA(58,66).
Among other mechanisms, PPARα is activated by dietary fatty
acids, particularly PUFA(68,69). Others have noted that the amount
and composition of dietary fatty acids may influence PPARα
activity(70).

Clinical implications

Diet is an important modifiable lifestyle factor, and a role in the
regulation of one-carbon metabolism could potentially mediate
a link between diet and CVD risk. The observations reported in
the current study suggest that protein intake could have a
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prominent role in the regulation of one-carbon metabolism.
Moreover, the metabolic phenotype observed with increasing
protein intake (lower tHcy, DMG and MMA and higher
concentration of B-vitamin status markers) could be considered
beneficial regarding CVD risk. As noted, some studies suggest
that high protein animal diets and high protein plant diets have
opposite effects, where the first is positively associatedwith tHcy
and the latter inversely associated with tHcy(19,20). Suggested
explanations for this include that high-protein plant diets contain
more folate compared with high protein animal diets, which
serves as a cofactor in the remethylation pathway of tHcy to
methionine, thus reducing tHcy concentrations. While our study
did not distinguish between protein of different animal and plant
origin, future studies should incorporate this differentiation.
Additionally, the observational nature of our study necessitates
caution in drawing definitive conclusions, and clinical studies
investigating the direct effects of increasing protein intake on
concentrations of CVD risk-associated metabolites are needed
before recommending an increased protein consumption.
Furthermore, our observations revealed lower plasma concen-
trations of glycine with increasing protein intake, an amino acid
previously associated with increased risk of acute myocardial
infarction and type 2 diabetes(71,72). This underscores the need
for caution and prompts further research to thoroughly explore
the nuanced effects of increased protein intake on CVD risk.

In healthy subjectswithmoderate hypercholesterolaemia, we
previously reported that changing dietary fat composition by
replacing SFA with PUFA influenced circulating concentrations
of one-carbon metabolites and B-vitamins(23). The observations
for fat types in the current study, when modelling the same
substitution, were largely consistent with what we previously
reported. Given the central role of PPARα in the regulation of
energy and lipid metabolism(57,73), biomarkers reflecting endog-
enous PPARα-activity may be of interest when considering CVD
risk, aswell as individually tailored dietary advice.We and others
have proposed pathway-linked metabolites as potential bio-
markers of PPARα-activity, including NAM, mNAM, pyridoxal,
DMG and MMA(58,74–76). Taken together with our previous
findings, further studies are needed to clarify to what extent
circulating concentrations of one-carbon metabolites are
modulated through dietary influences on PPARα activation.

Strengths and limitations

The main strength of these analyses is the use of a large and
well-characterised study population, with comprehensive infor-
mation on baseline characteristics allowing us to control for a
wide variety of potential confounding factors.

Several limitations also merit attention. First, the cross-
sectional design does not allow causal inference regarding the
temporal effects of dietary composition on plasma concen-
trations of one-carbon metabolites and markers of B-vitamin
status. Second, the metabolites discussed in this paper are partly
influenced by factors other than diet. Although we controlled for
the most important factors, such as age, sex, BMI, smoking and
alcohol intake, we cannot exclude the potential for residual
confounding. Third, the prandial state at the time of blood
sampling varied among participants, with 34·8 % considered

fasting. It is widely acknowledged that prandial status can
influence the circulating concentrations ofmetabolites examined
in this study(77,78). However, prandial status at baseline is
unrelated to the exposure, namely the dietary composition of the
individuals, and therefore we do not consider fasting status a
confounder for the associations explored between dietary
composition and metabolite concentrations. Consequently, it
was not included in the statistical models. Fourth, self-reported
dietary data come with inherent measurement error. It is known
that FFQ-derived data are affected by systematic errors(79),
meaning the reported intakes must be interpreted with caution
and cannot be taken at face value. However, FFQ data are suited
to rank individuals according to their estimated average dietary
intakes, allowing for estimating associations between habitual
diet and outcome. As measurement errors for the individual
nutrients are highly correlated with the measurement error in
reported total energy intake, energy-adjusted estimates, such as
nutrient densities (e.g. E% or g/1000 kcal), correspond better
with true intakes(79). Furthermore, adjusting the regression
models for self-reported energy intakes increases the precision
of the estimates(80). It can be assumed that the measurement
error in dietary intake data is non-differential, meaning that the
overall effect is on average expected to attenuate the ‘true’
associations due to regression dilution bias(81). The FFQ used in
this study was designed to capture the habitual diet during the
past year, and consequently, temporal changes of shorter
duration may be missed. Thus, we cannot comment on short-
term effects of diet. Fifth, we did not differentiate between
different protein sources, including subtypes of animal and plant
sources, which could be of importance. Finally, the population
consisted of mostly male patients above 60 years of age with
established CVD, limiting the generalisability of our observa-
tions. Nonetheless, our metabolite analyses of a relatively large
sample add to our knowledge of how macronutrient intake
interacts with plasma metabolite markers, which may guide
future studies of how altered macronutrient composition
influences CVD risk.

Conclusion

Our observations in this population of patients with stable
angina pectoris suggest that dietary macronutrient composition
influence plasma concentration of one-carbon metabolites and
markers of B-vitamin status. A higher protein intake, as well as
replacing SFAwith MUFA and PUFA, was associatedwith amore
favourable metabolic phenotype regarding metabolites associ-
ated with CVD risk. Future studies should assess whether the
observed associations mirror an effect of macronutrients and
whether source of protein is of importance.
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