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Abstract

It is shown that for many branch groups G the action on the ambient tree can be interpreted in G, in the
sense of first-order model theory.
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1. Introduction

The class of branch groups was introduced by Grigorchuk in order to provide a
framework for the simultaneous study of various important examples in group theory.
Some of these examples were first drawn to the author’s attention by Laci Kovács
during a meeting in Oberwolfach in the 1980s. The structure theory of branch groups
is now quite well developed; see, for example, [2, 4–6, 8]. In particular, it was shown
in [6] that in many cases the structure of the group G determines the maximal tree T
on which it acts as a branch group and also the action on T . Here we prove that, for
such a branch group G, the tree and the action of G on it are interpretable in G in the
sense of first-order model theory.

The trees on which branch groups act are infinite rooted trees such that all vertices
at the same distance from the root vertex have the same finite valency. The distance
of a vertex v from the root v0 is called the level of v, and the set Ln of vertices of level
n is called the nth layer of T . We can regard (the set of vertices of) T as a partially
ordered set by writing u ≤ v if and only if the simple path from u to v0 passes through
v. Clearly the tree structure of T can be reconstructed from the partial order. Each
vertex v is the root of the subtree Tv = {u | u ≤ v}.

Let G be a group that acts faithfully on T , fixing v0. For each vertex v write rstG(v)
for the subgroup of elements of G that fix all vertices outside Tv, and for each n > 0
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write rstG(n) for the direct product 〈rstG(v) | v ∈ Ln〉. The action of G on T is called a
branch action if G acts transitively on Ln and |G : rstG(n)| is finite for each n > 0, and
G is called a branch group if it has a branch action on some tree.

Although most well-known branch groups G have a branch action on a unique
maximal tree up to G-equivariant isomorphism, not all branch groups have this
property. The possible actions are encoded in the action of G on its structure graph,
discussed in Section 2. Our main result here can be described as follows. A stronger
statement concerning structure graphs is given in Section 4.

Theorem. There are first-order formulae τ, β(x) and δ(x, y) such that the following
statements hold for each branch group G:

(a) G has a branch action on a unique maximal tree up to G-equivariant
isomorphism if and only if G satisfies τ;

(b) the set S = {x | β(x)} is a union of conjugacy classes, and so G acts on it by
conjugation;

(c) the relation on S defined by δ(x, y) is a preorder preserved by G, and so the
quotient Q = S/∼, where ∼ is the equivalence relation defined by δ(x, y) ∧ δ(y, x),
is a partially ordered set on which G acts;

(d) if G satisfies τ then Q is G-equivariantly isomorphic as a partially ordered set to
the maximal tree on which G acts as a branch group.

In the important cases when G has a branch action on a unique maximal tree T , the
theorem gives a representation of T as the quotient of a definable subset of G modulo
a definable equivalence relation. This provides a parameter-free interpretation for the
tree T , and also for the action on T . For a discussion of interpretability in the context
of groups we refer the reader to [3, Ch. 3].

2. Basal subgroups and structure graph

Branch groups are subject to strong restrictions. Since they act faithfully with finite
orbits of unbounded length on trees, they are infinite and residually finite. It was
shown in [5] that their proper quotient groups are virtually abelian and their non-trivial
normal subgroups are non-abelian. Further information about their subgroup structure
was given in [4, 6, 8]. Write L(G) for the family of subgroups of G having only finitely
many conjugates. In [4] the following results were proved.

Lemma 2.1. Let G be a branch group.

(a) [4, Proposition 2.2]. If H,K ∈ L(G) with K / H and H/K virtually nilpotent then
CG(H) = CG(K). In particular, L(G) contains no non-trivial virtually nilpotent
subgroups.

(b) [4, Lemma 2.3]. If H1,H2 ∈ L(G) then H1 ∩ H2 = 1 if and only if [H1,H2] = 1.
(c) (See [4, Lemma 2.5]). If H,K ∈ L(G) with K / H and CG(H) = CG(K) then H/K

is virtually abelian.
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The family L(G) is a sublattice of the subgroup lattice of G, and the structure lattice
L(G) of a branch group G may be defined to be the quotient of L(G) modulo the
relation ∼ defined by writing H1 ∼ H2 if and only if CG(H1) = CG(H2); this equivalence
relation can be shown to be a congruence on the lattice L(G). A subgroup B in L(G)
is called basal if its conjugates in G generate their direct product, or equivalently (for
a branch group G), if Bg = B or Bg ∩ B = 1 for each g ∈ G. The structure graph of G
is then the set of classes [B] ∈ L(G) containing some basal subgroup B; two classes
[B1], [B2] are joined by an edge if one class is contained in the other and there are
no intermediate classes in the ordering inherited from L(G). The conjugation action
of G induces an action on both L(G) and the structure graph. The relevance of the
structure graph stems from the fact that the tree on which G acts can be equivariantly
embedded as a cofinal subset in the structure graph, and that in many important cases
the embedding is an isomorphism of trees; see [6, 8].

We shall now give a different description of the structure graph. For a subset Y of
G we write C2

G(Y) for CG(CG(Y)). Thus Y ⊆ C2
G(Y). We say that a subgroup H is C2-

closed if H = C2
G(H). Since CG(CG(CG(Y))) = CG(Y) for each subset Y , the C2-closed

subgroups can also be described as the subgroups that are centralizers.

Lemma 2.2. Let G be a branch group.

(a) If H1, H2 ∈ L(G) are subgroups with the same centralizer then C2
G(H1) = C2

G(H2).
(b) If B is a basal subgroup then so is C2

G(B).
(c) If B1, B2 are C2-closed basal subgroups and B1 < B2 then NG(B1) < NG(B2).

Proof. Assertion (a) is clear.
To prove (b), suppose that g ∈ G and C2

G(B)g ∩ C2
G(B) , 1. By Lemma 2.1(c), each

of C2
G(B)/B and C2

G(B)g/Bg is virtually abelian. Hence (C2
G(B)g ∩ C2

G(B))/(Bg ∩ B)
is virtually abelian, and so Bg ∩ B , 1 by Lemma 2.1(a). Therefore Bg = B and so
C2

G(B)g = C2
G(B).

Finally, suppose that B1, B2 are as in (c). If g ∈ NG(B1) then B2 ∩ Bg
2 ≥ B1 and so

g ∈ NG(B2). Suppose that NG(B1) = NG(B2); thus Bg
1 , B1 if and only if Bg

2 , B2. We
have

B1 ≤ B2 ∩ 〈B
g
1 | g ∈ G〉 = B1(B2 ∩ 〈B

g
1 | B

g
1 , B1〉)

≤ B1(B2 ∩ 〈B
g
2 | B

g
2 , B2〉) ≤ B1,

and so B2/B1 embeds in the virtually abelian group G/〈Bg
1 | g ∈ G〉. Therefore by

Lemmas 2.1(a) and 2.2(a) we have B1 = B2, a contradiction. �

Lemma 2.3. Let G be a branch group acting on a tree T . Then C2
G(rstG(v)) = rstG(v)

for each vertex v.

Proof. Clearly rstG(v) ≤ C2
G(rstG(v)). Now let h ∈ C2

G(rst(v)). It suffices to prove that h
fixes every vertex not in Tv, and this will follow if h fixes every such vertex u of level
at least the level of v. We have rstG(u) ≤ C(rstG(v)), and so h centralizes rstG(u). Thus
rstG(u) = (rstG(u))h = rstG(uh), and so uh = u. �
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Let B(G) be the graph with vertices the non-trivial C2-closed basal subgroups of G,
and with an edge between two vertices if one of them is contained as a maximal proper
C2-closed basal subgroup of the other. The group G acts on B(G) by conjugation.

Proposition 2.4. Let G be a branch group acting on a tree T .

(a) The map B 7→ [B] is a G-equivariant isomorphism from B(G) to the structure
graph of G.

(b) The map v 7→ rstG(v) is a G-equivariant order-preserving injective map from T
to B(G).

Proof.
(a) Since CG(CG(CG(D))) = CG(D) for each subgroup D, it follows from Lemma 2.2

that each class in the structure graph of G contains precisely one C2-closed basal
subgroup; this is then the largest subgroup in its class. Therefore the map is bijective.
It is clearly both G-equivariant and an isomorphism of partially ordered sets, and hence
a graph isomorphism.

(b) Lemma 2.3 shows that v 7→ rstG(v) is an order-preserving map from T to B(G);
equivariance is clear and injectivity follows from [6, Proposition 2]. �

Some basic facts concerning the structure graph are clear from Proposition 2.4 and
Lemma 2.2(c):

Proposition 2.5. For a branch group G the graph B(G) has the following properties.

(a) G is the only vertex fixed in the action of G on B(G).
(b) The orbit O(B) of each vertex B is finite.
(c) Each vertex B is connected to the vertex G by a finite path; all simple such paths

have length at most log2(|O(B)|).

Our next task is to elucidate the relationship between rigid stabilizers and C2-closed
basal subgroups.

Lemma 2.6. Let G act as a branch group on T .

(a) Let 1 , B ∈ L(G). Then there exists some v ∈ T such that [rst(v)] ≤ [B].
(b) Let B ∈ B(G). Then G has a branch action for which B is the restricted stabilizer

of a vertex.
(c) If B(G) is a tree then G acts on it as a branch group.

Proof. Assertion (a) is [4, Proposition 3.2].
(b) Find a vertex v ∈ T with [rstG(v)] ≤ [B]; suppose that v is in the nth layer Ln of T .

Since B is the largest element of its class by Lemma 2.2 we have rstG(v) ≤ B, and we
can assume that rstG(v) < B. Let T be the set consisting of G, all conjugates of B, and
the union U of all layers Lm of T with m ≥ n. The maximal elements of U constitute
the layer Ln; their restricted stabilizers are the subgroups rstG(vg) = rstG(v)g, and each
lies in a unique conjugate of B. We regard T as a tree, with the same edges between
elements of U as in T , with edges linking G and all conjugates of B, and with each
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maximal element u of U joined by an edge to the conjugate of B containing rstG(u). It
is clear that T is a tree. To see that G acts on it as a branch group, we need to observe
that the restricted stabilizer of the layer of T to which B belongs contains rstG(n) and
so has finite index in G. The elements of the restricted stabilizer of B in this action act
trivially on all subtrees Tvg of T with rstG(vg) � B, and so the only elements w of U
that they can move satisfy rstG(w) ≤ B. Thus B is the restricted stabilizer of B in the
action on T .

(c) We only need to prove that
∏

g∈G rst(Bg) has finite index in G for each B ∈ B(G).
By (a) the subgroup B contains rstG(v) for some vertex v of a tree on which G acts as
a branch group, and the conclusion follows since

∏
rst(vg) ≤

∏
Bg. �

We say that T is a maximal tree on which a group G acts as a branch group if
T cannot be G-equivariantly embedded in a strictly larger tree on which G acts as a
branch group. An easy application of Zorn’s lemma shows that each tree on which G
acts as a branch group is contained in at least one maximal such tree.

Corollary 2.7. Let G be a branch group. The following are equivalent:

(i) there is a unique maximal tree up to G-equivariant isomorphism on which G acts
as a branch group;

(ii) B(G) is a tree;
(iii) for all B, B1, B2 ∈ B(G) with B ≤ B1 and B ≤ B2, either B1 ≤ B2 or B2 ≤ B1.

Proof. The implication (ii)⇒ (i) follows from Proposition 2.4(b) and Lemma 2.6(c).
Suppose that (i) holds, so that G acts as a branch group on a unique maximal tree T .

Then all rigid stabilizers in all branch actions of G arise as rigid stabilizers in the action
on T , and hence by Lemma 2.6(b), all C2-closed basal subgroups are rigid stabilizers
in the action on T . Let B, B1, B2 ∈ B(G) be the restricted stabilizers of vertices v, v1, v2

and suppose that B ≤ B1, B ≤ B2. Then v1, v2 lie in the path from v to the root of T , so
that v1 ∈ Tv2 or v2 ∈ Tv1 , and consequently B1 ≤ B2 or B2 ≤ B1. Therefore (i)⇒ (iii).

Finally, suppose that B(G) is not a tree. Let C be a simple cycle in B(G), and let
B be a vertex of C with the greatest number of conjugates in G. The vertices B1, B2

adjacent to B in C are then incomparable elements of B(G) containing B and so (iii)
does not hold. Thus (iii)⇒ (ii). �

3. Identification of restricted stabilizers

We shall use the description of the structure graph in the previous section to address
the issue of the definability of the tree on which a branch group acts. Throughout this
section, G is a branch group that acts on a tree T .

It follows from a result of Hardy [7] or a more general result of Abért [1] that branch
groups satisfy no group laws. We give an ad hoc proof relating to a special case.

Lemma 3.1. Let u be a vertex of T and write R = rstG(u). Then R has elements x, y with
(xy)2 , y2x2, and also elements z, t with z2t2 , t2z2.
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Proof. Suppose the first assertion false. Then x2y3 = yxyxy = y3x2 for all x, y ∈ R, and
so the characteristic subgroups U = 〈x2 | x ∈ R〉 and V = 〈y3 | y ∈ R〉 of R commute
with each other. Therefore U ∩ V is an abelian subgroup in L(G), and so trivial by
Lemma 2.1(a). Hence R embeds in R/U × R/V . Since groups of exponents 2 and 3
are nilpotent of class at most 2, Lemma 2.1(a) gives R = 1, and this is a contradiction.

Similarly, if all squares in R commute, then the group that they generate is abelian,
and so trivial; therefore R is abelian and R = 1. �

Definition. For each h ∈ G write

Xh = {[h−1, hk] | k ∈ G}, Yh = {x1x2x3 | xi ∈ Xh},

Wh =
⋃
{Yhg | g ∈ G, [Yh,Yhg ] , 1}.

Lemma 3.2. If h ∈ rstG(v) for some vertex v of T then C2
G(Wh) ≤ rstG(v).

Proof. We have Xh ⊆ rstG(v), since rstG(vk) = rstG(v)k, and if vk , v then
[rstG(v), rstG(vk)] = 1. Therefore Yh ⊆ rstG(v), and Yhg ⊆ rstG(vg) for all g ∈ G. If
[Yh, Yhg ] , 1 it follows that g ∈ stabG(v) and Yhg ⊆ rstG(v). Hence Wh ⊆ rstG(v) and
C2

G(Wh) ≤ C2
G(rstG(v)) = rstG(v) by Lemma 2.3. �

Our object now is to prove the reverse inequality for certain choices of h.

Proposition 3.3. For each vertex v ∈ T there exists h ∈ rstG(v) with rstG(v) = C2
G(Wh).

We conduct part of the proof of Proposition 3.3 in the following lemma.

Lemma 3.4. Let u ∈ T, write R = rstG(u) and let h ∈ G.

(a) If uh2 , u then Yh contains {y−2(xy)2x−2 | x, y ∈ R}.
(b) If u ∈ Ln and uh , u then the projection of Xh ∩ rstG(n) in rstG(u) contains all

squares in R.
(c) If u is as in (b) and g ∈ G satisfies uhg , u then [Xh, Xhg ] , 1.

Proof.
(a) We have

[h−1, hx] = (x−1)h−1
x(x−1)hx for all x ∈ R. (∗)

The four terms in the product on the right lie respectively in rstG(uh−1), rstG(u),
rstG(uh) and rstG(u). Since uh2 , u, the three subgroups rstG(uh−1), rstG(u), rstG(uh)
are distinct and commute with each other. Therefore for x, y ∈ R we have

[h−1, hy−1
][h−1, hxy][h−1, hx−1

] = (y(xy)−1x)h−1
(y(xy)−1x)h(y−2(xy)2x−2)

= y−2(xy)2x−2.

(b) This follows immediately from (∗).
(c) By (b), the projections P1, P2 of Xh ∩ rstG(n) in R and in rstG(ug−1) contain

respectively {x2 | x ∈ R} and {x2 | x ∈ Rg−1
}. Since the projection of Xhg ∩ rstG(n) in

rstG(u) is equal to Pg
2 we conclude that the projection of [Xh ∩ rstG(n),Xhg ∩ rstG(n)] in

rstG(u) contains {[x2, y2] | x, y ∈ R}, and hence that [Xh, Xhg ] , 1 by Lemma 3.1. �
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Proof of Proposition 3.3. Write Q(u) = {y−2(xy)2x−2 | x, y ∈ rstG(u)} for each vertex
u. Thus Q(u) , {1} by Lemma 3.1, and 〈Q(ug) | g ∈ G〉 =

∏
g∈G Q(ug) is a nontrivial

normal subgroup of G.
First we choose a suitable element h. We find an element h0 ∈ rstG(v) with h2

0 , 1,
and u0 ∈ Tv with u0h2

0 , u0. Let u0 ∈ Ln. For this choice of u0, choose h ∈ rstG(v) with
u0h2 , u0 and with h fixing as few elements of Tv ∩ Ln as possible.

Let g ∈ stabG(v). Consideration of hhg shows that the supports of h, hg on Tv ∩ Ln
cannot be disjoint. Therefore there is some u ∈ Tv ∩ Ln with uh , u and uhg , u. Thus
from Lemma 3.4 we have [Yh,Yhg ] , 1. It follows that

Wh =
⋃
{Yhg | g ∈ stabG(v)}.

Since u0h2 , u0, from Lemma 3.4 we have Q(u0) ⊆ Yh and hence

Q(u0g) = Q(u0)g ⊆ Yg
h = Yhg ⊆ Wh

for each g ∈ stabG(v). Being a branch group, G acts transitively on Ln, and so
stabG(v) acts transitively on Tv ∩ Ln. Hence Q(w) ⊆ Wh for each w ∈ Tv ∩ Ln, and
so K ≤ C2

G(Wh) ≤ rstG(v), where K =
∏

w∈Tv∩Ln
〈Q(w)〉. However,

K =

(∏
l∈Ln

〈Ql〉

)
∩ rstG(v),

and it follows that rstG(v)/K embeds in G/(
∏

l∈Ln
〈Ql〉), and so is virtually abelian.

From Lemma 2.1(a) it follows that K, C2
G(Wh) and rstG(v) have the same centralizer,

and hence, since C2
G(Uh) and rstG(v) are C2-closed, that C2

G(Wh) = rstG(v), as
required. �

Corollary 3.5. For each B ∈ B(G) there exists some h ∈ G with B = C2
G(Wh).

Proof. The subgroup B is a rigid stabilizer in the branch action of G on some tree, by
Proposition 2.6(b). �

4. Interpretability of structure graph and uniqueness of maximal tree
We prove the following result.

Theorem 4.1. There are first-order formulae τ, β(x) and δ(x, y) such that the following
statements hold for each branch group G:

(a) G has a branch action on a unique maximal tree up to G-equivariant
isomorphism if and only if G satisfies τ;

(b) the set S = {x | β(x)} is a union of conjugacy classes, and so G acts on it by
conjugation;

(c) the relation on S defined by δ(x, y) is a preorder preserved by G, and so the
quotient Q = S/∼, where ∼ is the equivalence relation defined by δ(x, y) ∧ δ(y, x),
is a partially ordered set on which G acts;

(d) Q is G-equivariantly isomorphic as a partially ordered set to the structure graph
of G.
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This result, together with facts in Section 2, implies the theorem stated in Section 1.
Indeed, it differs from that result only in the fact that it applies for all branch groups,
and not just for those that act on a unique maximal tree. Assertion (d) provides a
parameter-free interpretation for the whole structure graph and for the action of G on
this graph, since the action of G on Q is induced by conjugation in G.
Proof. It is convenient to define some intermediate formulae; for brevity we use the
predicates xy = y−1xy and [x, y] = x−1y−1xy:

ϕh(x) : (∃y1∃y2∃y3) x = [h−1, hy1 ][h−1, hy2 ][h−1, hy3 ];

ψh(x) : (∃t∃y1∃y2) ϕh(y1) ∧ ϕht (y2) ∧ ([y1, y2] , 1) ∧ ϕht (x);

γ1
h(x) : (∀y)(ψh(y)→ [x, y] = 1);

γh(x) : (∀y)(γ1
h(y)→ [x, y] = 1).

Thus, in the notation of Section 3, we have

{x | ϕh(x)} = Yh, {x | ψh(x)} = Wh and {x | γh(x)} = C2
G(Wh).

Now define β(x) as follows:

x , 1 ∧ (∀y)(((∃z1∃z2) γx(z1) ∧ γxy (z2) ∧ [z1, z2] , 1)→ ((∀z3)(γx(z3)→ γxy (z3)))).

Thus the statement β(h) holds if and only if h , 1 and the subgroup B = C2
G(Wh)

has the property that if [B, Bg] , 1 then B ≤ Bg. This latter property is equivalent
to the statement that B commutes with its distinct conjugates; then it follows from
[6, Lemma 3] that B is in L(G) and is a basal subgroup. Therefore Corollary 3.5
shows that the C2-closed basal subgroups are precisely the sets {x | γh(x)} with h in the
definable set S = {x | β(x)}.

Now we define δ(x, y) as follows:

δ(x, y) : (∀t)(γx(t)→ γy(t)).

For h1, h2 ∈ S , the statement δ(h1, h2) holds if and only if C2
G(Wh1 ) ≤ C2

G(Wh2 ); in
particular, δ defines a preorder on S . Moreover, h1, h2 ∈ S satisfy δ(h1, h2) ∧ δ(h2, h1)
if and only if the basal subgroups C2

G(Wh1 ),C2
G(Wh2 ) are equal. This provides our

interpretation of the graph B(G) as the definable quotient Q of S ; the graph structure
on Q can be reconstructed from the order induced by δ.

Finally, define τ as follows:

(∀x)(∀x1)(∀x2)(β(x) ∧ β(x1) ∧ β(x2) ∧ δ(x, x1) ∧ δ(x, x2))→ (δ(x1, x2) ∨ δ(x2, x1)).

By Corollary 2.7, the sentence τ holds in G if and only there is (up to G-equivariant
isomorphism) a unique maximal tree on which G acts as a branch group. �
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