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DOMAIN OF ATTRACTION OF THE QUASISTATIONARY
DISTRIBUTION FOR BIRTH-AND-DEATH PROCESSES
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Abstract

We consider a birth–death process {X(t), t ≥ 0} on the positive integers for which the
origin is an absorbing state with birth coefficients λn, n ≥ 0, and death coefficients
µn, n ≥ 0. If we defineA = ∑∞

n=1 1/λnπn and S = ∑∞
n=1(1/λnπn)

∑∞
i=n+1 πi , where

{πn, n ≥ 1} are the potential coefficients, it is a well-known fact (see van Doorn (1991))
that if A = ∞ and S < ∞, then λC > 0 and there is precisely one quasistationary
distribution, namely, {aj (λC)}, where λC is the decay parameter of {X(t), t ≥ 0} inC =
{1, 2, . . .} and aj (x) ≡ µ−1

1 πjxQj (x), j = 1, 2, . . .. In this paper we prove that there is
a unique quasistationary distribution that attracts all initial distributions supported inC, if
and only if the birth–death process {X(t), t ≥ 0} satisfies bothA = ∞ and S < ∞. That
is, for any probability measure M = {mi, i = 1, 2, . . .}, we have limt→∞ PM(X(t) =
j | T > t) = aj (λC), j = 1, 2, . . ., where T = inf{t ≥ 0 : X(t) = 0} is the extinction
time of {X(t), t ≥ 0} if and only if the birth–death process {X(t), t ≥ 0} satisfies both
A = ∞ and S < ∞.
Keywords: Domain of attraction; quasistationary distribution; birth-and-death process;
orthogonal polynomial; duality
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1. Introduction

Quasistationary distributions (QSDs) for continuous-time Markov chains have recently
attracted much attention because of their theoretical and practical interest. A complete treatment
of the QSD problem for a given family of processes should accomplish two things (see [9]):

(i) determination of all QSDs; and

(ii) solve the domain of attraction problem, namely, characterize all laws ν such that a given
QSD M is a ν-limiting conditional distribution.

Although (i) has been addressed for several cases, details about (ii) are known only for finite
Markov processes, and for subcritical Markov branching processes. Determination of all QSDs
for birth–death processes has been studied by Cavender [2] and van Doorn [11]; a complete
answer is as follows (see [11]).

1. If A = ∑∞
n=1 1/λnπn = ∞ and S = ∑∞

n=1(1/λnπn)
∑∞
i=n+1 πi = ∞, either λC = 0

and there is no QSD, or λC > 0 and there is a one-parameter family of QSDs, namely,
{aj (x), 0 < x ≤ λC}, where aj (x) ≡ µ−1

1 πjxQj (x), j = 1, 2, . . ..
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2. IfA = ∑∞
n=1 1/λnπn = ∞ and S = ∑∞

n=1(1/λnπn)
∑∞
i=n+1 πi < ∞, then λC > 0 and

there is precisely one QSD, namely, {aj (λC)}.
In the literature, there are two works directly related to problem (ii), i.e. the domain of

attraction problem for birth–death processes. The first work is that of van Doorn [11], who
solved the QSD problem when the initial distribution has finite support; in particular, when it
concentrates all mass at a single state. The other related work is due to Zhang et al. [13], who
proved that if

∑∞
i=1miQi(λC) < ∞ then any initial distributionM = {mi, i = 1, 2, . . .} is in

the domain of attraction of {aj (λC)}.
In this paper we prove that there is a unique QSD that attracts all initial distributions supported

in C = {1, 2, . . .} if and only if the birth–death process {X(t), t ≥ 0} satisfies both A = ∞
and S < ∞. That is, for any probability measure M = {mi, i = 1, 2, . . .}, we have

lim
t→∞ PM(X(t) = j | T > t) = aj (λC) = µ−1

1 πjλCQj (λC), j = 1, 2, . . . ,

where T = inf{t ≥ 0 : X(t) = 0} is the extinction time of {X(t), t ≥ 0} if and only if the
birth–death process {X(t), t ≥ 0} satisfies both A = ∞ and S < ∞. As is well known, there
are four classifications of birth–death processes, due to Feller [4]. In the case of a regular
boundary and an exit boundary, there is no QSD. When ∞ is a natural boundary, there is a
one-parameter family of QSDs if λC > 0; we will discuss the domain of attraction of QSDs
for this classification in another paper. However, for an entrance boundary, which is equivalent
to both R = ∞ and S < ∞, there exists a unique QSD. In this paper we give a necessary
and sufficient condition for the existence of a unique QSD that attracts any initial distribution
supported in C = {1, 2, . . .}.

Our basic tools in this paper are Karlin and McGregor’s [6] spectral representation for the
transition probabilities of a birth–death process, and a duality concept for birth–death processes.

The remainder of the paper is organized as follows. After introducing the concepts and
collecting some preliminary results in the next section, we will present results on some particular
properties of birth–death processes in Section 3. Using some previous results, we obtain our
main results in Section 4. Finally, we conclude in Section 5 with an example.

2. Preliminaries

In this paper we focus on a continuous-time Markov chain {X(t), t ≥ 0} on a state space
E ≡ {0} ∪ C, where C ≡ {1, 2, . . .} is an irreducible transient class and 0 is an absorbing
state. A continuous-time Markov chain {X(t), t ≥ 0} having state space E and q-matrix
Q ≡ (qij , i, j ∈ E) given by

qij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λi ifj = i + 1, i ≥ 0,

µi ifj = i − 1, i ≥ 1,

−(λi + µi) ifj = i, i ≥ 0,

0 otherwise,

(2.1)

is called a birth-and-death process on E, with birth coefficients λn ≥ 0, n ≥ 0, and death
coefficients µn ≥ 0, n ≥ 0. Suppose that λ0 = µ0 = 0, λn > 0, and µn > 0, n ≥ 1. Then Q
will be conservative, 0 is an absorbing state, and C = {1, 2, . . .} is irreducible for the minimal
Q-function, F , and, hence, for any Q-function.
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We will use Anderson’s notion [1, pp. 103, 261]: define the potential coefficients π =
{πn, n ∈ C} by π1 = 1 and, for n ≥ 2,

πn = λ1λ2 · · · λn−1

µ2µ3 · · ·µn , (2.2)

and let

A =
∞∑
n=1

1

λnπn
, R =

∞∑
n=1

1

λnπn

n∑
i=1

πi, S =
∞∑
n=1

1

λnπn

∞∑
i=n+1

πi.

Write Pi(·) = P(· | X(0) = i). We say that extinction occurs when the process reaches
state 0. Furthermore, denote by

T = inf{t ≥ 0 : X(t) = 0}
the hitting time of 0 or the extinction time of the process. Absorption at 0 is called certain
if Pi(T < +∞) = 1. Certain absorption is necessary for the existence of the QSD; therefore,
before turning our attention to the QSD we have to assume that eventual absorption at state 0 is
certain under the following condition (see [7]):

A =
∞∑
n=1

1

λnπn
= ∞. (2.3)

Imposing (2.3) implies that the condition

R =
∞∑
n=1

1

λnπn

n∑
i=1

πi = ∞ (2.4)

is satisfied. Also, imposing (2.3) (and, hence, (2.4)) implies that the process {X(t), t ≥ 0}
is nonexplosive (Q is regular) and, therefore, honest, in which case the transition probability
function P(t) = (Pij (t), i ∈ C, j ∈ E), where

Pij (t) = P(X(t) = j | X(0) = i), i = 1, 2, . . . , j = 0, 1, . . . , t ≥ 0,

is the unique solution of the system of Kolmogorov backward equations

P ′(t) = QP(t), t ≥ 0, (2.5)

with initial conditions P(0) = I , where I is the identity matrix and

∞∑
j=0

Pij (t) = 1, i = 1, . . . , t ≥ 0. (2.6)

We know that each Q-function, Pij (t), satisfies (2.5) since Q is conservative.
The state probabilities Pj (t) ≡ P(X(t) = j) are determined by the transition probabilities

Pij (t) and the distribution of X(0) through

Pj (t) =
∞∑
i=0

miPij (t), j = 0, 1, 2, . . . ,

where mi ≡ P(X(0) = i) ≥ 0 and
∑∞
i=0mi = 1 (so that

∑∞
j=0 Pj (t) = 1).
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It is well known (see, for example, [1, Theorem 5.1.9]) that, under our assumptions regarding
the Markov chain, there exist a strictly positive constant cij (with cii = 1) and a parameter
λC ≥ 0 such that

Pij (t) ≤ cij e−λCt , i, j ∈ C, t ≥ 0,

and

λC = − lim
t→∞

1

t
logPij (t), i, j ∈ C.

The parameter λC is known as the decay parameter of the Markov chain in C.
Karlin and McGregor [6] showed that the transition probabilities Pij (t), i, j ∈ C, can be

represented by

Pij (t) = πj

∫ ∞

0
e−xtQi(x)Qj (x) dψ(x), (2.7)

which is the spectral representation referred to in the introduction. Here {Qn(x), n ≥ 1} is a
system of polynomials defined recursively by

λnQn+1(x) = (λn + µn − x)Qn(x)− µnQn−1(x), n = 2, 3, . . . ,

λ1Q2(x) = λ1 + µ1 − x, Q1(x) = 1,
(2.8)

andψ is the unique (in our setting), positive measure on the nonnegative real axis of total mass 1
with respect to which {Qn(x)} constitutes an orthogonal polynomial sequence.

It is well known that Qn(x) has n − 1 positive, simple zeros, xn,i , i = 1, 2, . . . , n − 1,
which satisfy the ‘interlacing’ property

0 < xn+1,i < xn,i < xn+1,i+1, i = 1, 2, . . . , n− 1, n ≥ 2, (2.9)

from which it follows that the limits

ξi ≡ lim
n→∞ xn,i , i ≥ 1,

exist and satisfy 0 ≤ ξi ≤ ξi+1 < ∞. Actually, note that ξ1 = λC .
It is easy to see from (2.9) that

x ≤ ξ1 ⇐⇒ Qn(x) > 0 (2.10)

for all n. It also follows that 0 ≤ ξi ≤ ξi+1 < ∞, so that

σ ≡ lim
i→∞ ξi

exists, and 0 ≤ σ ≤ ∞. Furthermore, we have

ξi = ξi+1 �⇒ σ = ξi, i = 1, 2, . . . .

Now defining the (possibly finite) set � ≡ {ξ1, ξ2, . . .}, we obtain from the following lemma
(see [11]), which links the zeros of the polynomials Qn(x) to the support

S(ψ) ≡ {x | ψ((x − ε, x + ε)) > 0 for all ε > 0}
of the measure ψ .
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Lemma 2.1. If σ = ∞ then S(ψ) = �. If σ < ∞ then S(ψ) ∩ [0, σ ] = � (a bar denotes
closure) and σ is the smallest limit point of S(ψ).

Following Karlin and McGregor [7], we define the dual process to be a birth–death process
on E with birth rates {λdn, n ≥ 0} and death rates {µdn, n ≥ 0} given by

λdn = µn, µd1 = 0, µdn+1 = λn, n = 1, 2, . . . .

Replacing λn by λdn, µn by µdn, and Qn(x) by Qd
n in (2.8), we obtain a recurrence relation for

the dual polynomialsQd
n, n = 1, 2, . . ., which constitutes an orthogonal polynomial sequence

with respect to a (unique) positive measure ψd on the nonnegative real axis of total mass 1.
This measure satisfies

ψd({0}) = 0, dψd(x) = µ1x
−1 dψ(x), x > 0, (2.11)

and so, with
S(ψ) = S(ψd), (2.12)

since, in view of [6],

µ1

∫ ∞

0
x−1 dψ(x) = 1,

ψ cannot have positive mass at 0. It is not difficult to conclude from (2.12) that

ξdi = ξi, i = 1, 2, . . . , and σd = σ.

We will use Chapter 5 of [1] to make the following classifications. Note that a set {xj , j ∈ C}
of strictly positive numbers such that∑

j∈C
qij xj ≤ −µxi, i ∈ C, (2.13)

is called a µ-subinvariant vector for Q on C. If the equality holds in (2.13) then {xj , j ∈ C}
is called a µ-invariant vector for Q on C. A set {xi, i ∈ C} of strictly positive numbers such
that ∑

j∈C
Pij (t)xj ≤ e−µtxi (2.14)

for all t ≥ 0 and all i ∈ C is called a µ-subinvariant vector for Pij (t) on C. If the equality
holds in (2.14) then {xi, i ∈ C} is called a µ-invariant vector for Pij (t) on C.

Proposition 2.1. Let {xj , j ∈ C} be a set of strictly positive numbers. The following statements
are equivalent.

(a) {xj , j ∈ C} is a µ-subinvariant vector for Q on C.

(b) {xj , j ∈ C} is a µ-subinvariant vector for Pij (t) on C.

3. Related functions

A QSD on C is a proper probability distribution ν = {νj , j ∈ C} such that, for all t ≥ 0,

νj = Pν(X(t) = j | T > t), j ∈ C.
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In other words, a QSD is an initial distribution on C so that the conditional probability of the
process being in state j at time t , given that no absorption has taken place by that time, is
independent of t for all j . We note that

Pν(X(t) = j | T > t) = Pν(X(t) = j)

Pν(T > t)
,

while Pν(X(t) = j) → 0 as t → ∞ for all j ∈ C and any initial distribution ν. So ν can
be a QSD only if Pν(T > t) → 0 as t → ∞, that is, if absorption is certain, which is our
assumption throughout this section.

We call ν = {νj } the limiting condition distribution (LCD) on C if, for some initial
distribution M on C, it satisfies

νj = lim
t→∞ PM(X(t) = j | T > t), j ∈ C. (3.1)

If we wish to describe the LCD corresponding to a particular initial distribution M , then we
usually speak of the M-LCD (if it exists). If (3.1) holds, we also say that M is attracted to ν,
or is in the domain of attraction of ν.

Obviously, every QSD is an LCD. Definition (3.1) only becomes interesting if it is satisfied
with M �= ν. For the above concepts on LCD and QSD, we refer the reader to [5], [9], and
[11].

The following series plays a crucial role in QSDs for birth–death processes:

S =
∞∑
n=1

1

λnπn

∞∑
i=n+1

πi.

In this paper, under the conditions A = ∞ and S < ∞, we study the behavior of

νj (t) ≡ PM(X(t) = j | T > t) =
∑∞
i=1miPij (t)∑∞

k=1mk(1 − Pk0(t))
, j ∈ C,

as t → ∞, where {mi}∞i=1 is some initial distribution.
For notational convenience, we introduce the functions

aj (x) ≡ µ−1
1 πjxQj (x), j = 1, 2, . . . ,

where the polynomials Qj(x) are recursively defined by (2.8) and the constants πj are given
in (2.2).

A useful lemma (see [11]) is the following.

Lemma 3.1. If A = ∞ and S < ∞, then λC > 0, σ = ∞, and there is precisely one QSD,
namely, {aj (λC)}.

Now we start with the limit of the function eλCt (1 − Pi0(t)), which is crucial to our main
result.

Theorem 3.1. If A = ∞ and S < ∞, then

lim
t→∞ eλCt (1 − Pi0(t)) = Qi(λC)ψ

d({λC})

and the limit is positive for all i ∈ C.
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Proof. Since the functions Pj (t) = ∑∞
i=1miPij (t) satisfy the forward equations,

P ′
j (t) = λj−1Pj−1(t)− (λj + µj )Pj (t)+ µj+1Pj+1(t), j = 1, 2, . . . ,

P ′
0(t) = µ1P1(t). (3.2)

By (3.2) we have Pi0(t) = µ1
∫ t

0 Pi1(u) du, so it follows from (2.7) that

Pi0(t) = µ1

∫ t

0

{∫ ∞

0
e−xuQi(x) dψ(x)

}
du

= µ1

∫ ∞

0
x−1Qi(x) dψ(x)− µ1

∫ ∞

0
e−xtx−1Qi(x) dψ(x).

Since Pi0(t) → 1 as t → ∞, the first term in this expression equals 1, so, with (2.11), we
obtain

Pi0(t) = 1 −
∫ ∞

0
e−xtQi(x) dψd(x).

We now turn to the limiting behavior as t → ∞ of the functions eλCt (1 − Pi0(t)):

eλCt (1 − Pi0(t)) =
∫ ∞

λC

e−(x−λC)tQi(x) dψd(x).

As t → ∞, the right-hand expression,
∫ ∞
λC

e−(x−λC)tQi(x) dψd(x), is readily seen to tend to 0
except at the single point λC , so we can write∫ ∞

λC

e−(x−λC)tQi(x) dψd(x) → Qi(λC)ψ
d({λC}).

Next we show that Qi(λC)ψ
d({λC}) > 0. Lemma 3.1 tells us that if A = ∞ and S < ∞,

then λC > 0 and σ = ∞. Then, from Lemma 2.1, S(ψ) = � = {ξ1, ξ2, . . .}. Moreover, using
(2.12), we easily have

S(ψd) = {x | ψd((x − ε, x + ε)) > 0 for all ε > 0} = {ξ1, ξ2, . . .}. (3.3)

Recall that ξ1 = λC . In view of (3.3) we have thus proved that ψd({λC}) > 0.
Finally, by (2.10), Qi(λC) > 0. Hence, limt→∞ eλCt (1 − Pi0(t)) = Qi(λC)ψ

d({λC}) and
Qi(λC)ψ

d({λC}) > 0 for all i ∈ C. This completes the proof.

Lemma 3.2. The transition probability Pij (t) is stochastically monotone if and only if∑
j≥k Pij (t) is a nondecreasing function of i for every fixed k and t .

A stochastic matrix is monotone if its row vectors are stochastically increasing. It is easy to
check that the birth–death process q-matrix is monotone.

Theorem 3.2. If A = ∞ and S < ∞, then Qi(λC) ≤ Qi+1(λC) and there exists a constant
K such that Qi(λC) ≤ K for all i ∈ C, i.e. Q∞(λC) ≡ limi→∞Qi(λC) < ∞.

Remark. Theorem 3.2 is very important and innovative. By using it we can deduce that the
λC-invariant vector (see Theorem 3.4) {Qi(λC), i ≥ 1} is bounded. Furthermore, it plays a
critical role in the proof of our main result, Theorem 4.1 below.
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Proof of Theorem 3.2. Since the birth–death process q-matrix is monotone and conservative
and satisfies the regularity, then Theorem 3.2 of [3] tells us that the corresponding minimal
Q-function is stochastically monotone. Let k = 1 in Lemma 3.2. Then 1 − Pi0(t) =∑
j≥1 Pij (t) is a nondecreasing function of i for every fixed t . By Theorem 3.1, if A = ∞ and

S < ∞, then, for all i ∈ C, we have

lim
t→∞ eλCt (1 − Pi0(t)) = Qi(λC)ψ

d({λC}),

and ψd({λC}) > 0. So, for every fixed t , Qi(λC) is also a nondecreasing function of i, that is,
Qi(λC) ≤ Qi+1(λC).

On the other hand, defining γ2i+2 ≡ µi, γ2i+3 ≡ λi, i = 0, 1, . . . , the polynomials Qi(x)

are readily seen to be related to the polynomials Pi(x) in [10] by

Q2i (x) = Pi(−x)
Pi(0)

, i = 0, 1, . . . .

Theorem 1 of [10] then states that, as i → ∞, {Pi(−x)/Pi(0)}i converges uniformly on bounded
sets to an entire function whose zeros are simple and are precisely the points ξi, i ≥ 1, if and
only if the series

∞∑
n=0

πn

{
µ−1

1 +
n−1∑
i=0

(λiπi)
−1

}

converges, which is easily seen to be equivalent to S < ∞. So {Pi(−x)/Pi(0)}i converges
uniformly on bounded sets to an entire function whose zeros are simple and are precisely the
points ξi, i ≥ 1. Because the entire function is bounded on bounded sets, we can easily
conclude that {Q2i (λC), i ≥ 1} is also bounded.

Finally, by using Qi(λC) ≤ Qi+1(λC) and the monotone convergence theorem, it is clear
that Q∞(λC) ≡ limi→∞Qi(λC) < ∞, i.e. there exists a constant K such that Qi(λC) ≤ K

for all i ∈ C. This completes the proof.

Remark. Conditions for a conservative q-matrix Q being regular are well known. Indeed, it
is equivalent to saying that the minimalQ-function is honest and thus unique. In this paper we
verify that Theorem 3.1 and Theorem 3.2 are valid when A = ∞ and S < ∞. In fact, we can
prove that if S = ∞ and λC > 0, then Q∞(λC) ≡ limi→∞Qi(λC) = ∞.

If the initial distribution concentrates all mass at a single state, we consider

νij (t) ≡ Pi (X(t) = j | T > t) = Pij (t)

1 − Pi0(t)
, i, j ∈ C,

as t → ∞. Recall the following lemma (see Theorem 4.1 of [11]).

Lemma 3.3. If λC > 0 then

lim
t→∞ Pi (X(t) = j | T > t) = aj (λC) = µ−1

1 λCπjQj (λC), i, j ∈ C.

Lemma 3.3 includes the relationship between limt→∞ eλCtPij (t) and limt→∞ eλCt (1 −
Pi0(t)). Note that

lim
t→∞

eλCtPij (t)

eλCt (1 − Pi0(t))
= lim
t→∞ νij (t) = aj (λC), i, j ∈ C.
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Hence, we can write

lim
t→∞ eλCtPij (t) = aj (λC) lim

t→∞ eλCt (1 − Pi0(t)), i, j ∈ C.

The limit limt→∞ eλCtPij (t) is given in the following theorem.

Theorem 3.3. If A = ∞ and S < ∞, then

lim
t→∞ eλCtPij (t) = µ−1

1 λCπjQj (λC)Qi(λC)ψ
d({λC}) (3.4)

exists and the limit is positive for all i, j ∈ C.

Indeed, we can state the following result.

Corollary 3.1. If A = ∞ and S < ∞, then λC > 0 and C is λC-positive.

Proof. Recall from the proof of Theorem 3.1 that ifA = ∞ and S < ∞, thenψd({λC}) > 0.
From (3.4), we have

lim
t→∞ eλCtPii(t) = µ−1

1 λCπiQi(λC)Qi(λC)ψ
d({λC}) > 0

for all i ∈ C. This completes the proof.

We now prove that {Qi(λC), i ≥ 1} is a λC-invariant vector for Pij (t) on C, for which we
need the following important result from [8].

Lemma 3.4. ([8].) (a) Let C be a communicating class with decay parameter λC ≥ 0. Then
there exist λC-subinvariant vectors for Pij (t) on C.

(b) Suppose that the communicating classC has decay parameter λC and is λC-recurrent. Then
the λC-subinvariant vector {xi, i ∈ C} of (a) is unique up to constant multiples, and is in fact
λC-invariant.

Theorem 3.4. IfA = ∞ and S < ∞, then {Qi(λC), i ≥ 1} is a λC-invariant vector for Pij (t)
on C. That is, ∑

j∈C
Pij (t)Qj (λC) = e−λCtQi(λC), i ∈ C.

Proof. Let us recall Qi(x), i ≥ 1, defined in (2.8), in obvious vector notion: −xQ(x) =
Q̄Q(x) withQ1(x) = 1, where the matrix Q̄ can be described as the original q-matrixQ with
the first row and the first column removed. Of course, {Qi(λC), i ≥ 1} is a λC-invariant vector
for Q on C since Qi(λC) > 0. By Proposition 2.1 we have∑

j∈C
Pij (t)Qj (x) ≤ e−xtQi(x), 0 < x ≤ λC.

From Corollary 3.1, if S < ∞ then λC > 0 and C is λC-positive. This implies that C is
λC-recurrent. Then we can apply Lemma 3.4(b) to show that {Qi(λC), i ≥ 1} is λC-invariant,
that is, ∑

j∈C
Pij (t)Qj (λC) = e−λCtQi(λC).

From Theorem 3.2, we can deduce that the λC-invariant vector {Qi(λC), i ≥ 1} is bounded.
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4. The domain of attraction

A necessary and sufficient condition for the existence of a unique QSD that attracts any
initial distribution supported in C = {1, 2, . . .} to hold is given in this section. Although there
are several works that have studied this problem, such as [11]–[13], the result of this paper is of
particular interest in the analysis of the domain of attraction of QSDs for birth–death processes
because we use the definition of the QSD to prove the domain of attraction but do not impose
any condition on the initial distribution. Before stating our main result, Theorem 4.1, we require
the following lemma (see Theorem 1 of [13]) and proposition (see Proposition 5.2.9 of [1]).

Lemma 4.1. For the birth-and-death process defined by (2.1), let M = {mi, i ∈ C} be a
probability distribution and assume that

∑
i∈C miQi(λC) < ∞. Then

lim
t→∞ PM(X(t) = j | T > t) =

{
µ−1

1 πjλCQj (λC) if λC > 0,

0 if λC = 0,

for all j ∈ C.

Proposition 4.1. Suppose that the communicating class C for Pij (t) has decay parameter λC .
Letµ be such that 0 ≤ µ ≤ λC , and let {ui, i ∈ C} and {vi, i ∈ C} be two sets of numbers.

(a) Suppose that there is a µ-subinvariant measure {mk, k ∈ C} such that∑
k∈C

mk|vk| < ∞. (4.1)

Then
lim
t→∞

∑
j∈C

Pij (t)e
µtvj =

∑
j∈C

[
lim
t→∞Pij (t)e

µt
]
vj , i ∈ C.

(b) Suppose that there is a µ-subinvariant vector {xk, k ∈ C} such that∑
k∈C

xk|uk| < ∞. (4.2)

Then
lim
t→∞

∑
i∈C

uiPij (t)e
µt =

∑
i∈C

ui

[
lim
t→∞Pij (t)e

µt
]
, j ∈ C.

(c) Suppose that there is aµ-subinvariant measure {mk, k ∈ C} and aµ-subinvariant vector
{xk, k ∈ C} such that both conditions (4.1) and (4.2) are satisfied. Moreover, suppose
that either

sup
k∈C

|uk|
mk

< +∞ or sup
k∈C

|vk|
xk

< +∞.

Then
lim
t→∞

∑
i∈C

∑
j∈C

uiPij (t)e
µtvj =

∑
i∈C

∑
j∈C

ui

[
lim
t→∞Pij (t)e

µt
]
vj .

Theorem 4.1. There exists a unique QSD that attracts all initial distributions supported in
C = {1, 2, . . .} if and only if the birth–death process {X(t), t ≥ 0} satisfies both A = ∞ and
S < ∞. That is, for any probability measure M = {mi, i = 1, 2, . . .}, we have

lim
t→∞ PM(X(t) = j | T > t) = aj (λC), j = 1, 2, . . . ,

where aj (λC) ≡ µ−1
1 λCπjQj (λC) if and only if the birth–death process {X(t), t ≥ 0} satisfies

both A = ∞ and S < ∞.
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Remark. Lemma 4.1, which is the main result of Zhang et al. [13], shows that if the initial
distribution M = {mi, i = 1, 2, . . .} satisfies

∑∞
i=1miQi(λC) < ∞, then it is in the domain

of attraction of {aj (λC)}. By using this result, Theorem 4.1 follows from Theorem 3.2. But,
their result is too dependent on Karlin and McGregor’s spectral representation for the transition
probabilities of a birth–death process. Hence, we would like to give another proof, which is
applicable to the more general case.

Proof of Theorem 4.1. If there exists a QSD then the eventual absorption at 0 is certain,
which is equivalent to A = ∞. If S = ∞, by Theorem 3.2 of [11], either λC = 0 and there is
no QSD, or λC > 0 and there is a one-parameter family of QSDs; however, we have a unique
QSD, and so S = ∞ is impossible.

Conversely, recall from Lemma 3.1 that if A = ∞ and S < ∞, then there is precisely one
QSD. Let M = {mi} be any initial distribution on C. On the one hand, using Theorem 3.2, if
S < ∞ then there exists a constant K such that

∞∑
k=1

mkQk(λC) ≤ K

∞∑
k=1

mk = K < ∞.

By Theorem 3.4, {Qk(λC), k ≥ 1} is a λC-invariant vector; therefore, we can let xk = Qk(λC)

and uk = mk in (4.2). Then by Proposition 4.1(b) and Theorem 3.3 we have

lim
t→∞

∑
i∈C

miPij (t)e
λCt =

∑
i∈C

mi

[
lim
t→∞Pij (t)e

λCt
]

=
∑
i∈C

miµ
−1
1 λCπjQj (λC)Qi(λC)ψ

d({λC}). (4.3)

On the other hand, taking vi ≡ 1 and using the fact that Qi(λC) ≤ Qi+1(λC), we obtain
supk∈C1/Qk(λC) = 1/Q1(λC) = 1 < +∞. By Proposition 4.1(c) and Theorem 3.1, we have

lim
t→∞

∑
i∈C

∑
j∈C

miPij (t)e
λCt =

∑
i∈C

∑
j∈C

mi

[
lim
t→∞Pij (t)e

λCt
]
. (4.4)

Recall that Pij (t) is honest from (2.6) and use (4.4) to obtain

lim
t→∞

∑
i∈C

mi(1 − Pi0(t))e
λCt =

∑
i∈C

∑
j∈C

mi

[
lim
t→∞Pij (t)e

λCt
]

=
∑
i∈C

∑
j∈C

miµ
−1
1 λCπjQj (λC)Qi(λC)ψ

d({λC})

=
∑
i∈C

miQi(λC)ψ
d({λC}). (4.5)

In the above system of equations, we also used the fact that
∑
j∈C µ

−1
1 λCπjQj (λC) = 1. As

a consequence, by (4.3) and (4.5), for j = 1, 2, . . ., we have

lim
t→∞ PM(X(t) = j | T > t) = lim

t→∞

∑∞
i=1miPij (t)∑∞

k=1mk(1 − Pk0(t))

= lim
t→∞

∑∞
i=1miPij (t)e

λCt∑∞
k=1mk(1 − Pk0(t))eλCt
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=
∑
i∈C miµ

−1
1 λCπjQj (λC)Qi(λC)ψ

d({λC})∑
i∈C miQi(λC)ψd({λC})

= µ−1
1 λCπjQj (λC)

= aj (λC). (4.6)

Equation (4.6) not only implies that {aj (λC)} attracts all initial distributions M supported
in C = {1, 2, . . .}, it also implies the uniqueness of the QSD. In fact, take another QSD
ν = {νj , j ∈ C}. Then νj = Pν(X(t) = j | T > t) by definition and it is equal to {aj (λC)}
by (4.6). Thus, if A = ∞ and S < ∞, then there exists a unique QSD that attracts all initial
distributions supported in C = {1, 2, . . .}.

5. An example

Set
λi = i2, µi = 2i2, i ≥ 0,

in (2.1). Then π1 = 1,

πi = 1

i22i−1 ,

A =
∞∑
n=1

1

λnπn
=

∞∑
n=1

2n−1 = ∞,

S =
∞∑
n=1

1

λnπn

∞∑
i=n+1

πi = 1

2

∞∑
m=0

(
1

2

)m ∞∑
n=m

1

(n+ 1)2
− 1

2
< ∞.

It follows from Lemma 3.1 that λC > 0 and there is precisely one QSD, namely, {aj (λC)}.
Moreover, by Theorem 4.1, any initial distribution is in the domain of attraction of {aj (λC)}
for this process. However, it remains a difficult problem to give an explicit λC .
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