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Multiplicities of Binary Recurrences

B. Brindza, A. Pintér and W. M. Schmidt

Abstract. In this note the multiplicities of binary recurrences over algebraic number fields are investi-
gated under some natural assumptions.

Let K be an algebraic number field of degree d and uy, u; algebraic integers in
K, and w € K*. Furthermore, let {u,}22, be a non-degenerate binary recurrence
sequence with companion polynomial f(X) € Z[X]. Denote by A and p the zeros of
f(X). The w-multiplicity of the sequence {u, }22, is defined as the number of indices
m such that u,, = w (¢f. [ST] and the references given there). For an element o € K
the (usual) height is denoted by H(«).

Theorem If min(|A|, |u]) > 1 and max(H(uo),H(ul)) > ¢(d, f,w), where
c(d, f,w) is an effectively computable constant depending only on d, f and w, then
the w-multiplicity of {u, }52, is at most one.

Therefore if K, w and the companion polynomial (with |A] > 1, |u| > 1) are
given, then apart from some effectively determinable exceptional pairs (ug, u;) the
w-multiplicity of the sequence is at most one.

Auxiliary Results

Let oy, iy, . . ., ay be nonzero algebraic numbers. Write IL for their splitting field and
putg = [L : Q]. Denote by Ay, ..., A, upper bounds for the respective heights of
ay, ..., ay, where we suppose that A; > 2 for 1 < j < n. Write

n—1

Q= HlogAj, Q2 =Q'logA,.

j=1

Let by, ..., b, be rational integers, not all zero, and set B = max{|b,|, ..., |b,|,2}.

Lemmal IfA = |ob .. ol — 1| # 0, then
A > exp{—c(n,g)Qlog Q' log B},

where c(n, g) is an effectively computable constant depending only on g and n.
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Proof See [SPTS, p. 66].

It is well known that (u — A)u, = o\ + Gu” with a = uop — uy, 8 = u; — upA.
The w-multiplicity therefore is the number of n € N with
(1) Ol/\n_i'ﬁ.uln =7,

where v = (¢ — A)w. For an upper bound to the number of solutions of (1) in a very
general case we refer to the paper of Beukers and Schlickewei [BS]. The crucial point
is to handle the algebraic number field case.

Lemma 2 Suppose )\, i, o, B liein K, with |A| > 1, |u| > 1, and A/ not a root of 1,
aff # 0. Then there is an effectively computable ¢y = co(d, A\, ) such that there is at
most one n € N with

o

(2) 0 < X" + Bu"| < max(|al,|8])(2 +1logH(a/B)) .

Proof ¢, c;,... will be effectively computable constants depending on d, A, . We
may suppose that || < |8| and set h = 2 + log H(«/3). Then (2) may be rewritten
as

(3) 0 < [(—a/B)' N/ p)" = 1] < || "h™e < |p| ™.

By Lemma 1,
|(—a/B) A/ )" — 1] > exp(—cihlogn).

Comparison with (3) and taking logarithms yields —c;hlogn < —nlog|u|, hence
n/logn < cyh, hence

(4) n < cshlogh.

Suppose 0 < n; < n, were two solutions of (2), hence of (3). When ¢y > 2, we
have h~% < 1/4, and we obtain

(5) [(A /)=~ — 1| < 4h™°.
Since A/ is not a root of 1, the left hand side is # 0, so that by Lemma 1 it is
> exp(—c4 log(n, — nl)) > exp(—cslogh) = h™*

by (4). Comparison with (5) gives h°~% < 4, whence 2°~% < 4, which is impossible
if cg > ¢5+ 2.

In what follows, o will denote embeddings K — €, and for £ € K we set |E| =
max, |o(§)].

Lemma 3 Lety € K*, and o, B € Og. Suppose

(6) n}finmin(|a()\)|, lo(p)]) > 1
and
(7) max(lal, [8]) > cs(d, A, 1, 7).

Then the equation (1) possesses at most one solution n € N.
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Proof Set m = max(ad, [3]), and suppose m is so large that

. m
(2 + dlog m)«

M.

We may suppose that lal < 8], and after an appropriate embedding we may further
suppose that [5] = | 3], so that m = max(|e/,|3]). Then (1) yields

max(|e, |8])

X" +8u"| = Iy| < A <

m
(2 +dlogm)® = (2+logH(a/B)) "

because log H(a/3) < dlogm, since a, 3 are in Ok. According to Lemma 2, there is

at most one such n.

Proof of the Theorem

Now A, p are rational or are conjugate quadratics, so that min(|A|, [|) > 1 yields (6).
As noted above, we are dealing with (1) where & = uop — uy, 8 = uy — ugh, v =

(. — N)w, so that

a+
N

Uy =

Since a, 8 € O,

uj

_Ada+uB
=S

max(H(uo), H(t))) < ¢;(\, ) (max(ia, [])) ¢

and therefore maX(H(uo), H(ul)) > (A, p, d, w) implies (7).
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