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Multiplicities of Binary Recurrences

B. Brindza, Á. Pintér and W. M. Schmidt

Abstract. In this note the multiplicities of binary recurrences over algebraic number fields are investi-
gated under some natural assumptions.

Let K be an algebraic number field of degree d and u0, u1 algebraic integers in
K, and ω ∈ K∗. Furthermore, let {un}∞n=0 be a non-degenerate binary recurrence
sequence with companion polynomial f (X) ∈ Z[X]. Denote by λ and µ the zeros of
f (X). The ω-multiplicity of the sequence {un}∞n=0 is defined as the number of indices
m such that um = ω (cf. [ST] and the references given there). For an element α ∈ K
the (usual) height is denoted by H(α).

Theorem If min(|λ|, |µ|) > 1 and max
(

H(u0),H(u1)
)
> c(d, f , ω), where

c(d, f , ω) is an effectively computable constant depending only on d, f and ω, then
the ω-multiplicity of {un}∞n=0 is at most one.

Therefore if K, ω and the companion polynomial (with |λ| > 1, |µ| > 1) are
given, then apart from some effectively determinable exceptional pairs (u0, u1) the
ω-multiplicity of the sequence is at most one.

Auxiliary Results

Let α1, α2, . . . , αn be nonzero algebraic numbers. Write L for their splitting field and
put g = [L : Q]. Denote by A1, . . . ,An upper bounds for the respective heights of
α1, . . . , αn, where we suppose that A j ≥ 2 for 1 ≤ j ≤ n. Write

Ω ′ =

n−1∏

j=1

log A j , Ω = Ω
′ log An.

Let b1, . . . , bn be rational integers, not all zero, and set B = max{|b1|, . . . , |bn|, 2}.

Lemma 1 If Λ = |αb1
1 · · ·α

bn
n − 1| 	= 0, then

Λ > exp{−c(n, g)Ω logΩ ′ log B},

where c(n, g) is an effectively computable constant depending only on g and n.
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Proof See [SPTS, p. 66].

It is well known that (µ− λ)un = αλ
n + βµn with α = u0µ− u1, β = u1 − u0λ.

The ω-multiplicity therefore is the number of n ∈ N with

αλn + βµn = γ,(1)

where γ = (µ−λ)ω. For an upper bound to the number of solutions of (1) in a very
general case we refer to the paper of Beukers and Schlickewei [BS]. The crucial point
is to handle the algebraic number field case.

Lemma 2 Suppose λ, µ, α, β lie in K, with |λ| > 1, |µ| > 1, and λ/µ not a root of 1,
αβ 	= 0. Then there is an effectively computable c0 = c0(d, λ, µ) such that there is at
most one n ∈ N with

0 < |αλn + βµn| < max(|α|, |β|)
(

2 + log H(α/β)
)−c0
.(2)

Proof c1, c2, . . . will be effectively computable constants depending on d, λ, µ. We
may suppose that |α| ≤ |β| and set h = 2 + log H(α/β). Then (2) may be rewritten
as

0 < |(−α/β)1(λ/µ)n − 1| < |µ|−nh−c0 < |µ|−n.(3)

By Lemma 1,
|(−α/β)1(λ/µ)n − 1| > exp(−c1h log n).

Comparison with (3) and taking logarithms yields −c1h log n < −n log |µ|, hence
n/ log n < c2h, hence

n < c3h log h.(4)

Suppose 0 < n1 < n2 were two solutions of (2), hence of (3). When c0 ≥ 2, we
have h−c0 ≤ 1/4, and we obtain

|(λ/µ)n2−n1 − 1| < 4h−c0 .(5)

Since λ/µ is not a root of 1, the left hand side is 	= 0, so that by Lemma 1 it is

> exp
(
−c4 log(n2 − n1)

)
> exp(−c5 log h) = h−c5

by (4). Comparison with (5) gives hc0−c5 < 4, whence 2c0−c5 < 4, which is impossible
if c0 ≥ c5 + 2.

In what follows, σ will denote embeddings K ↪→ C, and for ξ ∈ K we set ξ =
maxσ |σ(ξ)|.

Lemma 3 Let γ ∈ K∗, and α, β ∈ OK . Suppose

min
σ

min
(
|σ(λ)|, |σ(µ)|

)
> 1(6)

and

max( α , β ) > c6(d, λ, µ, γ).(7)

Then the equation (1) possesses at most one solution n ∈ N.
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Proof Set m = max( α , β ), and suppose m is so large that

m

(2 + d log m)c0
> γ .

We may suppose that α ≤ β , and after an appropriate embedding we may further
suppose that β = |β|, so that m = max(|α|, |β|). Then (1) yields

|αλn + βµn| = |γ| ≤ γ <
m

(2 + d log m)c0
≤

max(|α|, |β|)(
2 + log H(α/β)

) c0
,

because log H(α/β) ≤ d log m, since α, β are in OK . According to Lemma 2, there is
at most one such n.

Proof of the Theorem

Now λ, µ are rational or are conjugate quadratics, so that min(|λ|, |µ|) > 1 yields (6).
As noted above, we are dealing with (1) where α = u0µ − u1, β = u1 − u0λ, γ =
(µ− λ)ω, so that

u0 =
α + β

λ− µ
, u1 =

λα + µβ

λ− µ
.

Since α, β ∈ OK ,

max
(

H(u0),H(u1)
)
≤ c7(λ, µ)

(
max( α , β )

) d

and therefore max
(

H(u0),H(u1)
)
> c(λ, µ, d, ω) implies (7).
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