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LEAST POSITIVE RESIDUES AND THE
QUADRATIC CHARACTER OF TWO

BY

KENNETH H. ROSEN

Let r{” be the least positive residue modulo 2k of (2j—1)h. Define u, to be
the number of r{” with 1=j=2'"k such that 2 'k <r{’ <2'k. At the Special
Session in Combinatorial Number Theory at the 1977 Summer AMS Meeting
Szekeres [2] asked for a simple proof that if (h, 2k)=1, then

z{o (mod4) if h=+1 (modS8)
“4Z12 (mod4) if h=+3 (mod 8).

Here a simple proof will be given for the following equivalent result.
Tueorem 1. If (h,2k)=1, then if t=4

={0 (mod4) if h=+1 (mod8)
“Z12 (mod4) if h=x3 (mod8).

To prove Theorem 1, one first expresses u, as a sum.

Lemma 2. If (h,2k)=1, then u,=S,—2S,, where

2t—2k . 22k .
B (21—1)h] B [(2,—1)h]
=y [ = and S,= igl % |

Si

i=1

Proof. Lemma 2 follows from the fact that the difference

=]

is zero when 0<r{”<2''k and is one when 2 'k <r{® <2'k.

The following easily verified identities are useful.

2t—1k 2t—2k

o5 [ 5 L]

j=1 ji=1

s T AT )

i=1 j=1
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To evaluate S; one uses
Lemma 3. If (m, h)=1, then
Z [_jﬁ]=h+(h—1)(m—1).

j=1Lm 2
Proof. Let {x}=x—[x]. Then
]S (i) hmen ) YL (b,

=1 lm -1 \m lm m 2 1 m 2

The second equality is true because as j runs through a full set of residues
mod m, so does jh. Lemma 3 follows by addition of h to the first and last
members of this string of equalities.

Applying Lemma 3 to (1), one concludes that
(3) S;=3(h—1)2"%k
To deal with S,, it is first necessary to prove
Lemma 4. If (h,2k)=1 and if c is a nonnegative integer, then

2¢ck . (h—=1)/2 c+17,
jh ]: _ [2 k]] . (h—l)
(4) Y [2C+‘k > — |2k 75)-

i=1 i=1

Proof. Count the number of terms of the sum on the left hand side of (4)
that equal a fixed number n. If 1=n=(h—3)/2 then n occurs exactly

[2°+1kP(ln + 1)] B [2°+h1kn]

times. The number (h —1)/2 occurs exactly

ek [2C“k(h— 1)]

2h

times. Hence

A (e e

n=1
h—-1 2°“k(h—1)]>
+—(2%k - | ———
([
(h—1)/2 2c+1k]- h_l
=- +2° .
L[5
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From (2) and Lemma 4, one obtains

h _ 1 . (h=1)/2 [2!—1kj] (h=1)/2 [ztkj]
= - =—I- .
%) S ( 2 )2 LA h ,.; h

i=1

The following classical result which is proved in Bachmann [1] relates the sums
on the right hand side of (5) to the Jacobi symbol.

Lemma 5. (h,2q) =1, then

(hg::/z [%hg!] E% ((%) _ 1) (mod 2)

where (q/h) is the Jacobi symbol.

Consequently, from (3), (5) and Lemma 5, one obtains
(6) u=S,-28,=—3h—-12%k+ [1 - <%>] (mod 4).

Theorem 1 now follows from (6), by noting that

(g)_{ 1 if h=%1 (mod8)
h -1 if h=+3 (modB8).

When t—2 or t=3 note that from (6) one can prove

Tueorem 6. If (h,2k)=1, then

0 (mod4) if h=1 (mod8), or h=3 (mod8) and k is odd,
or h=7 (mod8) and k is even
U, =
12 (mod4) if h=5 (mod8), or h=3 (mod8) and k is even,
or h=7 (mod8) and k is odd
and
0 (mod4) if =1 (mod 8)

h=1

3k+2 (mod4) if h=3 (mod8)
2k+2 (mod4) if h=5 (mod8)
k (mod4) if h=7 (modS8).

U=

NOTE ADDED ON SEPTEMBER 20, 1978. A different proof of Theorem 1 has been given by G.
Szekeres and B. Richmond in their interesting paper, The Taylor Coefficients of Certain Infinite
Products, Acta Sci. Math. Szeged 40 (1978) 347-369 as a commemorative article for Professor
Turan. Szekeres has remarked, and the author agrees, that it would be desirable to prove Theorem
1 as a consequence of Gauss’' Lemma.
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