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STABILITY ANALYSIS FROM FOURTH ORDER EVOLUTION
EQUATION FOR SMALL BUT FINITE AMPLITUDE

INTERFACIAL WAVES IN THE PRESENCE OF A BASIC
CURRENT SHEAR
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Abstract

A fourth-order nonlinear evolution equation is derived for a wave propagating at
the interface of two superposed fluids of infinite depths in the presence of a basic
current shear. On the basis of this equation a stability analysis is made for a uniform
wave train. Discussions are given for both an air-water interface and a Boussinesq
approximation. Significant deviations are noticed from the results obtained from the
third-order evolution equation, which is the nonlinear Schrodinger equation. In the
Boussinesq approximation, it has been possible to compare the present results with
the exact numerical analysis of Pullin and Grimshaw [12], and they are found to
agree rather favourably.

1. Introduction

Three-dimensional stability of finite-amplitude water waves on the surface of
deep water has been studied numerically by McLean et al. [10]. This study
reveals that there are two distinct types of instabilities for gravity waves of
finite amplitude in deep water. One is predominantly two-dimensional and is
related to all known results (for example Benjamin-Feir instability) for special
cases, and this has been designated as type-I instability. The other designated
as type-II instability is predominantly three-dimensional and becomes dominant
when wave steepness is sufficiently large.

1 Department of Mathematics, Mahishadal Raj College, Midnapore, India.
2Department of Applied Mathematics, University of Calcutta, Calcutta 700009, India.
© Australian Mathematical Society, 1994, Serial-fee code 0334-2700/94

348

https://doi.org/10.1017/S0334270000009346 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000009346


[2] Stability analysis 349

Yuen [14] has made an extension of the above-mentioned paper to the case of
interfacial waves with a current jump. The type-I instability in the particular case
of long-wavelength perturbation and small wave steepness can be investigated
analytically from the nonlinear evolution equation, which consists of a nonlinear
Schrodinger equation coupled to an equation for the wave-induced mean flow.
Such an analytical study for the stability of interfacial wave has been made by
Grimshaw and Pullin [5]. The corresponding numerical stability analysis for
finite wave length of perturbation and finite wave steepness has been carried out
in a subsequent paper by Pullin and Grimshaw [11]. Very recently, Pullin and
Grimshaw [12] have made an extension of the above two papers for interfacial
gravity waves propagating on a basic current shear, in which both analytical
and numerical results are presented. Analytical results are for long-wavelength
modulational instability of small-amplitude waves. This has been done starting
from a third-order nonlinear evolution equation for two space dimensions (i.e.
one dimension in propagation space), which is a nonlinear Schrodinger equation.
The results are presented for two superposed fluids of finite depths. The case
of infinitely deep fluids on both sides of the interface has been considered in
detail. Specific examples of air-water interface and Boussinesq approximation
have been discussed.

It has been seen that the results obtained from the lowest order nonlinear
evolution equation for a deep-water wave, which is the nonlinear Schrodinger
equation, does not agree with the exact calculations of Longuet-Higgins [8, 9]
and with the experimental results of Benjamin and Feir [1]. By taking per-
turbation analysis one step further to O(£4), where e is the order of wave
steepness, Dysthe [4] achieved a considerable improvement on the results. The
fourth-order effect gives surprising improvement compared to ordinary nonlin-
ear Schrodinger effects in many respects, and some of these points have been
elaborated by Janssen [7].

Derivation of a fourth-order nonlinear evolution equation for deep-water
surface gravity waves including different effects and stability analysis made
from them were done by several authors (Staissnie [13], Hogan [6], Dhar and
Das [3]). Regarding the stability of finite-amplitude uniform wave trains, the
dominant new effect that comes first in the fourth-order analysis, is the wave-
induced mean flow. The stability results obtained from the fourth-order nonlinear
evolution equation for wave steepness less than 0.25 are in good agreement with
Longuet-Higgins [9] and Benjamin and Feir [1].

On the other hand Brinch-Nielsen and Jonsson [2] have done a stability
analysis for a three-dimensional Stokes wave on water of finite depth, starting
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from a fourth-order evolution equation. Their study reveals that in the expression
for the growth rate of instability, no extra term arises which is responsible for
the fourth-order effect, and this is contrary to the findings of Dysthe [4] for
infinite-depth. So it is expected that for stability analysis of infinite depth fluids,
the fourth-order non-linear evolution equation is a good starting point.

Keeping this in mind, in the present paper we make a stability analysis of
interfacial gravity waves propagating on a basic current shear, for the particular
case of infinitely-deep fluids on both sides of the interface, starting from a
fourth-order nonlinear evolution equation. As has already been mentioned, this
problem has been considered by Pullin and Grimshaw [12]. They have made
both an exact numerical and an analytical study. The analytical study has been
made from the lowest-order nonlinear evolution equation. The present fourth-
order analysis shows appreciable deviation from the third-order analysis. In the
Boussinesq approximation, the maximum growth rate of instability has been
compared with the exact numerical calculations of Pullin and Grimshaw [12] in
Figure 2(b). From this it is observed that the present fourth-order analysis gives
better results (i.e. is closer to the exact numerical results) than that given by the
nonlinear Schrddinger equation.

A two-dimensional (i.e. one dimension in propagation space) fourth-order
nonlinear evolution equation is derived for an interfacial gravity wave prop-
agating on a basic current shear for the case of infinitely deep fluids on both
sides of the interface. From this nonlinear evolution equation, a nonlinear
dispersion relation is determined, and an expression for the maximum growth
rate of instability is obtained. Graphs are plotted showing the maximum growth
rate of instability against wave steepness for both an air-water interface and
a Boussinesq approximation. It is observed that in the fourth-order analysis,
the maximum growth rate of instability first increases with the increase of
wave steepness and then it decreases, while in the third-order analysis, the
growth rate increases steadily with the increase of wave steepness. Stable and
unstable regions in r)o-X space {t]o is wave steepness and X is wave number of
perturbation) are shown in the figures for both air-water interface and Boussinesq
approximation.

2. Basic equations

We take the y = 0 plane as the interface between two superposed inviscid
fluids in the undisturbed state. Each fluid has a basic current, which has uniform
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vorticity fii and £22 respectively corresponding to a basic horizontal current
in the ;c-direction, —£2\y and — £l2y respectively. We take v = r)(x, t) as the
equation of the common interface at any time t in the perturbed state. Let
(p*, <p*', **, **', rj*, (x*, v*), t*, Sl*lt S21, y* be the dimensionless quantities
denoting respectively perturbed velocity potentials of the lower and upper fluids,
perturbed stream function of the lower and upper fluids, surface elevation of
the common interface, space co-ordinates, time, current shear of the upper
and lower fluids, and ratio of densities of the upper and lower fluids. These
dimensionless quantities are related to the corresponding dimensional quantities
denoted without a star by the following relations

<P = ( — I ip.

(1)
1/2

\kogj

- Pl/P2,

where k0 is some characteristic wavenumber. In future, all these dimensionless
quantities will be written with their stars dropped.

The perturbed velocity potentials ip, tp' and stream functions * , * ' of the lower
and upper fluids satisfy the following two-dimensional Laplace's equation

V2<p = 0, V2* = 0 , in - 00 < y < r\, (2)

V V = 0, V2*' = 0, in rj < v < 00. (3)

The boundary conditions to be satisfied at the interface are

dip dr) (dip \ dr)
= | £22*7 I — , when v = n, (4)

dy dt \dx ) dx
dip' dr) _ (dip' \dr) _

~dy ~Tt' ~ \~dx ' 7 ~dx' w e n y ~ *'

dip
TT + V
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when y = r]. (6)

We also have

dip o^f o(p ovl/ ocp aw d(p o^V

dx dy ' dy dx' dx dy ' 3y dx

Finally (p, <p', ty, * ' should satisfy the following conditions at infinity

(p, V —>• 0 as y ->• - c o ; <p', ^ ' ->• 0 as y -> oo. (8)

We look for solutions of the above equations in the form

oo

G = Go + 2_. \pn exp in(kx — cot) + 0* exp —in{kx — cot)], (9)

where G stands for <p, <p', * , * ' , ?7 and a star denotes the complex conjugate.
Here it is assumed that <p0, <p'o, <pn, <p'n, * o , Wo, *„ , Vn and their complex
conjugates are functions of x\, y, t\, where X\ — ex, t\ = st, while r)o, rjn, r)*
are functions of X\, t\ only. Here e is a slowness parameter, and to, k satisfy the
following linear dispersion relation:

x(co, k) = (l + YW + (yto\ - ^2)^ - (i - y)k = 0. (10)

We now suppose that the first harmonic linear wave whose nonlinear evolution
equation we are going to study, has as its wave number ko, the characteristic
wave number. So we have k = 1 in (10) and the linear dispersion relation
determining co becomes

(1 + y)co2 - Qco - (1 - y) = 0, (11)

where Q = £22~ Y&\- This equation gives two values of co, given by

o>± = - I G ± V^ 2 + 4(1 - K2) I • (1 + y) , (12)

which correspond to two modes, and we designate these two modes as positive
and negative modes. The positive mode moves along the positive direction of
*-axis with a frequency equal to

1
I y __ , ^\1
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while the negative mode moves along the negative direction of x-axis with a
frequency equal to

-Yi) - n]

If Q is replaced by — Q the frequency of the positive mode becomes equal to
the frequency of the negative mode. So the results for the negative mode can
be obtained from those for the positive mode by replacing Q, by — £1. Therefore
we have made a nonlinear analysis for positive mode only.

3. Evolution equation

By a standard procedure as outlined in Appendix A, we find that r\ = r)U+er}l2

satisfies the fourth-order evolution equation

(13)
where the coefficients /3i, Pi, Au A2, A3, A4 are given in Appendix B, and
where

2 dco
£ = e(x — cet), x = e t, Co = —-r (14)

and H is the Hilbert transform given by

1 f°° $!(£')
/ / (*) = -P -y^-d^'. (15)

4. Stability analysis

The equation (13) admits a Stokes wave-solution

rj = -jjoexp(/Aa)T), (16)

where rj0 is a real constant and the nonlinear frequency shift Aa; is given by

= - - I J ? A I . (17)
4

https://doi.org/10.1017/S0334270000009346 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000009346
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To study modulational instability of this uniform wave train, we introduce
the following perturbation in the uniform solution

r) = -r)0(l + ti')txpi(6' + A(oz), (18)

where r\' and 9' are small perturbations in amplitude and phase respectively, and
are real.

Substituting (18) in the evolution equation (13) and then following the proced-
ure as given in Appendix C, we arrive at the following dispersion relation, that
includes the effect of weak nonlinearity. Here it is assumed that the space-time
dependence of r)', 9' is of the form exp i {k% — v'x).

where

Px = v - cgX - /32A
3, P2 = plX

2 and v = v' + cgX. (20)

From (19) it follows that for instability we must have

Ai

and if this condition is met, then the maximum growth rate yM is given by

(22)
4

For y - 0, Qi = Q2 = 0, (22) reduces to (3.10) of Dysthe [4]. At marginal
stability we have

and this gives the following expression for k at marginal stability.

A. = idl--fe4i= • /-^. (24)

For the positive mode in the case of the air-water interface, the maximum
growth rate of instability yM given by (22) has been plotted in Figure l(a)
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against wave-steepness r\0, for some different values of Q\ with Q2 = 0. The
same growth rate for some different values of £22 with Qi = 0 has been plotted
in Figure l(b). From these figures, it is seen that yM first increases with the
increase of t]o and then its value decreases, while the growth rate obtained from
the third-order evolution equation increases steadily with the increase of r\0.

For the positive mode and for a Boussinesq approximation (y = 1), the
growth rate yM has been plotted in Figure 2(a) against wave-steepness rj0, for
some different values of fij with £22 = 0- To compare our results with the
exact numerical calculations of Pullin and Grimshaw [12] in the case of the
Boussinesq approximation, we have shown in Figure 2(b) the plots of the ratios
of maximum growth rate of instability and the square of wave steepness y ^ / ^
as obtained from the lowest-order evolution equation, fourth-order evolution
equation, and from the exact numerical analysis, against fii with Q2 = 0, for
some different values of wave-steepness r)0. This figure shows fairly good
agreement between the results obtained from the present fourth-order analysis
and the results obtained from the exact numerical calculations of Pullin and
Grimshaw [12].

For the positive mode in the case of an air-water interface, the wave number
X at marginal stability given by (24) has been plotted in Figure 3(a), against
wave-steepness r\o for some different values of Q.\ with ft2 = 0, and hence this
gives the stable-unstable region in the A.fjo-plane. The same A. for some different
values of £22 with Sl\ = 0 has been plotted in Figure 3(b). From these two
figures, it is seen that for any particular value of the pair {r)0, X) there exists
a critical value £2ic of Q{ when £22 = 0, and a critical value Q^ of Q2 when
fii = 0, such that there is instability when \Qi\ > |£2ic|, (fi2 = 0) and when

^2 > &2c, (^1 = 0).
For the positive mode in the Boussinesq approximation (y = 1), the wave

number k at marginal stability given by (24) has been plotted in Figure 4 for
some different values of Q\ with Q2 = 0. From this figure it is seen that for any
particular value of the pair {t)0, X), there exists a critical value £lic of £2i when
£22 = 0 such that there is instability when |S2i | < |flic|, (S22 = 0).

5. Conclusion

In this paper we have studied analytically, starting from a fourth-order non-
linear evolution equation, the stability of a uniform wave train propagating at
the interface of two fluids extending to infinity on both sides of the interface
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FIGURE 1. One-dimensional modulational instability, y = 0.0012.
(a) ft2 = 0. Maximum growth rate yM against wave steepness r\o.
(b) Q\ = 0. Maximum growth rate yM against wave steepness r\o.
J2, positive: (dashed line), Third-order result, (solid line) Fourth-order result;
Qi negative: (dotted line), Third-order result, (chain-dotted line), Fourth-order result (/ = 1,2).
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= 0.FIGURE 2. One-dimensional modulational stability, y £ 1,
(a) Maximum growth rate yu against wave steepness r)0.
Qi positive: (dashed line), Third-order result, (solid line) Fourth-order result;
Qi negative: (dotted line), Third-order result, (chain-dotted line), Fourth-order result (/ = 1,2).
(b) Yinhl against Sit. (solid line) Third-order result, (chain-dotted line) Fourth-order result,
(dashed line) Numerical result.
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FIGURE 3. One-dimensional modulational instability, y = 0.0012.

(a) S22 = 0. Perturbed wave number X at marginal stability against wave steepness riJt
(b) J2i = 0. Perturbed wave number A. at marginal stability against wave steepness j)o.
Q,j positive: (dashed line), Third-order result, (solid line) Fourth-order result;
Qj negative: (dotted line), Third-order result, (chain-dotted line), Fourth-order result (/ = 1,2).
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..--a.-*

FIGURE 4. One-dimensional modulational instability y = 1, f22 = 0. Perturbed wave number
X at marginal stability against wave steepness IJO.
n,- positive: (dashed line), Third-order result, (solid line) Fourth-order result;
Q, negative: (dotted line), Third-order result, (chain-dotted line), Fourth-order result (i = 1,2).

in the presence of a basic current shear. The reason for starting from a fourth-
order nonlinear evolution equation is that the investigations of Dysthe [4] and
Brinch-Nielsen and Jonsson [2] reveal that for infinite-depth fluids, the fourth-
order nonlinear evolution equation gives results consistent with the exact results
of Longuet-Higgins [8, 9] and experimental results of Benjamin and Feir [1]
for wave steepness up to 0.25. In the case of the Boussinesq approximation,
it has been possible to compare our results with the exact results of Pullin and
Grimshaw [12], and we find that the results from the fourth-order nonlinear
evolution equation give much better results than those given by the third-order
(lowest order) evolution equation, which is the nonlinear Schrodinger equation.
All the present results show marked deviation from the results obtained from
the third-order evolution equation.
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Appendix A

On substituting the expansions (9) in (2) and (3), and then equating coeffi-
cients of expin(x — cot), (n = 1, 2) we get the following equations

1^

dy
- A > : = o,

- A^4/n = 0,

X' (A-2)9
where Afl is an operator given by

An=n-ie — , (n = l,2). (A.3)
dxi

The solution of these equations satisfying the boundary conditions (8) can be
put in the form

cpn=exp(yAn)An, cp'n = exp(-yAn)A'n, (A.4)

*n=exp(>-An)fin, V'n=exp(-yAn)B'n, (A.5)

where An, Bn, A'n, B'n, (n = 1, 2) are functions of xu t\.
For the sake of convenience we take the Fourier transform of (2) and (3) for

n = 0. The solution of these transformed equations becomes

<po = Aoexp(\kx\y), <p'0 = A'oexp{-\kx\y), (A.6)

\kx\y), (A.7)

where cp0, (f>'o, tyo, Vo, are Fourier transforms of <po, (p'o, * o , Vo respectively
defined by

fa, cp'o, * o , V'o)= £ I (<p0, <p'o, * o , V'o) exp i(kxxi - cvti) dxx dtx (A.8)
J J —00

and Ao, A'o, Bo, B'o are functions of kx, co.
On substituting the expansions (9) in the Taylor-expanded form of equations

(4)-(6) about y = 0 and then equating coefficients of expin(x — cot) for n =
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0,1,2 on both sides, we get three sets of equations, in each of which we
substitute the solutions for <pn, <p'n, *„, Vn given by (A.4)-(A.7). For the sake of
convenience, we take the Fourier transform of the set of equations corresponding
to n = 0 . The set of equations corresponding to n = 1,2,0 has been designated
respectively as the first, second and third set. To solve these three sets of
equations, we make the following perturbation expansion of the quantities An,
A'n,Bn,B'n,rln,(n= 0 , 1 , 2 ) .

£mn, ( m = 0 , 2 ) , (A.9)
n=\ n=2

where Ej stands for Ah A'j, Bh B-, r)j, (j = 0, 1, 2).
On substituting the expansions (A.9) in the above three sets of equations, and

then equating various powers of £ on both sides we get a sequence of equations.
From the first-order (i.e. lowest-order) and second-order equations corres-

ponding to the first set of equations resulting from (4) and (5), we get solutions
for An, A'u and Al2, A'n respectively. Next, from the first-order and second-
order equations corresponding to the second set of equations resulting from
(4)-(6), we get solutions for A22, A'22, r\22 and /423, A'23, 7j23 respectively. Finally,
from the first-order equations corresponding to the third set of equations result-
ing from (4)-(6), we get the solutions for A02, A'O2, r)02, and from the second-order
equations corresponding to the third set of equations resulting from (6), we get
solution for rjOi.

The equation corresponding to (6) of the first set of equations, which has not
been used in getting the above perturbation solutions, can be put in the following
convenient form after eliminating A\, A\ B\, B\.

+w')bx +k'c^ - ylc'du (A.10)

where

co' = co + i e — , k' = l - i e (A.ll)

and a\,b\,C\, d\ are contributions from nonlinear terms.
We keep terms up to e4 in (A. 10) and then substitute solutions for various

perturbed quantities appearing on its right hand side, and finally using the
transformations,

f = j r , - c , f i , r=etu (A.12)

and writing r) = r)u + erj12 we arrive at the fourth-order nonlinear evolution
equation (13).
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Appendix B

1 dcg 1 -\dcg
A = S~2d*f f}2=

2"
CgkuMK~dk'

A, = Sj/Xu, A2 = (84 - cgS2 + 2SiCgk~lXUM)/Xm,

A3 = (<55 — Cg8-i + SiCgk^X^/X,,, A4 = S6/Xu,

where 5, 's are given by

-y)- AayiyQ, + fi2) - (yQ2 2]- Q2
2)]

[l-K-c^y^,-

82 = 2oT2(l + y)-2\2o)2{\ -y)-

I ( 1 -

y) +

)2(l - y) -

y)a> - ()/«, + £22)

12a; 2 -

y) + 2(yJ2! + n2) 2w(yfi, + «2) + yfi2 - fi2)

- <u) • 2(o(yQi + fi2) + yfi2 - fi2.
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= \y(co + G,) + («2 - (o)\\ 2<y(yfi, + £22) + yft2 - Q2
2)

oT2(l + K) - 1 ^ ( l - y) -

4a>2(l + y)

- y) -

| 2 ( l - y) -

S6 = I y(2w +

+(2<y

+ «,) (1 - y)(2o» + Qi)n2cf (4a> + S2t - S22)

- «2) (1 - y)(2a> - Q2) - (4<w + fi, - S22)yQiC£ !

• l - y - C g ( y £ 2 i - n 2 ) •

yi appearing in the expressions for S4 and 5s is given by

Yx = I 2<o(yQi + «2) + (yfi2 - fi2) 1 | 1 - y - c,(y 1

+wI y (1 - y)(2w + «,) + (4w + J2, - n2)fi2

+(1 - y)(2(o - n2) - (4<w
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(1 - y)(2co - Q2)

-v[(l-,)(2.H

Appendix C

Das

•^\ - y - cg(yQl - i

-«»+ * - * » * * .

1- fii) + (4co + Q\ — Q2)

• 1 — y — cs(yQi — i

[17]

-i-i

Q2cA

)
-1 -2

Inserting (18) in the evolution equation (13), and linearising with respect to
r\' and 9', we get the following equations:

^ ^ - = O , (C.I)
04;

(C.2)

where

Now if we suppose that r-dependence of r\' and 9' is of the form exp(-/i/r),
then (C.I), (C.2) remain the same as before but P} now stands for

Next, taking the Fourier transform of (C.I), (C.2), with respect to f denned
by

1 r°°
(C.5)

we get two linear algebraic equations for 9' and fj'. The condition for the
existence of a nontrivial solution of these two equations gives the dispersion
relation (19).
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