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Abstract

As proposed by Irle and Gani in 2001, a process X is said to be slower in level crossing
than a process Y if it takes X stochastically longer to exceed any given level than it does Y .
In this paper, we extend a result of Irle (2003), relative to the level crossing ordering of
uniformizable skip-free-to-the-right continuous-time Markov chains, to derive a new set
of sufficient conditions for the level crossing ordering of these processes. We apply our
findings to birth–death processes with and without catastrophes, and M/M/s/c systems.

Keywords: Birth–death process with catastrophe; continuous-time Markov chain; level
crossing ordering; M/M/s/c system; stochastic ordering

2000 Mathematics Subject Classification: Primary 60E15; 60J27
Secondary 60J80; 60K25

1. Introduction

In this paper, we consider the level crossing ordering of stochastic processes proposed by
Irle and Gani [6]. A process X is said to be slower in level crossing than a process Y if it takes
X stochastically longer to exceed any given level than it does Y , with the random variables
being compared through the usual stochastic order (in distribution).

Irle and Gani [6] showed that the ordering in distribution of the transition probabilities
of skip-free-to-the-right discrete-time Markov chains (DTMCs) for any common initial state
(which does not guarantee the usual stochastic ordering of the respective DTMCs) implies the
level crossing ordering of the DTMCs. Later, the analysis was extended (see [5]) to semi-
Markov processes (SMPs) and a set of sufficient conditions for the level crossing ordering of
skip-free-to-the-right SMPs was derived (see [5, Theorem 2.1]), whose translation for skip-
free-to-the-right continuous-time Markov chains (CTMCs) X(1) and X(2) is as follows:

(a) The transition probabilities of the embedded DTMCs (at transition epochs) associated to
X(1) and X(2) are ordered, in distribution, for any common initial state.

(b) The transition rates from states are smaller in X(1) than in X(2).

Accordingly, we call these Irle’s (set of sufficient) conditions for the level crossing ordering of
skip-free-to-the-right CTMCs.
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Level crossing ordering 53

In this paper, we essentially show that if X(1) and X(2) are two uniformizable (see [10]) skip-
free-to-the-right CTMCs with (infinitesimal) generator matrices Q(1) and Q(2), respectively,
and if there exists a positive real constant α ∈ (0, 1] such that

∑
j≥k

q
(1)
ij ≤ α

∑
j≥k

q
(2)
ij for all i and k, (1)

where q
(k)
ij , k = 1, 2, are the entries of Q(k), then X(1) is slower in level crossing than X(2).

This result extends [5, Corollary 2.1], which established the same conclusion for α = 1. The
set of conditions given by (1), with α = 1, constitutes a relaxation of Kirstein’s [7] sufficient
conditions, i.e. ∑

j≥k

q
(1)
ij ≤

∑
j≥k

q
(2)
mj for all i ≤ m and k ≤ i or k > m, (2)

for X(1) to be stochastically smaller than X(2) in the usual sense if their initial distributions are
ordered in the same way, where the CTMCs do not need to be either uniformizable or skip-free
to the right.

The sufficient conditions (1) for the level crossing ordering of uniformizable skip-free-to-the-
right CTMCs may lead to positive conclusions in situations where some of Kirstein’s conditions
(2) and Irle’s conditions ((a) and (b), above) do not hold. They constitute a relevant addition to
Irle’s conditions, to compare uniformizable skip-free-to-the-right CTMCs in the sense of level
crossing ordering, and are easier to check than Irle’s.

Following works related to the growth of populations subject to catastrophes (see, for
example, [1], [2], [3], and references therein), we illustrate the use of (1) for the level crossing
ordering of uniformizable skip-free-to-the-right CTMCs by comparing birth–death processes
with catastrophes (BDC processes).

We end this introduction with a brief outline of the paper. In Section 2, we introduce a
few definitions and provide some relevant preliminary results and notation. In Section 3, we
establish the main result of the paper on the level crossing ordering of skip-free-to-the-right
CTMCs and, in Section 4, illustrate its application to BDC processes and, in particular, birth–
death processes and M/M/s/c systems.

2. Preliminaries

In this section, we provide the definition of level crossing ordering of stochastic processes,
as proposed in [6], state an important property of this stochastic order relative to time-clock
changes, and introduce some notation that is used throughout the paper.

We next introduce notation for the hitting time of a set by a stochastic process and recall
the definition of the usual order (in distribution) for random variables, ≤st. These are used
in the subsequent definition of level crossing ordering of stochastic processes. We let N =
{0, 1, 2, . . .}, N+ = {1, 2, . . .}, R+ = [0, +∞), and let I denote a countable ordered set. If I is
order-isomorphic to a bounded or unbounded interval of Z, we let I = I \ {sup I }. Moreover,
we use the convention that inf ∅ = ∞.

Given a stochastic process X = (X(t))t∈R+ , taking values in I , and any two states i and
l, we let SX

i,l denote the hitting time by X of the set of values greater than or equal to l, when
departing from state i, i.e.

SX
i,l = [inf{t ∈ R+ : X(t) ≥ l} | X(0) = i].
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54 F. FERREIRA AND A. PACHECO

We recall that if Y and Z are random variables taking values in I , then Y is stochastically
smaller than Z in the usual sense, i.e. Y ≤st Z, if P(Y ≤ i) ≥ P(Z ≤ i) for all i ∈ I (see, for
example, [9] and [11]). Similarly, if p = (pi)i∈I and q = (qi)i∈I are two probability vectors,
then we write p ≤st q if

∑
i≤j pi ≥ ∑

i≤j qi for all j ∈ I . Thus, if the random variables Y

and Z, taking values in I , have probability vectors p and q, respectively, then Y ≤st Z if and
only if p ≤st q.

Definition 1. Given two stochastic processes Y = (Y (t))t∈R+ and Z = (Z(t))t∈R+ with
common ordered state space I , the process Y is said to be (stochastically) slower in level
crossing than Z, denoted by Y ≤lc Z, if SZ

i,l ≤st SY
i,l for all i, l ∈ I .

We next introduce the definition of a time-clock speed change of a stochastic process,
followed by the result that stochastic processes are stochastically monotone increasing, in
the sense of level crossing ordering, with respect to time-clock speed.

Definition 2. Given a stochastic process X = (X(t))t∈R+ and a positive real constant α, we
let Xα = (Xα(t))t∈R+ , where Xα(t) = X(αt) for t ∈ R+, denote the time-clock speed change
of X by a factor of α.

If 0 < α < 1 then Xα is a time dilation of X, and if α > 1 then Xα is a time contraction
of X. Note that X1 = X and (Xα)β = (Xβ)α = Xαβ, for all α, β > 0, meaning that the
time-clock speed change operation is both associative and commutative.

Theorem 1. Given a stochastic process X = (X(t))t∈R+ with ordered state space, the
α-parametrized family of processes {Xα, α > 0} is stochastically increasing in the sense of
level crossing ordering, i.e. Xα1 ≤lc Xα2 for all α1 ≤ α2.

Proof. Let X = (X(t))t∈R+ be a stochastic process with ordered state space I . From the
definition of time-clock speed change, it follows that X(t) = Xα(α−1t), for all α > 0 and
t ∈ R+, thus implying that S

Xα

i,l = α−1SX
i,l for all i, l ∈ I and α > 0. Thus, for 0 < α1 ≤ α2,

S
Xα1
i,l = α1

−1SX
i,l ≥ α2

−1SX
i,l = S

Xα2
i,l for all i, l ∈ I . Therefore, Xα1 ≤lc Xα2 as required.

In the paper, we address uniformizable and lower-uniformizable skip-free-to-the-right
CTMCs. Following [10], we say that a CTMC X with ordered state space I and generator matrix
Q is uniformizable if supi∈I

∑
j �=i qij < ∞. Similarly, we say that X is lower-uniformizable

if supi≤l

∑
j �=i qij < ∞ for all l ∈ I . In addition, if I is order-isomorphic to some bounded

or unbounded interval of Z, then X is said to be skip-free to the right if it almost surely does
not have jumps up more than one level, i.e. qij = 0 whenever j > i + 1. Moreover, if X

has ordered state space, then X is uniformizable, lower-uniformizable, or skip-free to the right
if and only if the CTMC Xα is uniformizable, lower-uniformizable, or skip-free to the right,
respectively.

We end the section with some notation and definitions. If a = (ai)i∈I and b = (bi)i∈I are
two vectors, we say that a ≤ b if and only if ai ≤ bi for all i ∈ I . Moreover, given a stochastic
matrix A = (aik)i,k∈I , we let Ai· = (aij )j∈I denote the probability row vector containing row
i of A, i ∈ I , and let A = (aik)i,k∈I denote the matrix of the left-partial-row sums of A, i.e.
aik = ∑

j≤k aij . In addition, we let δab denote the Kronecker delta function, i.e. δab = 1 when
a = b and δab = 0 otherwise. Finally, we let 1A denote the indicator function of statement A,
i.e. 1A = 1 if A is true and 1A = 0 otherwise.
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3. Uniformizable skip-free-to-the-right continuous-time Markov chains

Irle [5] investigated sufficient conditions for the level crossing ordering of uniformizable
skip-free-to-the-right CTMCs and derived, in his Corollary 2.1, essentially the set of conditions
(3) given in the next result, with the constant α taking the value 1.

Theorem 2. Let X(1) and X(2) be two lower-uniformizable skip-free-to-the-right CTMCs with
common ordered state space I , order-isomorphic to some bounded or unbounded interval of
Z, with generator matrices Q(1) and Q(2), respectively.

Then, X(1) ≤lc X(2) provided that there exists a constant α ∈ (0, 1] such that∑
j≥k

q
(1)
ij ≤ α

∑
j≥k

q
(2)
ij for all i ∈ I and k ∈ I (3)

or, equivalently,

q
(1)
i,i+1 ≤ αq

(2)
i,i+1 for all i ∈ I , (4)∑

j≤k

q
(1)
ij ≥ α

∑
j≤k

q
(2)
ij for all i ∈ I and k < i. (5)

Proof. Let X(1) and X(2) be as stated. Now, if α ∈ (0, 1] denotes a constant such that (3)

holds, and we let QX
(2)
α = αQ(2) denote the generator matrix of the CTMC X

(2)
α , then, as

SX(1)

sup I,l = SX(2)

sup I,l = 0 for all l ∈ I , where sup I < ∞, and

∑
j≥k

q
(1)
ij ≤ α

∑
j≥k

q
(2)
ij =

∑
j≥k

q
X

(2)
α

ij for all i ∈ I and k ∈ I ,

it follows that X(1) ≤lc X
(2)
α , in view of [5, Corollary 2.1]. Since, in addition, α ∈ (0, 1],

we conclude, using Theorem 1, that X(1) ≤lc X
(2)
α ≤lc X(2). From the transitivity of the level

crossing ordering, it then follows that X(1) ≤lc X(2). As∑
j≥k

q
(s)
ij = −

∑
j<k

q
(s)
ij 1{k≤i} +q

(s)
i,i+1δk,i+1, (6)

the set of conditions ((4), (5)) is equivalent to (3), which concludes the proof.

Theorem 2 constitutes a simple but rich extension of [5, Corollary 2.1], as it greatly relaxes
the sufficient conditions set forth in that result. An alternative proof of Theorem 2, which
does not use Theorem 1, is based on an approach similar to the one used in the proof of
[5, Corollary 2.1]. However, instead of uniformizing the processes X(1) and X(2) with the
same uniformization rate, as done in [5], we would uniformize X(1) and X(2) with two possibly
different uniformization rates α(1) and α(2), respectively, such that α = α(1)/α(2) ≤ 1.

We next give a result that provides sufficient conditions for the usual stochastic ordering of
skip-free-to-the-right CTMCs. We recall that, given two random vectors Y = (Y1, Y2, . . . , Yn)

and Z = (Z1, Z2, . . . , Zn), whose components take values in an ordered set I , the vector Y is
smaller in the usual sense than Z, written Y ≤st Z, if P(Y ∈ U) ≤ P(Z ∈ U) for all upper sets U

of In. Note that U is an upper set of In if x ≤ y, for some x ∈ U , implies that y ∈ U . Moreover,
given two stochastic processes Y = (Y (t))t∈R+ and Z = (Z(t))t∈R+ with common ordered
state space I , the process Y is said to be strictly smaller (in the usual sense) than Z, denoted
Y ≤st Z, if for any n ∈ N+ and t1, t2, . . . , tn ∈ R+, (Y (tk))k=1,2,...,n ≤st (Z(tk))k=1,2,...,n.

See, for example, [8] and [11] for more details on the usual stochastic ordering.
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Lemma 1. Let X(1) and X(2) be two skip-free-to-the-right CTMCs with common ordered
state space I , order-isomorphic to some bounded or unbounded interval of Z, with generator
matrices Q(1) and Q(2), respectively.

Then, X(1) ≤st X(2) provided that X(1)(0) ≤st X(2)(0) and

q
(1)
i,i+1 ≤ q

(2)
i,i+1 for all i ∈ I , (7)∑

j≤k

q
(1)
ij ≥

∑
j≤k

q
(2)
mj for all k < i ≤ m. (8)

Proof. For s = 1, 2, let X(s) be as stated and let Q(s) denote the generator matrix of
X(s). From, for example, [9, Theorem 5.2.19(a)] or [8, Theorem 6.29], it follows that if
X(1)(0) ≤st X(2)(0) and the set of conditions (2) holds, then X(1) ≤st X(2). Thus, since the set
of conditions ((7), (8)) is equivalent to (2) (from (6)), the result follows.

Although the usual stochastic ordering of CTMCs implies the corresponding level crossing
ordering, the converse is not true. In fact, conditions (8), which are used to establish the usual
stochastic ordering of skip-free-to-the-right CTMCs, are much more involved than conditions
(5), which are used to establish the corresponding level crossing ordering. In order to have the
CTMCs ordered in the usual sense, over and above the simple validity of the conditions (4) and
(5) with α = 1, the sufficient conditions derived in Lemma 1 require an inequality between
left-row sums for different rows of the generator matrices associated to the two CTMCs being
compared.

In this respect, Irle and Gani [6, Theorem 4.1] showed that the ordering in distribution of the
transition probabilities of two skip-free-to-the-right DTMCs (which can be viewed as SMPs
with unitary times between consecutive transitions), for any common initial state, is sufficient
to guarantee the corresponding level crossing ordering. Moreover, Irle [5, Theorem 2.1]
established that the ordering in distribution of the transition probabilities, for any common
initial state, along with the inverse ordering of the holding times between transitions, guarantees
the level crossing ordering of skip-free-to-the-right SMPs.

We recall that a skip-free-to-the-right CTMC X, with state space I and generator matrix
Q, may be interpreted as an SMP that has holding times in state i exponentially distributed
with rate qi = ∑

j �=i qij , irrespective of the state visited at the next transition, and one-step
embedded transition probability matrix P = (pij )i,j∈I such that pij = qij /qi if qi > 0 and
pij = δij if qi = 0. By taking into account [5, Remark 2.2], the translation of [5, Theorem 2.1]
for skip-free-to-the-right CTMCs leads to the following result.

Lemma 2. Let X(1) and X(2) be two lower-uniformizable skip-free-to-the-right CTMCs with
common ordered state space I , order-isomorphic to some bounded or unbounded interval of
Z; have vectors q(1) and q(2) of transition rates from states, respectively; and have one-step
embedded transition probability matrices P (1) and P (2), respectively. If

q
(1)
i ≤ q

(2)
i and P

(1)
i· ≤st P

(2)
i· , for all i ∈ I , (9)

then X(1) ≤lc X(2).

We next present an example of two skip-free-to-the-right CTMCs that satisfy either con-
ditions (3) or ((4), (5)) (sufficient for their level crossing ordering) but do not satisfy either
((7), (8)) or (9). The CTMCs in the example are Poisson shock models with exponential total
repair (see, for example, [12]). That is, each of these processes is a CTMC, with state space N,
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that counts the number of faults in a device subjected to unitary random shocks, occurring
as a Poisson process with rate modulated by the state of the process. Each CTMC also has
instantaneous exponential total repairs, with rate modulated by the state of the process; thus,
its infinitesimal rates are of the form qij = λiδj,i+1 + υi 1{j=0,i>0} for i �= j , with λi (υi)
denoting the shock (total repair) rate when the device has i faults.

Example 1. For r = 1, 2, let X(r) be a Poisson shock model with exponential total repair, hav-
ing shock rates λ

(r)
i = λ(r) and total repair rates υ

(r)
i = λ(r) + β(r) 1{i≥a}, with β(1), β(2) > 0

and a ≥ 2, such that

λ(1) < λ(2) < λ(1) + 1
2 (β(1) − β(2)).

4. Birth–death processes with catastrophes

In this section, we apply the results obtained in the previous section to BDC processes (see
[1], [2], and [3]) to derive sets of sufficient conditions for the level crossing ordering of such
processes. We note that any skip-free-to-the-right CTMC on a subset of N may be interpreted
as a BDC process describing the time evolution of the number of entities (individuals in a
population, failures in a device, etc.).

Definition 3. Let I be a subset of N; let λ = (λi)i∈I , µ = (µi)i∈I , and β = (βi)i∈I be
nonnegative vectors such that λsup I = 0 if I is bounded above, µinf I = 0, and βinf I = 0; and
let C = (cij )i,j∈I be a lower-triangular stochastic matrix.

Then, a process X = (X(t))t∈R+ is a (I, λ, µ, β, C) BDC process if it is a skip-free-to-the-
right CTMC with state space I and generator matrix Q = (qij )i,j∈I , where

qij = βicij + µiδj,i−1 + λiδj,i+1, i �= j. (10)

The usual interpretation of the parameters of a BDC process is as follows: λi , µi , and
βi are, respectively, the birth, death, and catastrophe rates of X in state i. Moreover, C is
the catastrophe probability matrix and cij denotes the probability that state j results from a
catastrophe taking place in state i.

Important types of catastrophe families are described, for example, in [1] and [3]. These
include binomial(p), where 0 ≤ p ≤ 1; geometric(p), where 0 ≤ p ≤ 1; uniform;
deterministic(f ), where f = (fi)i∈I is a vector such that fi ≤ i for all i ∈ I ; and total.
Some details on the catastrophe probability matrices associated with each of these types of
catastrophe families are given in Table 1. In the following, we do not distinguish between
the type of catastrophe and the associated catastrophe probability matrix; thus we write, for

Table 1: Important types of catastrophe families. Here, cij are the entries of the catastrophe probability
matrix C.

Type of catastrophe cij , 0 ≤ j ≤ i cik , 0 ≤ k ≤ i

binomial(p), p ∈ [0, 1] (
i
j

)
pi−j (1 − p)j

∑k
j=0

(
i
j

)
pi−j (1 − p)j

geometric(p), p ∈ [0, 1] piδj0 + (1 − p)pi−j 1{j>0} pi−k

uniform 1/(i + 1) (k + 1)/(i + 1)

deterministic(f ), 0 ≤ fi ≤ i δjfi
1{k≥fi }

total δj0 1
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Table 2: Some ordering relations associated to catastrophe probability matrices.

C(1) C(2) C
(1)
i· ≤st C

(2)
i· C(1) ≤K C(2)

binomial(p1) binomial(p2) p1 ≥ p2 p1 ≥ p2
geometric(p1) geometric(p2) p1 ≥ p2 p1 ≥ p2
binomial(p1) geometric(p2) p1 ≥ p2 p1 ≥ p2
uniform uniform yes yes

deterministic(f (1)) deterministic(f (2)) f (1) ≤ f (2) f
(1)
i ≤ f

(2)
m , i ≤ m

total arbitrary yes yes

example, C = binomial(p) whenever C is the catastrophe probability matrix of binomial(p)

catastrophes.
We next apply Theorem 2 to compare BDC processes in level crossing. We recall that, with

I being a set of natural numbers, a stochastic matrix A = (aik)i,k∈I is stochastically smaller,
in the sense of Kalmykov order, than the stochastic matrix B = (bik)i,k∈I if Ai· ≤st Bm· for
all i, m ∈ I such that i ≤ m (see, for example, [8, p. 148, Definition 3.16]). This is written as
A ≤K B.

Theorem 3. Let I be a subset of N, and let X(r) be a (I, λ(r), µ(r), β(r), C(r)) BDC process
for r = 1, 2. Then we obtain

(i) X(1) ≤lc X(2) provided that, for some α ∈ (0, 1], the following conditions hold:

λ
(1)
i ≤ αλ

(2)
i ∧ µ

(1)
i ≥ αµ

(2)
i ∧ β

(1)
i ≥ αβ

(2)
i for all i ∈ I , (11)

C
(1)
i· ≤st C

(2)
i· for all i ∈ I ; (12)

(ii) X(1) ≤st X(2) provided that the following conditions hold:

λ
(1)
j ≤ λ

(2)
j ∧ µ

(1)
i ≥ µ(2)

m ∧ β
(1)
i ≥ β(2)

m for all j and i ≤ m,

C(1) ≤K C(2). (13)

Proof. Let X(1) and X(2) be as stated. We note that, in view of (10), the conditions ((4),
(5)), applied to X(1) and X(2), are equivalent to

λ
(1)
i ≤ αλ

(2)
i ∧ µ

(1)
i δi−1,k + β

(1)
i c

(1)
ik ≥ α(µ

(2)
i δi−1,k + β

(2)
i c

(2)
ik ) (14)

for all i ∈ I and k < i. Moreover, as

C
(1)
i· ≤st C

(2)
i· ⇔ c

(1)
ik ≥ c

(2)
ik for all i ∈ I and all k < i,

we conclude that if there exists α ∈ (0, 1] such that (11) and (12) hold, then (14) holds for all
i ∈ I and k < i and, in view of Theorem 2, it follows that X(1) ≤lc X(2).

The second statement follows similarly, using the fact that C(1) ≤K C(2) if and only if
c
(1)
ik ≥ c

(2)
mk for all i ≤ m and all k.

Table 2 presents some situations where the ordering relations (12) and (13) involving
catastrophe probability matrices hold, which are relevant for the use of Theorem 3. Note,
in particular, that binomial and geometric catastrophes (see [1] and [3]) are stochastically
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decreasing in the parameter and total catastrophes (see [2]) are the smallest catastrophes, in
both the usual and the Kalmykov senses.

Theorem 3(i) implies that BDC processes stochastically increase, in the sense of level
crossing ordering, as the catastrophe distribution in each state increases stochastically in the
usual sense. That is, BDC processes X(1) and X(2), which have common birth, death, and
catastrophe rates but different catastrophe probability matrices C(1) and C(2), respectively,
satisfy X(1) ≤lc X(2) provided that C

(1)
i· ≤st C

(2)
i· for all i ∈ I . Thus, for example, BDC

processes with binomial catastrophes stochastically decrease, in the sense of level crossing
ordering, with the catastrophe probability.

Note also that if two BDC processes X(1) and X(2) have the same catastrophe probability
matrix, it suffices to show that (11) holds in order to conclude that X(1) ≤lc X(2). Let us
illustrate the use of this result for birth–death (BD) processes. We note that a (I, λ, µ, β, C)

BDC process X is a BD process if β is the null vector (this also makes the form of the catastrophe
probability matrix C irrelevant), in which case we say that X is a (I, λ, µ) BD process.

Corollary 1. Let I be a subset of N, and let X(r) be a (I, λ(r), µ(r)) BD process for r = 1, 2.
If

λ
(1)
i ≤ αλ

(2)
i ∧ µ

(1)
i ≥ αµ

(2)
i for all i ∈ I and some α ∈ (0, 1], (15)

then X(1) ≤lc X(2). Moreover, if X(1) and X(2) are irreducible then the same conclusion is
obtained if (15) is replaced by

sup
i �=sup I

λ
(1)
i

λ
(2)
i

≤ α ≤ inf
i �=inf I, i �=sup I

µ
(1)
i

µ
(2)
i

. (16)

Note that Kirstein’s conditions and Irle’s conditions for irreducible BD processes (i.e. the
appropriate translations of (7), (8), and (9)) are given by the following two sets of conditions:

λ
(1)
i ≤ λ

(2)
i and µ

(1)
i ≥ µ

(2)
i , i ∈ I ,

λ
(1)
i + µ

(1)
i ≤ λ

(2)
i + µ

(2)
i and

µ
(1)
i

λ
(1)
i

≥ µ
(2)
i

λ
(2)
i

, i ∈ I .

Neither of these sets of conditions is equivalent to (16).
The number of customers in an M/M/s/c system (see, for example, [4]) with arrival rate η

and death rate γ , where the system capacity c may be either finite or infinite, may be viewed
as a BD process on N with birth rates λi = η 1{0≤i≤c−1} and death rates µi = γ min(i, s).
Therefore, we can easily derive the following application of Corollary 1 to M/M/s/c systems.

Corollary 2. For r = 1, 2, let X(r) denote the number of customers in an M/M/s(r)/c(r) system
with arrival rate λ(r) and service rate µ(r). If c(1) ≤ c(2) and

λ(1)

λ(2)
≤ α ≤ µ(1)

µ(2)
min

(
1,

s(1)

s(2)

)

for some α ∈ (0, 1], then X(1) ≤lc X(2).
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