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Abstract

Finite p-groups with all of their maximal subgroups isomorphic are studied by means of the
coclass. All such groups of coclass 1 and 2 are determined, while those of coclass 3 are shown
to have order at most p1 3. A general bound for the order is given as a function of p and the
coclass only.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20 D 15.

The aim of the present paper is the investigation of finite p-groups with all
maximal subgroups isomorphic, by means of their coclass. It will be shown
that the order of such a p-group is bounded by a function of/? and the coclass
only. For the particular case of coclass at most 2, a complete characterization
of the above groups is provided, while for coclass 3 we give a big improvement
for the bound on the group order, at least compared to the one resulting from
the general estimate. The methods used throughout are perfectly elementary
and are mainly based on Lemma 1 below.

NOTATION. For a finite p-group X we denote by 1 = Z0{X) < Z\ (X) <•••
and by X = y\(X) > yi{X) > ••• the terms of the ascending and descending
central series of X, respectively. (Higher) commutators of two subgroups
A and B will be denoted by [A,B; 1] = [A,B], [A,B;2] = [[A,B; l],B], etc.
Let [A, B; 0] simply stand for A. The nilpotency class of X is abbreviated
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by c\(X); if X is of order p" and of class k, the coclass of X is cocl(Z) =
n - k. We will use the standard notation <t>(X), or merely 4>, for the Frattini
subgroup of X. A group is said to be an (A/7)-group if all of its maximal
subgroups are isomorphic.

When determining the automorphism group of a finite /?-group P, one
can investigate the induced linear group A on the Frattini factor i>/<J> as
a first step. In doing so, information about the orbits of A on the set of
all hyperplanes can be obtained by knowing the isomorphism classes of the
maximal subgroups in P. (M7)-groups just provide the situation when that
reduction fails.

In turn, if the automorphism group of P induces a transitive linear group
on the hyperplanes (or, equivalently, on the lines) of P/O then P is (MI). In
particular, the finitely generated (relatively) free groups in any variety defined
by the identities xpm — 1, cl(X) < k are certainly {MI). There are nonfree
groups with induced transitive linear group as the latter can be prescribed
(compare with Bryant and Kovacs [1]). In addition, for p — 2 some of the
Suzuki 2-groups are also known to be (MI) (see Higman [4]). (MZ)-groups
with nontransitive induced linear groups appear in Theorem 2.

Since every finite /7-group is a homomorphic image of some relatively free
group, (M7)-groups of arbitrarily high class, coclass and solubility length ex-
ist. It can be seen for the same reason that the class (MI)-p is not closed
under taking homomorphic images. Simple examples yield the same for sub-
groups and direct products. However, for all known (AfZ)-group P, P/Z(P)
is also (MI). Were that true for all (A//)-groups, the big bound f(c) of the
estimate in Theorem 1 could be replaced by g(c) = 3c. That is certainly
fulfilled by any group with an induced transitive linear group.

LEMMA 1. Let G be a finite p-group. If G is (MI) and Zn(G) ^ G, then

PROOF. Suppose the contrary and choose a subgroup R in G to be of
minimal order with G = Zn(G) • R. Let R < M and \G : M\ = p. By
assumption, we can find a subgroup R\ in R such that Zn(G) n R < R\
and \R : R\\ —p. Then Zn(G) • R\ is a maximal subgroup in G, hence it
is isomorphic to M. Thus we can write M = TK with T < M, K < M,
[T,M;n] = 1 and \K\ = \Ri|. Clearly Zn(G) M = G.

CLAIM. [T, G; k] < Zn_k(G) • [T, M;k] for all k.
Our claim can be proved by induction on k; it holds trivially for k — 0.

Assume that [T,G;i] < Zn-t(G) • [T,M;i], then [T,G;i + 1] < [Zn_,(G) •
[T,M;i],G] < Zn_i^(G) • [[T,M;i],Zn(G) • M] < Zn^x(G) • ([T,M;i +
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by the well-known assertion due to P. Hall, [yi+\(G),Zn(G)] < Zn_,_i(G)
(see [2] or [5, p. 265]), and therefore one can conclude that [T, G; i + I] <
Zn_,_,(G) • [T, M; i + 1], as required. For k = n we have [T, G; n] < Z0(G) •
[T,M;n] = 1, that is T < Zn(G), thus G = Zn(G) • M = Zn(G) • TK =
Zn(G) • K with \K\ = \R\\< \R\, a contradiction.

We need some simple facts about (A/7)-groups; their proofs are left to the
reader.

LEMMA 2. IfG is a nonabelian finitep-group and it is {MI), then |Z2(G)| >
3

LEMMA 3. Let G be a finite p-group. IfG is (MI) and cocl(G) = 1 (that
is, G is of maximal class), then p2 < \G\ < p3.

COROLLARY 1. G is (MI) ofcoclass 1 if and only if it is

(i) elementary Abelian of order p2, or
(ii) nonabelian of order p3 and of exponent p with p > 2, or

(iii) the quaternion group of order 8.

LEMMA 4. Assume that |Z,-(G): Z,_i((?)| = p for all t < i < s (for some
t < s). IfG is a p-group, Z,(G) <N< ZS(G) and N <G, then N = Zj(G) for
some j .

LEMMA 5. If M\ and M2 are different maximal subgroups of a finite p-
group G and ZS(M\), Zs(Mi) are both contained in Zt(G) (for some s and t),
then Zs+i(Mi)nZs+i(M2) < Zt+l(G).

LEMMA 6. Assume that the finite p-group G is (MI) and cocl(G) = c. IfM{

and Mi are different maximal subgroups in G with Zs(Mj) < Zt(G) (i — 1,2),
then Zs+i(Mt) < Zt+2c+i(G) (i = 1,2). If\G\ > p2s+ic~2, then in addition
Zs+l(Mi) < Zt+2c-i(G).

LEMMA 7. There is no finite (Ml)-group G with Z(G) = Z(M) of order p
for all maximal subgroups M.

THEOREM 1. Let G be a finite p-group of coclass c. If G is (MI), then
\G\ < pfM, where f(c) = (2c + l ) c + l + c + 2.

PROOF. Let M be any maximal subgroup of G. Denote Zj(G) simply by
Zj\ then by Lemmas 1 and 6 we get from the trivial inclusion Z0(M) < Zo

that Z, < Zj(M) < Z,(2C+i) for all /'. We proceed by induction on |G| = pn.
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CASE 1. There exists a minimal / in the set {l,(2c + l),(2c + I ) 2 , . . . ,
(2c+ l ) c - '} such that |Z,(2c+1): Z,\=p2ei.

We have Zt(M) = Zi+S (for some 0<s < 2ci) by Lemma 4. (Thanks to the
(A/7)-property, s is independent of M.) Let |Z,| = pi+t (> p'+l by Lemma 2),
then |Z,-+,| = / ? ' + m , G = G/Z/+, is of order p"-'-'-', it is (MI) and cocl(G) =
c - t < c; therefore \G\ = p'+t+s • \G\ < p'+t+s+f(c-t) < pn2c+i)+t+f(c-t) <
p(2c+iy+t+f(c-t) <pf(c) by induction.

CASE 2. |Z, ( 2 c + 1 , : Z}\ > p2cJ for all j € {1, (2c + 1), . . . , (2c + 1 )<"'}.
Now GyZ(2C+i)c is of maximal class, hence T — Z(2c+iy(M) is either inde-

pendent of M, or \G: T\ < p. In any case, \G : T\ < p3 by Lemma 3, thus
\G\ < p3 • \T\ < p5 • |Z(2c+i)r+i| = pi+(2c+1> + c - ' = pJ(c> since T < Z(2c+1)c+i.

For the case c = 1 the above formula gives />^(1) = pn only (instead of the
correct value of/?3). The situation becomes even worse for c > 1, when f(c)
will turn out to be far too big. To give some refinement for c < 3, we firstly
deal with the case c = 2 by proving

THEOREM 2. Assume that the finite p-group G is (MI) and that cocl(G) = 2;
then G is isomorphic to one of the groups listed below:

(i) Zpy,

(iii) (a,b:ap2 = bp2 = l,b~lab = al+p);

(iv) (a,b: a9 = b9 = [a,b]3 - [a,b,a,a] - [a,b,b,b] = 1,

(v) (a,b: a9 = b9 = [a,b]3 = [a,b,a,a] = [a,b,b,b] = 1,

[a,b,a] = b6,[a,b,b] = a3);

(vi) (a, b:ap2 = b"2 = [a, bf = [a,b,a,a] = [a,b,b,b]= 1,

(for p > 5 and m the smallest quadratic nonresidue mod/?);

(vii) (a, b: ap2 = b»2 = [a, bf = [a, b, a, a] = [a, b, b, b] = 1,

(for p > 5, 1 < g <p - 1 and 4g + 1 any quadratic nonresidue mod/?, which
gives (p — l)/2 groups of this type);

(viii) (a, b:ap = bp = [a, bf = [a, b, af = [a, b, bf = [a, b, a, a]

= [a,b,a,b] = [a,b,b,a] = [a,b,b,b] = 1) (forp > 5);
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(ix) (a,b: a"2 = \/ = [a,bf = [a,b,a,b] = [a,b,b,a] = 1,

[a,b,a]^a",[a,b,b] = bp) (for p > 5);

(x) (a, b:ap = b" = [a, bf = [a, b, af = [a, b, bf = [a, b, a, af

= [a,b,a,b] = [a,b,b,a] = [a,b,a,a,a] = [a,b,a,a,b] = 1,

[a,b,b,b] = [a,b,a,a]-m)

(for p > 5 and m the smallest quadratic nonresidue mod/?);

(xi) (a,b: a9 = b9 = [a,b]3 = [a,b,a,a? = [a,b,a,a,a] = [a,b,a,a,b] = 1,

[a,b,a] = b\[a,b,b] = a\[a,b,a,a] = [a,b,b,b]);

(xii) (a,b: a9 = b9 = [a, b]3 = [a,b,a,a]3 = [a,b,a,a,a] = [a,b,a,a,b]=l,

[a, b, a]2 • [a, b, a, a] = b\ [a, b, b] • [a, b, a, a]2 = a3,

([a,b,a,a] = [a,b,b,b]).

REMARKS. (1) The groups in (iv), (v) are of order 35, those in (vi)-(ix) of
order p5, the two in (xi)-(xii) of order 36, while the groups in (x) have order
P6.

(2) All groups listed in (iv)-(vii) have their proper nonmaximal subgroups
Abelian and have been characterized as (A//)-groups with this property in
[3].

(3) The groups in (i), (ii) and (viii) are relatively free, and for the groups
in (ix), (x) and (xii) the automorphism group also permutes the maximal
subgroups transitively. In case of (iii), (iv), (v), (vi), (vii) and (xi) the auto-
morphism group is nontransitive on the set of the maximal subgroups.

It is suitable to break the proof of Theorem 2 into several parts. However,
most of the detailed calculation will be left to the reader.

LEMMA 8. Assume that \G\ = p", cocl(G) = 2 and that G is (MI). If
\G : Zn-i(G)\ = p3, then G is elementary Abelian of order p3.

PROOF. Let M be any maximal subgroup of G, with \Z(M)\ = pk. Assume
that k > n - 3, so that M is Abelian. If G is nonabelian, then G is of class 2,
that is n = 4, hence p2 = \G : Z(G)\ = \G : Zn_3(G)| = p3, a contradiction;
thus G is Abelian and obviously it is elementary of order p3. Suppose that
k < n - 3; \Zk(G)\ = pk by assumption, so since Z(M) < Zk(G), we get
Z(M) = Zk(G). This means that Z(M) = Z(G) is of order p, contradicting
Lemma 7.
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LEMMA 9. Assume that \G\ = p" and cocl(G) = 2. If G is (MI) and
\G : Zn_3(G)| = p2, then 4 < n < 7. For n — 4, G is isomorphic to the group
listed in (iii) of Theorem 2.

PROOF. Let M be any maximal subgroup of G, and denote the order of
Z(M) by pk. Assume firstly that k > n - 3; then M is Abelian, whence the
nilpotency class of G is at most 2. It follows that n — 4, and then G can be
determined easily. If k < n - 3 then Z(M) < Zk(G) and \Zk{G): Z(M)\ < p.
Let Mi and M2 be different maximal subgroups in G. As Z(M\) n Z(M2) <
Z,(G), we have |Zi(G)| > pk~\ \Zk(G): Z{(G)\ < p2, which yields k <
3. Suppose that k = 3, then p = \Z3(G): Z2(G)\ = \Z2(G): ZX{G)\ =
|Z3(G): Z(M), thus |Z(M)| = p 3 implies |Z(G)| =p2. Therefore Z(M)/Z(G)
< Z(G/Z(G)), that is Z(M) < Z2(G), so that Z(M) = Z2(G) as their orders
are equal. Being valid for any M, this implies that Z2(G) = Z(M) - Z(G),
a contradiction. If k = 1, we would get \Z(M)\ = \Z(G)\ = p, contra-
dicting Lemma 7; thus k = 2. If Z(M) = Z(G) for some—equivalently
for all—M (in the light of Lemma 1), then G/Z(G) is (MI) of coclass
1, hence \G\ = \Z(G)\ • \G/Z(G)\ < p2 • p* by Lemma 3. Assume finally
that Z(M) £ Z(G). We have \Z2(G): Z(M)\ = p, and thus G/Z2(G) is
of maximal class. Suppose that \G: Z2(M)\ < p; then all maximal sub-
groups of G = G/Z2(G) are Abelian, whence |G| < p3, so that |G| < p6. If
\G : Z2(M)\ > p2, then T = Z2(M) is independent of the choice of M since
G/Z2(G) is of maximal class, and therefore G/T is (MI). Moreover, G/T
is either trivial or of coclass 1, thus \G/T\ < p3 by Lemma 3. On the other
hand, T < Z3(G) by Lemma 5, so \G\ = \G/T\ • \T\ < p3 • \Z3(G)\ = p7. (Let
us mention that Z3(G) = G would give/?2 = \G : Zn_3(G

!)| > \G : Z2(G)\, that
is n < 5 by assumption.

For the further treatment of the open cases we point out some facts which
appeared in the above proof.

C O R O L L A R Y 2. Suppose that \G\ = p " , G is (MI), cocl(G) = 2,\G: ZM_3(<7)|
= p 2 . Then

(a) if\G : M\=p, then Z(M) is elementary Abelian of order p2;
assume that 6 < n < 7; then

(b) \Z(G)\ =p, \Z2(G)\ =p\ cocl(G/Z2(G)) = 1;
(c) Z2(G) = (Z(M) :\G:M\=p) is elementary Abelian;
(d) Z3(G) is Abelian;
(e) ifn = 7 and \G : M\— p then Z2(M) = Z-j(G) is elementary Abelian;
(f) ifn = 6 and \G: M\=p then either Z2(M) = Z2(G) or M is of class

2.
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PROOF. There is nothing to do in case (b). For (a), suppose that Z(M)
were cyclic; then G could not possess any noncyclic Abelian normal subgroup
of order p2. Therefore G would contain a cyclic maximal subgroup by [5,
Satz 7.6, page 304], a contradiction. Being in Z2(G) < O(<7) the centres
of the maximal subgroups of G centralize one another, and thus Z2(G) =
{Z(M): \G : M| = p) is elementary Abelian.

CG(Z2(G)) > O(G) > Z3(G), so Z3(G) is Abelian as \Z3(G): Z2(G)\ = p.
If n — 7 and M is a maximal subgroup of G, then we must have equality
in all estimates used in proving that \G\ < p1; in particular, Z2(M) — T =
Z3(G). Suppose_that Z3(G) is of type (p2,p,p); then_Zi(G) = (xp j_x e
Z2(M)), so that G = G/Z{(G) is also (MI). As cocl(G) = 2 and \Z{G)\ =
\Z2iG) : Zi(G)\ = p2, we have a contradiction to (b). Assume that n — 6
and \G: M\ = p. If \G: Z2(M)\ ^ p then Z2(M) < Z3(G) = <D(G), as
G/Z2(G) is a group of maximal class, and Z2(M) > Z2(G) by Lemma 1.
Suppose that Z2(M) = Z3(G); then \M : Z2(M)\ = p, a contradiction; and
thus Z2(M) = Z2(G), by Lemma 4.

LEMMA 10. If G is a finite p-group, G is (MI) and cocl(G) = 2, then
\G\<P*.

PROOF. Suppose the contrary. Then \G\ = p1 by Lemma 9.
CASE (A). Z4(<7) is Abelian.
As the centre of any maximal subgroup M in G is of index p4 in M,

Zt(G) is the unique Abelian subgroup in M of index p, Suppose that Z<\(G)
is of type (p2,p,p,p); then Z(G) = (xp : x e Z4(G)) and G = G/Z(G) is
also (MI) of coclass 2; that is impossible by (b) of Corollary 2, as |Z((7)| =
\Z2(G): Zi(G)\ = p2, again by (b). Thus Z4 = Z4(G) is elementary Abelian
by (e) of Corollary 2. Let x e G\Z4; then M = Z4 • (x) is a maximal subgroup
of G. The group AT = [Z4,x] is of order |Z4 : CZ4(x)| = |Z4 : Z(M)\ = p3.
Let Z4 = (a,b,cx,c2,z), Z3(G) = Z3 = (6,ci,c2)z), Z2CG) = Z2 = (cx,c2,z),
Z\(G) = Z\- (z). We can choose x with [a,x] € Z3\Z2, and we can assume

(1) [a,x] = b and
(2) Z(M) = (c2, z) (with M = Z4 (x)). By (e) of Corollary 2, we

have b e Z3 = Z2(M), hence [6,x] = cfz^ and [ci,x] = ẑ 1. As M' =
([a, x], [b, x], [c\, x]) is of order p3, we have ay ^ 0 (modp); therefore we
can replace c2 by c^z^ and z by zy to assume that

( ) [ , , ]
Set G = (x,y); then a? = aba<cflc7

2
lzd>, by = bcf2cy

2
2z^, c\ = c2z

s\ As
c2 e Z(M)\Z(G), S3£0 (modp). Now a*? = a ^ implies, by (l)-(4):
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(5) fa = 0 (mod/?). Similarly, since bxy = byx, we get
(6) 02 = <̂3 (mod/?). Thus by (5) and (6), 3^ = 0 (mod/?), a contradiction.
CASE (B). Z4{G) is nonabelian. As G/Z2{G) is of order/?4, it has at least

one Abelian maximal subgroup, that is, we have M'Q < Z2{G) for some maxi-
mal subgroup Mo in G. If M^ £ Z2(G), then \M^\ < p2, and thus M' < Z2(G)
for every maximal subgroup M of G; in that case cl(G/Z2(G)) < 2, imply-
ing that cl(G) < 4, a contradiction. So M^ = Z2{G), hence CMo{

Mo) =
CMo{Z2{G)) = Z4(G). As Z4(G) is nonabelian and Z2{G) = Z(Z4{G)) is
of index p2 in Z4{G), the derived group of Z4{G) is of order p, that is
Z4(G)' = Z1(G).

Suppose that, for all maximal subgroups M of G, CM(M') = Z4(G); then
G =_G/Z,(G) = G/Z4(G)' = G/(CM(M')y is (A/J) and of coclass 2 with
|Z(G| = |Z2(G): Zi(G)\ ~ p2, contradicting (b) of Corollary 2. Thus there
exists some maximal subgroup M\ in G with C\ft (M[) ^ CM(S{M'O). AS by (e)
of Corollary 2 we have Z3(G) = Z2(Af,-) < CMi (i =1,2) , we get

G' < CMM) n CWl(M() = Z3(G),

since |G : CJI/,.(A//)| = />2, and this is the final contradiction.

LEMMA 11. Assume that \G\ = p5, cod(G) = 2. IfG is {MI), then Z2{G)
is elementary Abelian of order p3 and Zy{G) is of order p2.

PROOF. Clearly Z2(G) = 3>(G) is noncyclic Abelian of order/?3 by Lemmas
1, 2 and (a) of Corollary 2. Suppose that \Z\{G)\ = p. For any maximal
subgroups M\,M2 of G, GjZ(M\) is of order/;3, and hence M'2 < Z(Mt).
Taking A/, ^ M2 we get M'2 < Z{M{) n Z{M2) = Z{G), that is M' = Z{G)
for all maximal subgroups M. The group G/Z{G) is therefore {MI) and one
step nonabelian of order/?4, so that G/Z{G) = (x,y : ~xp =yp = \,y~xTy =
xl+p). Obviously G = {x,y) {x = xZ{G),y = yZ{G)) is not metacyclic,
hence xy = x1+pc where (c) = Z{G). For any integer n, {xny = x

n(-l+pkn; in
particular, [x",y] = xp\ Suppose that xp2 ± 1; then (xp2) = Z(G), (x) < G,
G is metacyclic, a contradiction; thus the order of x is p2. For any integer n
we have

xy
n

 =x(l+p)"c((l+P)"-l)/P_

In particular [x,yp] = 1; that implies xp,yp e Z(G), whence p = \Z{G)\ >
\{xp,y")\ > \{xp,y")\ =p2, a contradiction.

Suppose that Z2(G) is not elementary. Then by earlier remarks, it is
Abelian of type {p2,p). Since \Z(G)\ = p2, we have Z{G) = Z{M) for every
maximal subgroup M of G by Lemma 1 and (a) of Corollary 2; G/Z{G)
is therefore {MI) of order /73. As G/Z{G) is never quaternion, p > 2 and
G/Z{G) is of exponent p, that is 13{G) < Z{G). Suppose that \15(G)\ = p.
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Then U{G) = 15{M) for all maximal subgroups M\ hence G = G/X5{G) is
{MI) of order p4 and of exponent p. The class of G must be 3 since G is 2-
generated; but there is no (A/7)-group of maximal class and of order p4. Thus
15{G) = Z(G), and hence we can find an element g in G with gP <£ 15{Z2{G)).
Let K = (g) • Z2{G), so that AT is a maximal subgroup in G and (K) is of
order (at least) p1. This implies that the order of ®{K) is (at least) p1; as
*(AT) = 15(K) = V(G) = Z(G) = Z(K), all maximal subgroups of K are
Abelian, hence G is isomorphic to one of the groups listed in (iv)-(vii), by
[2]. On the other hand, all the above groups have their Frattini subgroup
elementary Abelian, a contradiction.

PROPOSITION 1. Assume that \G\ = p5 andcocl(G) = 2. IfG is {MI), then
G is isomorphic to one of the groups listed in (iv)-(ix).

PROOF. We have G = (x,y), Z2 := Z2{G) = {a,zuz2) = ®{G) is ele-
mentary Abelian, where a - [x,y] and Z\ := {zx,z2) = Z{G) - Z{M) for
all maximal subgroups M. By {MI), either Q.{G) = G or &{G) < O(G);
thus we can assume that the elements x and y have the same order p or p2.
Since the maximal subgroups of G are nonabelian, Z2 = CQ{Z2) — Co{a).
Therefore {[a, x], [a,y]) — [a, G] is of order p2, that is, one can assume that
ax = az\, ay = az2. Suppose that p = 2, when [x,y2] = x " 1 ^ ) ^ = z2,
and consequently y2 € Z2\Z\. Thus we have y2 = ac (with c € Z\), and
hence z2 = [x,y2] = [x,a] = z\, a contradiction; so p > 2. For any integer
n,x?' = xanz2*

); this implies that yp G Z{G), and similarly x" e Z{G).
CASE 1. xp =yp = 1.

The generators x,y obviously satisfy the relations of the presentation in
(viii) of Theorem 2. That relations yield that G is {MI) if and only if p > 5.

CASE 2. x and y are of order p2.
Let M denote a maximal subgroup of G. If O(M) is of order p2, then

O(M) = Z{M), that is M is a one-step nonabelian group. That means that
G is exactly one of the groups listed in (iv)-(vii), by [3]. Therefore we
can assume |O(M)| = p, equivalently 15{M) = M'\ in particular, xp = z\,
yp = z%. For p — 3 we get a contradiction; for p > 5 a = 0 can be assumed
to be 1, that is G is the group in (ix), which in turn is {MI).

LEMMA 12. Assume that G is {MI) of order p6 and that coc^G) = 2; then
Z-i{G) is elementary Abelian, and every maximal subgroup in G is of class 3.

PROOF. Suppose that all maximal subgroups of G are of class 2. Suppose
that G = {x,y) and [x,y] = a. Since Z3(G) is Abelian by (d) of Corollary
2, xp e Z{{Z3{G),x)). As (Z3{G),x) is a maximal subgroup of G, x" lies in
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Z2(G) by (a); hence 15(G) < Z2(G). It follows that G/Z2(G) is a nonabelian
group of exponent p, so p must be odd.

Since every maximal subgroup of G is supposed to be of class 2, we have
[a,x] = c e CG(x), [a,y] = de CG(y), C = cza, dx = dz? (with Z{G) =
(z». Since Z3(G) = (Z2(G),a), we have Z2(G) = Z(Z3(G) • (x)) • Z(Z3(G) •
(y)) = (Z3(G) • {x)Y • (Z3(G) • (y))' = (c,d,Z(G)), and therefore a ? 0
Set /iT = Z3 • (jcy). Then equations [a.xy] = a~'(ac)J' = dcz" and [
a~l{ad)x = cdx11 imply that a = fi, as Z3(G

;) is Abelian. Since tf' < Z(K),
we can deduce that 1 = [cd,xy] = z2a. Thus a = 0, a contradiction; it proves
that the maximal subgroups of G are of nilpotency class 3, by (f).

Suppose that Z3(G) is (Abelian) of type (p2,p,p); then Z3(G) = (g, 61,62),
Z2(G) = (bub2,gp), Zi(G) = (g"). Let Mx = (Z3(G),x) be a maximal
subgroup of G with Z(Afi) = (61, gp); then by choosing 62 suitably we can
assume that [g,x] = b2, [b\,x] - 1, [b2,x] = gap, (a ^ 0): Since the order of
M[ isp1 we can find a maximal subgroup M2 — {Z3{G),y) such that Z{M2) —
M[ = {b2,gP). Obviously [g,y] = b\b\-g™, [buy] = g<">, [b2,y] = 1 (y ? 0);
hence g*y = (gb2y = gb\ • b\+s • g", g*x = {gb\ • bj • g*p)x = {gbi)b\.
(b2g"P)s • gi>P = gb\ • b\+s • g^+aS)P. Since g*y = g?x, we have ad = 0, and
thus S = 0 (since a ^ 0). Replacing b\ by b\ • gVP one can assume [g,y] = b\,
[buy] - gfip, [b2,y] = 1 (with a new value for /?).

We show that the quadratic character of a (mod/?) is an invariant of M\.
For, let g' = gub\bl

2, x1 = x's (s e Z3{G)), in which case

y gatip _ foiug{u{'2)+ti)ap^

Now for {k,m} ^ {0,0}, set Mkm = {Z3(G),xkym); the invariant of Mkm

is ak1 + Pm2, as

(modZ(G)),

[g,xkym,xkym] = [bfbt ,xkym] =

Now G can be {MI) only if a, /?, ak2+/2m2 have the same quadratic character
(mod/?) for all nonzero pairs {k, m}. However, this does not happen for any
prime p, and we have a contradiction. Thus Z3(G) is elementary Abelian by
(c) of Corollary 2.

Using the previous lemma we can finish the proof of Theorem 2 by a direct
calculation to get

PROPOSITION 2. Assume that G is (MI) of order p6 and cocl(G) = 2; then
G is isomorphic to one of the groups listed in (x)-(xii).
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Before turning to the case of coclass 3, we prove

LEMMA 13. If the finite p-group G is (MI) and has a maximal subgroup
M with Z(M) ^ O(<7), then the nilpotency class ofG is at most 2.

PROOF. There exists a maximal subgroup Mx in G with Z(M) ^ Mx, that
is, G = Z(M)-MX. Then [Z(MX),G] = Z(MX),Z(M)\ < Z(MX) nZ(M) =
Z(G), and thus Z(MX) < Z2(G). Suppose that the class of G is greater than 2,
then by Lemma 1 Z(MX) < Z2(G) < O(G). Thus Z(MX) <M< CG(Z{M)),
hence Z{M) < CG(Z(MX)) = Mx, a contradiction.

Now our aim is to prove

THEOREM l.IfG is a finite p-group, G is (MI) and the coclass ofG is 3,
then \G\ <p13.

We will get Theorem 3 as a corollary to three propositions.

PROPOSITION 3. Assume that G is (MI), \G\ = p", cl(G) — n - 3 and
\G : Zn_4(G)| = /?4; then either

(i) G is Abelian of order p4, or
(ii) G is extraspecial of order p5.

PROOF. Let M be a maximal subgroup of G, and denote the order of Z (M)
by/?*.

CASE 1. \G:Z(M)\=p.
Either G is Abelian, giving (i) or G is one step nonabelian. In the latter

case 2 = cl(G) = n - 3, so that n = 5, which yields that p2 = \G: Z(G)\ =
\G : Zt(G)\ = \G : Zn-4(G)\ = p\ a contradiction.

CASE 2. \G : Z(M)\ =p\

Suppose that Z(M) < O(G) = O for all maximal subgroups M. The
equality Z(M) = O would imply that Z(M) = Z(G), hence \G : ZX(G)\ = p3,
a contradiction; thus |4>: Z(M)\ = p and Z(M) > Z(G). So, with different
maximal subgroups Mx and M2, |O: ZX(G)\ = |<D: Z(MX) nZ(M2)\ = p2

gives \Z(M) : Z(G)\ = p, so that \G: ZX(G)\ = p\ n = 5, \ZX(G)\ = p,
cl(G) = 2. Since G is 2-generator, say G = (x,y), and \G'\ = p, (x",y,Z(G))
is an Abelian maximal subgroup of G, a contradiction; therefore Z(M$) ^ O
for some maximal subgroup Mo, whence cl(G) = 2 by Lemma 13. We have
then n = 5, |<7'| = p, M' = G'\ hence G/G' is also (MI). If it were of type
(P2,p2), then we would get the same contradiction as above. Thus G/G' is
elementary Abelian, that is G is extraspecial.

CASE 3. }G : Z(M)\>p\
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t

\Z{M)\ = pk implies that Z(M) < Zk(G) < Zn^(G), so that Z(M) =
Zi(G) for some i, by Lemma 4. As / is independent of M, that gives Z(M) =
Z(G), and thus G = G/Z(G) is also (MI) of coclass 3. By the induction
hypothesis, either

(i) G is Abelian of order p4, or
(ii) G is extraspecial of order p5.

In case (i), cl(G) = 2, n = 5, whence |<7: Z^G)! = p4 = \G: Z(M)\; that is
Z(G) = Z(M) is of order p, contradicting Corollary 2. In case (ii), cl(G) = 3,
n = 6, so p4 = \G: Z2(G)\. This implies that Z(M) < Z2(G), but then
Z(M) = Z2(G), as p2 < \Z(M)\ < \Z2(G)\ = p2. Since Z{M{) = Z{M2)
for any maximal subgroups MX,M2, we have Z2(G) = Z(M) - Z\(G), a
contradiction.

LEMMA 14. Suppose that \G\ = pn, c\{G) = n - 3 and \Z2{G)\ = p3 =
\G : Zn_4(G)|. Assume that Z2(M) > Z2(G) > Z(M) and \Z2(M)\ > p"^ for
all maximal subgroups M ofG; then n < 8.

PROOF. Z2(M) > y3(G), as cl(G/Z2(M)) < 2. Since cl(G) = n - 3,
we have yi(G) < Zns(G) < Zn-^(G), and hence there exists some / with
yi(G)Z2(G) = Zj(G), by Lemma 4. Certainly i = n - 5, and thus Z2(M) >
y-i(G)Z2(G) = Zn_5(G

!). Let M\ ^ M2 be maximal subgroups in G, so that,
by Lemma 5, Zn_5(G) < Z2{M{) n Z2(M2) < Z3{G), so n - 5 < 3.

PROPOSITION 4. IfG is (MI), \G\ = p", d(G) = n-3and\G: Zn_4(G)| =
p3, then n < 8.

PROOF. Let M be any maximal subgroup of G and \Z{M)\ = pk.
CASE 1. \G: Z(M)\=p.
G is either Abelian of order p4 or one step nonabelian of order p$. In the

first case p3 = \G : Zn-4(G)\ = \G : ZQ(G)\ = p4, a contradiction. If n = 5,
then p3 = \G : Z«_4(G

!)| = \G : Zi(G)\ = p2, also a contradiction.
CASE 2. |G : Z(M)\ =p3.

If Z(M) = O(G) = O for all M, then Z(A/) = O = Z(G) is of index
p3 in G, and therefore n = 5. If |O: Z(A/)| = p for all M, then with
Mi ^ M2 (maximal subgroups in G), |O : ZX\G)\ < |O : Z(Mx)r\Z(M2)\ < p2,
hence \G: Zi(G)\ < p4 and n - 4 < 2. If Z(M0) ^ O for some Mo, then
« - 3 = cl(G) < 2, by Lemma 13.

CASE 3. \G : Z(M)\ >p4.

Z(M) < Zk{G) < Zn_4(G), so since cocl(G) = 3 and \G: Zn_4(G)| =
p3, we have \Zk(G): Z(M)\ = p. Were Zk{G) = Z(M), one would get
k = 1, contrary to Lemma 7; thus \Zk(G): Z(M)\ = p. Suppose that
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Z(M)_= ZX(G)\ then k = 2, and G = G/ZX(G) is_(MI) with cocl(G) = 2
and \G : Zn_5(G)| = p3. Now Lemma 8 says that |G| = p3, so that \G\ < ps.
Assume from now on that Z(M) > Z(G); for any M\ ^ M2 (maximal sub-
groups in G), \Zk(G): ZX(G)\ = \Zk(G): Z(MX) n Z{M2)\ = p2, so that
2 < k < 3. The inequalities Zk(G) > Z(M) > Z\(G) exclude the possi-
bility of k = 3 by Lemma 4, and hence k = 2. Therefore \Z2(G): Z(M)\ =
p = \Z{M) : Z,(G)|, and |Z,(G)| = p. If \Z2(M)\ > p"~3, then \G\ < p* by
Lemma 14. Thus \Z2{M)\ < pn~4, whence Z2(G) < Z2(M) < Zn-4(G), so
that Z2(M) = Zj(G) for some 2 < i < n - 4 by Lemma 4. As Z(M) < Z2(G),
Lemma 5 gives / < 3. On the other hand, G = G/Z^G) is (MI) of coclass
2 and \G : Zn_,_4(G)| = p3, thus \G\ = p3, consequently |G| = p3 • |Z,(G)| =

PROPOSITION 5. IfG is (MI), \G\ = p", c\(G) = n-3and\G: Zn-A(G)\ =
p1, then n < 13.

PROOF. Let M be any maximal subgroup in G and |Z(A/)| — pk; we can
assume that Zk(G) < G. In the same way as earlier, we may assume that
\G : Z(M)\ > p3, as well as Z(M) < O(G) = Zn-4(G). We define

t(M) = min{i:Z(M) < Zt(G)}.

Assume that t(M0) — 1 for some Mo. Then t(M) = 1 for any M by
Lemma 1. Now G = G/Z(G) is (MI), cocl(G) < 2 (by Lemma 7), and thus
\G\ < p6 by Theorem 2 and Lemma 3; so \G\ < p6\Z(G)\ = p6+k < p9. We
can therefore assume that t(M) > 1 for every M; if M\ and M2 are different
maximal subgroups in G, then

(E) \Zk(G): Z,(G)| - |Z,((7) : Z(M.) f)Z(M2)\ < \Zk(G): Z(M)\2<p<

(for any M), whence 2 < t(M) <k<5.
Suppose that t(Mo) = 5 for some Mo, then k = 5, so we have equalities

in (E). For any M, ZX(G) < Z(M) < Z5(G) implies that Z(M) = Zt(G)
for some i, by Lemma 4; necessarily i = 1, a contradiction; thus we may
assume that 2 < f(Af) < 4 for all M. Suppose that t(Mo) = 4 for some Mo.
We have 1Z4(G): ZX(G)\ < p4 by (£); if equality holds here, then k = 4,
and by the second part of (E), it follows that \ZA(G): Z(M)\ = p2, whence
\Z(M): Z,(G)| = p2. The latter implies that Z(M)/Z{(G) < Z2(G/ZX(G)),
that is Z(M) < Z3(G); particularly Z(M0) < Z3(G), a contradiction. So
\ZA(G): Z,(G)| = p3, hence Z4(G) > Z(M) > ZX(G) leads to Z(M) = Zt(G)
for some / by Lemma 4. Clearly i - 1, that is t(M) = 1, a contradiction;
thus we may assume that 2 < f(Af) < 3. In particular, Z(M) < Z^(G) for all
M.
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Suppose that Z2(MQ) ^ Zn_4(G) for some Mo; then G = Z2(Mo) • M\,
with a suitable maximal subgroup M\ ^ Mo. So [Z2(Mi),G] < Z{M\) •
(Z2(Mi) n Z2{M0)) < Z4(G) by Lemma 5, thus Z1[MX) < Z5{G). We have
\Z2(M)\ = \Z2(Mi)\ < \Z5(G)\ < p1 (or n < 8) for all maximal subgroups M.
As Z2{MQ) < Z7(G) £ Zn-4(G), we get that « - 4 < 7, n < 10.

Assume now that Z2(M) < Zn_4(G) for all maximal subgroups M. Let
5 (< n - 4) be chosen to be minimal, subject to Z2(M) < ZS(G) for all M.

CLAIM. \ZS(G) : Z2(M)\ < p (for all M).
First, \Z2(G): ZX{G)\ > p2. In fact, supposing that \Z2{G): ZX{G)\ = p,

we can find Nt < G with Z{Mt) > Nj > Z(G), \Nt: ZX(G)\ = p (for all
maximal subgroups M,). Then Nj/Z^G) < Z(G/Zi(G)), that is Nt < Z2(G);
so Z2(G) = Ni < Z{Mi) for all i, resulting in Z2(G) < fl, Z(A/,) = Z{(G), a
contradiction. Therefore cocl(G/Z2(G)) < 2, which proves our claim.

For any M\ jL M2 (maximal subgroups of G),

p2 > \Z,(G) : Z2(M{) n Z2(M2)\ > \ZS(G): ZA(G)\

(by Lemma 5); that shows s < 6. If ZS(G) = Z2(M) (for all M) then G/ZS(G)
is (MI) of coclass c < 2, so

\G\ = \G/ZS(G)\ • \ZS{G)\ <p*.p°+Q-<) <pli

by Theorem 2 and Lemma 3. In the remaining case \ZS(G): Z2(M)\ = p (for
all M), thus \ZS(G): Z2(G)\ = ps~2 cannot hold by Lemma 4. Hence G/ZS(G)
is of maximal class (or it is trivial, yielding |G| = \ZS{G)\ < ps+3 < p9). We
have Z3(M) > ZS(G) (for all M) since \ZS(G): Z2(M)\ = p; on the other
hand, Z3(Af) < ZS+5(G) < ZU(G) by Lemma 6, whence \Z3(M)\ < \ZU{G)\,
so that \Z3(M)\ < pn. Now either \Z3(M)\ = p"~\ whence cl{M) < 3,
cl((7) < 6, n < 9, or Z3(M) = Z,-(G) for some 5 < / < J + 5 by Lemma
4. As for that latter case, G/Z,(G) is (A/7) of coclass < 1, and we can
use Lemma 5 to conclude that \Zt{G)\ = \Z3{M)\ < |ZS+1(G)| < |Z7(G)|,
involving |Z,-(G)| < p9. We can summarize our conclusions as follows:

\G\ = \G/Zi(G)\-\Zi(G)\<pip9=pi2.
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