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Abstract We prove that the space L∞(µ, X) has the same numerical index as the Banach space X for
every σ-finite measure µ. We also show that L∞(µ, X) has the Daugavet property if and only if X has
or µ is atomless.
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1. Introduction

The concept of numerical index was first suggested by Lumer in 1968. Since then a lot of
attention has been paid to this quantitative characteristic of a Banach space. Classical
references here are [2,3]. For recent results we refer the reader to [7–9].

Here and subsequently, for a real or complex Banach space X, we write BX for the
closed unit ball and SX for the unit sphere of X. The dual space is denoted by X∗ and
the Banach algebra of all continuous linear operators on X is denoted by L(X). The
numerical range of T ∈ L(X) is

V (T ) = {x∗(Tx) : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1}.

The numerical radius is the seminorm defined on L(X) by

v(T ) = sup{|λ| : λ ∈ V (T )}

for each T ∈ L(X). The numerical index of the space X is defined by

n(X) = inf{v(T ) : T ∈ SL(X)}.

In this paper we prove that the numerical index of L∞(µ, X) coincides with the numer-
ical index of X whenever µ is a σ-finite measure and X is an arbitrary Banach space.
It should be pointed out that this result is analogous to those given in [9] for C(K, X),
L1(µ, X) and l∞(X).
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The numerical index is related to the so-called Daugavet property (see [9]). The
remarkable fact that every compact operator T on C[0, 1] satisfies

‖Id +T‖ = 1 + ‖T‖, (DE)

where Id stands for the identity, goes back to Daugavet [4] and this equality has currently
become known as the Daugavet equation. We follow [6] in saying that a Banach space X

has the Daugavet property if every rank-one operator T ∈ L(X) satisfies (DE). In such
a case, it is known that every weakly compact operator on X also satisfies the Daugavet
equation. Consequently, this definition is equivalent to that given in [1]. For recent results
we refer the reader to [6,11,12] and the references therein.

It is known that C(K) has the Daugavet property for every perfect compact space
K, and L1(µ), L∞(µ) have the Daugavet property for every atomless positive measure
µ (see [12] for a detailed account of these facts). The non-commutative versions have
recently been obtained in [10]. It is also known that, for every Banach space X, C(K, X)
(respectively, L1(µ, X)) has the Daugavet property if and only if X has or K is perfect
(respectively, µ is atomless) (see [9]).

In this paper, we show that L∞(µ, X) has the Daugavet property if and only if X has
or the σ-finite measure µ is atomless. This extends an analogous result for l∞(X) given
in [13].

Throughout the paper, (Ω, Σ, µ) stands for a σ-finite measure space and X stands for
an arbitrary Banach space. We write L∞(µ, X) for the Banach space of all equivalence
classes of essentially bounded (Bochner) measurable functions from Ω into X, endowed
with its natural norm

‖f‖ = inf{λ � 0 : ‖f(t)‖ � λ a.e.}

for each f ∈ L∞(µ, X). To shorten the notation, we use the same letter to denote both
a measurable function and its equivalence class. We refer to [5] for background on this
topic.

2. The results

To generalize the fact given in [9] that n(l∞(X)) = n(X), we require two preliminary
results. The first one is well known for scalar-valued functions.

Lemma 2.1. Let f ∈ L∞(µ, X) with ‖f(t)‖ > λ a.e. Then there exists B ∈ Σ with
0 < µ(B) < ∞ such that ∥∥∥∥ 1

µ(B)

∫
B

f(t) dµ(t)
∥∥∥∥ > λ.

Proof. Since f(Ω) is essentially separable, we can certainly assume that X is separa-
ble. Hence we can write

X \ λBX =
⋃
n∈N

Bn,
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where Bn are closed balls. Therefore, there exists n ∈ N such that A = f−1(Bn) has
positive measure. Let B ∈ Σ such that B ⊆ A and 0 < µ(B) < ∞. By convexity
(see [5, Corollary II.2.8]),

1
µ(B)

∫
B

f(t) dµ(t)

is contained in Bn, and the result follows. �

Again according to the fact that every function in L∞(µ, X) is essentially separably
valued, the following result, which we shall use throughout the proof of Theorem 2.3,
follows immediately.

Lemma 2.2. Let f ∈ L∞(µ, X), C ∈ Σ with positive measure, and ε > 0. Then there
exist x ∈ X and A ⊆ C with 0 < µ(A) < ∞ such that ‖x‖ = ‖fχC‖ and ‖(f −x)χA‖ < ε.
Accordingly, the set

{xχA + fχΩ\A : x ∈ SX , f ∈ BL∞(µ,X), A ∈ Σ with 0 < µ(A) < ∞}

is dense in SL∞(µ,X).

We can now state our main result.

Theorem 2.3. Let (Ω, Σ, µ) be a σ-finite measure space and let X be a Banach space.
Then

n(L∞(µ, X)) = n(X).

Proof. In order to show that n(L∞(µ, X)) � n(X), we fix T ∈ L(L∞(µ, X)) with
‖T‖ = 1. The procedure is to prove that v(T ) � n(X). Given ε > 0, we may find
f ∈ SL∞(µ,X), x0 ∈ SX , and A, B ∈ Σ with 0 < µ(B) < ∞, such that

B ⊆ A and
∥∥∥∥ 1

µ(B)

∫
B

T (x0χA + fχΩ\A) dµ

∥∥∥∥ > 1 − ε. (2.1)

Indeed, take f ∈ SL∞(µ,X) and C ⊆ Ω with µ(C) > 0 such that

‖[Tf ](t)‖ > 1 − 1
2ε (t ∈ C). (2.2)

On account of Lemma 2.2, there exist y0 ∈ BX and A ⊆ C with µ(A) > 0 such that
‖(f − y0)χA‖ < 1

2ε. Now, write y0 = λx1 + (1 − λ)x2 with 0 � λ � 1, x1, x2 ∈ SX , and
consider the functions

fj = xjχA + fχΩ\A ∈ L∞(µ, X) (j = 1, 2),

which clearly satisfy ‖f − (λf1 + (1 − λ)f2)‖ < 1
2ε. Since A ⊆ C, by using (2.2), we have

‖[Tf1](t)‖ > 1 − ε or ‖[Tf2](t)‖ > 1 − ε

for every t ∈ A. Now, we choose i ∈ {1, 2} such that

Ai = {t ∈ A : ‖[Tfi](t)‖ > 1 − ε}
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has positive measure, we write x0 = xi, and finally we use Lemma 2.1 to get B ⊆ Ai ⊆ A,
satisfying our requirements.

Next we fix x∗
0 ∈ SX∗ with x∗

0(x0) = 1, we write

Φ(x) = xχA + x∗
0(x)fχΩ\A ∈ L∞(µ, X) (x ∈ X),

and we consider the operator S ∈ L(X) given by

Sx =
1

µ(B)

∫
B

T (Φ(x)) dµ (x ∈ X).

According to (2.1), we have ‖S‖ � ‖Sx0‖ > 1 − ε. So we may find x ∈ SX and x∗ ∈ SX∗

such that
x∗(x) = 1 and |x∗(Sx)| � n(X)[1 − ε].

Set g = Φ(x) ∈ SL∞(µ,X) and define the functional g∗ ∈ SL∞(µ,X)∗ by

g∗(h) = x∗
(

1
µ(B)

∫
B

h dµ

)
(h ∈ L∞(µ, X)).

Since B ⊆ A, we have g∗(g) = 1 and

|g∗(Tg)| = |x∗(Sx)| � n(X)[1 − ε].

Hence v(T ) � n(X), as required.
For the reverse inequality, we fix S ∈ L(X) with ‖S‖ = 1 and define T ∈ L(L∞(µ, X))

by
[T (f)](t) = S(f(t)) (t ∈ Ω, f ∈ L∞(µ, X)).

Then ‖T‖ = 1 and so v(T ) � n(L∞(µ, X)). According to Lemma 2.2 together with [2,
Theorem 9.3], given ε > 0 there exist x ∈ SX , f ∈ BL∞(µ,X), A ∈ Σ with 0 < µ(A) < ∞,
and x∗ ∈ SX∗ with x∗(x) = 1 such that

v(T ) − ε <

∣∣∣∣x∗
(

1
µ(A)

∫
A

T (xχA + fχΩ\A) dµ

)∣∣∣∣.
On the other hand,

1
µ(A)

∫
A

T (xχA + fχΩ\A) dµ = S

(
1

µ(A)

∫
A

(xχA + fχΩ\A) dµ

)
= Sx.

Therefore,
n(L∞(µ, X)) − ε � v(T ) − ε < |x∗(Sx)| � v(S)

and so n(X) � n(L∞(µ, X)). �

The last part of the paper is dedicated to the study of the Daugavet property for
L∞(µ, X). To this end, we need a characterization of this property given in [12, Corol-
lary 2.3].
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Lemma 2.4. X has the Daugavet property if and only if for every x ∈ SX and every
ε > 0,

BX = co{y ∈ BX : ‖x − y‖ � 2 − ε}.

Since the proof of the non-easy part of the following result is analogous to that given
in [12] for C(K, X), it should be known to experts. However, we could not find it in the
journal literature.

Theorem 2.5. Let (Ω, Σ, µ) be a σ-finite measure space and let X be a Banach space.
Then L∞(µ, X) has the Daugavet property if and only if X has or µ is atomless.

Proof. Let us first suppose that µ is atomless. Set f ∈ SL∞(µ,X), ε > 0 and B ∈ Σ

with
µ(B) > 0 and ‖f(t)‖ > 1 − 1

2ε (t ∈ B).

Given h ∈ SL∞(µ,X) and n ∈ N, we take B1, . . . , Bn pairwise disjoint subsets of B with
positive measure and we consider the function

gj = hχΩ\Bj
− fχBj

∈ BL∞(µ,X)

for each j ∈ {1, . . . , n}. For every t ∈ Bj we have
∥∥∥∥h(t) − 1

n

n∑
i=1

gi(t)
∥∥∥∥ =

1
n

‖h(t) + f(t)‖ � 2
n

,

and for t /∈
⋃n

j=1 Bj we have

h(t) =
1
n

n∑
i=1

gi(t).

Since ‖f −gj‖ > 2−ε, the above lemma shows that L∞(µ, X) has the Daugavet property.
To finish the proof, we write L∞(µ, X) in the form

L∞(ν, X) ⊕∞

[⊕
i∈I

X

]
l∞

for a suitable set I ⊆ N and an atomless measure ν. Now, it should be noted that
an l∞-sum of Banach spaces has the Daugavet property if and only if every summand
has [13]. �
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