NUMERICAL INDEX AND THE DAUGAVET PROPERTY FOR $L_{\infty}(\mu, X)$

MIGUEL MARTÍN AND ARMANDO R. VILLENA

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071-Granada, Spain (mmartins@ugr.es; avillena@ugr.es)

(Received 27 May 2002)

Abstract We prove that the space $L_{\infty}(\mu, X)$ has the same numerical index as the Banach space X for every σ -finite measure μ . We also show that $L_{\infty}(\mu, X)$ has the Daugavet property if and only if X has or μ is atomless.

Keywords: Daugavet property; numerical index; numerical radius

2000 Mathematics subject classification: Primary 46B20; 47A12

1. Introduction

The concept of numerical index was first suggested by Lumer in 1968. Since then a lot of attention has been paid to this quantitative characteristic of a Banach space. Classical references here are [2, 3]. For recent results we refer the reader to [7-9].

Here and subsequently, for a real or complex Banach space X, we write B_X for the closed unit ball and S_X for the unit sphere of X. The dual space is denoted by X^* and the Banach algebra of all continuous linear operators on X is denoted by L(X). The numerical range of $T \in L(X)$ is

$$V(T) = \{x^*(Tx) : x \in S_X, \ x^* \in S_{X^*}, \ x^*(x) = 1\}.$$

The numerical radius is the seminorm defined on L(X) by

$$v(T) = \sup\{|\lambda| : \lambda \in V(T)\}$$

for each $T \in L(X)$. The numerical index of the space X is defined by

$$n(X) = \inf\{v(T) : T \in S_{L(X)}\}.$$

In this paper we prove that the numerical index of $L_{\infty}(\mu, X)$ coincides with the numerical index of X whenever μ is a σ -finite measure and X is an arbitrary Banach space. It should be pointed out that this result is analogous to those given in [9] for C(K, X), $L_1(\mu, X)$ and $l_{\infty}(X)$. The numerical index is related to the so-called Daugavet property (see [9]). The remarkable fact that every compact operator T on C[0, 1] satisfies

$$\|\mathrm{Id} + T\| = 1 + \|T\|,\tag{DE}$$

where Id stands for the identity, goes back to Daugavet [4] and this equality has currently become known as the *Daugavet equation*. We follow [6] in saying that a Banach space X has the *Daugavet property* if every rank-one operator $T \in L(X)$ satisfies (DE). In such a case, it is known that every weakly compact operator on X also satisfies the Daugavet equation. Consequently, this definition is equivalent to that given in [1]. For recent results we refer the reader to [6, 11, 12] and the references therein.

It is known that C(K) has the Daugavet property for every perfect compact space K, and $L_1(\mu)$, $L_{\infty}(\mu)$ have the Daugavet property for every atomless positive measure μ (see [12] for a detailed account of these facts). The non-commutative versions have recently been obtained in [10]. It is also known that, for every Banach space X, C(K, X) (respectively, $L_1(\mu, X)$) has the Daugavet property if and only if X has or K is perfect (respectively, μ is atomless) (see [9]).

In this paper, we show that $L_{\infty}(\mu, X)$ has the Daugavet property if and only if X has or the σ -finite measure μ is atomless. This extends an analogous result for $l_{\infty}(X)$ given in [13].

Throughout the paper, (Ω, Σ, μ) stands for a σ -finite measure space and X stands for an arbitrary Banach space. We write $L_{\infty}(\mu, X)$ for the Banach space of all equivalence classes of essentially bounded (Bochner) measurable functions from Ω into X, endowed with its natural norm

$$||f|| = \inf\{\lambda \ge 0 : ||f(t)|| \le \lambda \text{ a.e.}\}$$

for each $f \in L_{\infty}(\mu, X)$. To shorten the notation, we use the same letter to denote both a measurable function and its equivalence class. We refer to [5] for background on this topic.

2. The results

To generalize the fact given in [9] that $n(l_{\infty}(X)) = n(X)$, we require two preliminary results. The first one is well known for scalar-valued functions.

Lemma 2.1. Let $f \in L_{\infty}(\mu, X)$ with $||f(t)|| > \lambda$ a.e. Then there exists $B \in \Sigma$ with $0 < \mu(B) < \infty$ such that

$$\left\|\frac{1}{\mu(B)}\int_B f(t)\,\mathrm{d}\mu(t)\right\| > \lambda.$$

Proof. Since $f(\Omega)$ is essentially separable, we can certainly assume that X is separable. Hence we can write

$$X \setminus \lambda B_X = \bigcup_{n \in \mathbb{N}} B_n,$$

416

where B_n are closed balls. Therefore, there exists $n \in \mathbb{N}$ such that $A = f^{-1}(B_n)$ has positive measure. Let $B \in \Sigma$ such that $B \subseteq A$ and $0 < \mu(B) < \infty$. By convexity (see [5, Corollary II.2.8]),

$$\frac{1}{\mu(B)} \int_B f(t) \,\mathrm{d}\mu(t)$$

is contained in B_n , and the result follows.

Again according to the fact that every function in $L_{\infty}(\mu, X)$ is essentially separably valued, the following result, which we shall use throughout the proof of Theorem 2.3, follows immediately.

Lemma 2.2. Let $f \in L_{\infty}(\mu, X)$, $C \in \Sigma$ with positive measure, and $\varepsilon > 0$. Then there exist $x \in X$ and $A \subseteq C$ with $0 < \mu(A) < \infty$ such that $||x|| = ||f\chi_C||$ and $||(f-x)\chi_A|| < \varepsilon$. Accordingly, the set

$$\{x\chi_A + f\chi_{\Omega\setminus A} : x \in S_X, f \in B_{L_{\infty}(\mu,X)}, A \in \Sigma \text{ with } 0 < \mu(A) < \infty\}$$

is dense in $S_{L_{\infty}(\mu,X)}$.

We can now state our main result.

Theorem 2.3. Let (Ω, Σ, μ) be a σ -finite measure space and let X be a Banach space. Then

$$n(L_{\infty}(\mu, X)) = n(X).$$

Proof. In order to show that $n(L_{\infty}(\mu, X)) \ge n(X)$, we fix $T \in L(L_{\infty}(\mu, X))$ with ||T|| = 1. The procedure is to prove that $v(T) \ge n(X)$. Given $\varepsilon > 0$, we may find $f \in S_{L_{\infty}(\mu,X)}, x_0 \in S_X$, and $A, B \in \Sigma$ with $0 < \mu(B) < \infty$, such that

$$B \subseteq A$$
 and $\left\| \frac{1}{\mu(B)} \int_{B} T(x_0 \chi_A + f \chi_{\Omega \setminus A}) \, \mathrm{d}\mu \right\| > 1 - \varepsilon.$ (2.1)

Indeed, take $f \in S_{L_{\infty}(\mu,X)}$ and $C \subseteq \Omega$ with $\mu(C) > 0$ such that

$$||[Tf](t)|| > 1 - \frac{1}{2}\varepsilon \quad (t \in C).$$
 (2.2)

On account of Lemma 2.2, there exist $y_0 \in B_X$ and $A \subseteq C$ with $\mu(A) > 0$ such that $\|(f - y_0)\chi_A\| < \frac{1}{2}\varepsilon$. Now, write $y_0 = \lambda x_1 + (1 - \lambda)x_2$ with $0 \leq \lambda \leq 1$, $x_1, x_2 \in S_X$, and consider the functions

$$f_j = x_j \chi_A + f \chi_{\Omega \setminus A} \in L_\infty(\mu, X) \quad (j = 1, 2),$$

which clearly satisfy $||f - (\lambda f_1 + (1 - \lambda)f_2)|| < \frac{1}{2}\varepsilon$. Since $A \subseteq C$, by using (2.2), we have

$$||[Tf_1](t)|| > 1 - \varepsilon$$
 or $||[Tf_2](t)|| > 1 - \varepsilon$

for every $t \in A$. Now, we choose $i \in \{1, 2\}$ such that

$$A_{i} = \{t \in A : \|[Tf_{i}](t)\| > 1 - \varepsilon\}$$

has positive measure, we write $x_0 = x_i$, and finally we use Lemma 2.1 to get $B \subseteq A_i \subseteq A$, satisfying our requirements.

Next we fix $x_0^* \in S_{X^*}$ with $x_0^*(x_0) = 1$, we write

$$\Phi(x) = x\chi_A + x_0^*(x)f\chi_{\Omega\setminus A} \in L_\infty(\mu, X) \quad (x \in X),$$

and we consider the operator $S \in L(X)$ given by

$$Sx = \frac{1}{\mu(B)} \int_B T(\Phi(x)) \,\mathrm{d}\mu \quad (x \in X).$$

According to (2.1), we have $||S|| \ge ||Sx_0|| > 1 - \varepsilon$. So we may find $x \in S_X$ and $x^* \in S_{X^*}$ such that

$$x^*(x) = 1$$
 and $|x^*(Sx)| \ge n(X)[1-\varepsilon].$

Set $g = \varPhi(x) \in S_{L_{\infty}(\mu,X)}$ and define the functional $g^* \in S_{L_{\infty}(\mu,X)^*}$ by

$$g^*(h) = x^* \left(\frac{1}{\mu(B)} \int_B h \,\mathrm{d}\mu\right) \quad (h \in L_\infty(\mu, X))$$

Since $B \subseteq A$, we have $g^*(g) = 1$ and

$$|g^*(Tg)| = |x^*(Sx)| \ge n(X)[1-\varepsilon].$$

Hence $v(T) \ge n(X)$, as required.

For the reverse inequality, we fix $S \in L(X)$ with ||S|| = 1 and define $T \in L(L_{\infty}(\mu, X))$ by

$$[T(f)](t) = S(f(t)) \quad (t \in \Omega, \ f \in L_{\infty}(\mu, X)).$$

Then ||T|| = 1 and so $v(T) \ge n(L_{\infty}(\mu, X))$. According to Lemma 2.2 together with [2, Theorem 9.3], given $\varepsilon > 0$ there exist $x \in S_X$, $f \in B_{L_{\infty}(\mu, X)}$, $A \in \Sigma$ with $0 < \mu(A) < \infty$, and $x^* \in S_{X^*}$ with $x^*(x) = 1$ such that

$$v(T) - \varepsilon < \left| x^* \left(\frac{1}{\mu(A)} \int_A T(x\chi_A + f\chi_{\Omega \setminus A}) \, \mathrm{d}\mu \right) \right|.$$

On the other hand,

$$\frac{1}{\mu(A)} \int_A T(x\chi_A + f\chi_{\Omega \setminus A}) \,\mathrm{d}\mu = S\left(\frac{1}{\mu(A)} \int_A (x\chi_A + f\chi_{\Omega \setminus A}) \,\mathrm{d}\mu\right) = Sx.$$

Therefore,

$$n(L_{\infty}(\mu, X)) - \varepsilon \leq v(T) - \varepsilon < |x^*(Sx)| \leq v(S)$$

and so $n(X) \ge n(L_{\infty}(\mu, X)).$

The last part of the paper is dedicated to the study of the Daugavet property for $L_{\infty}(\mu, X)$. To this end, we need a characterization of this property given in [12, Corollary 2.3].

https://doi.org/10.1017/S0013091502000524 Published online by Cambridge University Press

Lemma 2.4. X has the Daugavet property if and only if for every $x \in S_X$ and every $\varepsilon > 0$,

$$B_X = \overline{\operatorname{co}}\{y \in B_X : \|x - y\| \ge 2 - \varepsilon\}.$$

Since the proof of the non-easy part of the following result is analogous to that given in [12] for C(K, X), it should be known to experts. However, we could not find it in the journal literature.

Theorem 2.5. Let (Ω, Σ, μ) be a σ -finite measure space and let X be a Banach space. Then $L_{\infty}(\mu, X)$ has the Daugavet property if and only if X has or μ is atomless.

Proof. Let us first suppose that μ is atomless. Set $f \in S_{L_{\infty}(\mu,X)}$, $\varepsilon > 0$ and $B \in \Sigma$ with

$$\mu(B) > 0$$
 and $||f(t)|| > 1 - \frac{1}{2}\varepsilon$ $(t \in B)$

Given $h \in S_{L_{\infty}(\mu,X)}$ and $n \in \mathbb{N}$, we take B_1, \ldots, B_n pairwise disjoint subsets of B with positive measure and we consider the function

$$g_j = h\chi_{\Omega \setminus B_j} - f\chi_{B_j} \in B_{L_\infty(\mu, X)}$$

for each $j \in \{1, \ldots, n\}$. For every $t \in B_j$ we have

$$\left\| h(t) - \frac{1}{n} \sum_{i=1}^{n} g_i(t) \right\| = \frac{1}{n} \| h(t) + f(t) \| \leq \frac{2}{n},$$

and for $t \notin \bigcup_{j=1}^{n} B_j$ we have

$$h(t) = \frac{1}{n} \sum_{i=1}^{n} g_i(t).$$

Since $||f - g_j|| > 2 - \varepsilon$, the above lemma shows that $L_{\infty}(\mu, X)$ has the Daugavet property. To finish the proof, we write $L_{\infty}(\mu, X)$ in the form

$$L_{\infty}(\nu, X) \oplus_{\infty} \left[\bigoplus_{i \in I} X \right]_{l_{\infty}}$$

for a suitable set $I \subseteq \mathbb{N}$ and an atomless measure ν . Now, it should be noted that an l_{∞} -sum of Banach spaces has the Daugavet property if and only if every summand has [13].

Acknowledgements. Research partly supported by Spanish MCYT projects BFM2000-1467 and BFM2002-00061.

References

- 1. Y. A. ABRAMOVICH, C. D. ALIPRANTIS AND O. BURKINSHAW, The Daugavet equation in uniformly convex Banach spaces, *J. Funct. Analysis* **97** (1991), 215–230.
- 2. F. F. BONSALL AND J. DUNCAN, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Mathematical Society Lecture Notes Series, vol. 2 (London Mathematical Society, Cambridge, 1971).

- 3. F. F. BONSALL AND J. DUNCAN, *Numerical ranges II*, London Mathematical Society Lecture Notes Series, vol. 10 (London Mathematical Society, Cambridge, 1973).
- I. K. DAUGAVET, On a property of completely continuous operators in the space C, Usp. Mat. Nauk 18 (1963), 157–158 (in Russian).
- 5. J. DIESTEL AND J. J. UHL, *Vector measures*, Mathematical Surveys, vol. 15 (American Mathematical Society, Providence, RI, 1977).
- 6. V. M. KADETS, R. V. SHVIDKOY, G. G. SIROTKIN AND D. WERNER, Banach spaces with the Daugavet property, *Trans. Am. Math. Soc.* **352** (2000), 855–873.
- G. LÓPEZ, M. MARTÍN AND R. PAYÁ, Real Banach spaces with numerical index 1, Bull. Lond. Math. Soc. 31 (1999), 207–212.
- 8. M. MARTÍN, A survey on the numerical index of a Banach space, *Extracta Math.* **15** (2000), 265–276.
- M. MARTÍN AND R. PAYÁ, Numerical index of vector-valued function spaces, *Studia Math.* 142 (2000), 269–280.
- 10. T. OIKHBERG, The Daugavet property of C^* -algebras and non-commutative L_p -spaces, *Positivity* **6** (2002), 59–73.
- 11. R. V. SHVIDKOY, Geometric aspects of the Daugavet property, J. Funct. Analysis 176 (2000), 198–212.
- 12. D. WERNER, Recent progress on the Daugavet property, Irish Math. Soc. Bull. 46 (2001), 77–97.
- P. WOJTASZCZYK, Some remarks on the Daugavet equation, Proc. Am. Math. Soc. 115 (1992), 1047–1052.

420