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Abstract

We prove, in ZF + Σ1
2-determinacy, that, for any analytic equivalence relation E , the following

three statements are equivalent: (1) E does not have perfectly many classes, (2) E satisfies
hyperarithmetic-is-recursive on a cone, and (3) relative to some oracle, for every equivalence class
[Y ]E we have that a real X computes a member of the equivalence class if and only if ωX

1 > ω
[Y ]
1 .

We also show that the implication from (1) to (2) is equivalent to the existence of sharps over Z F .

2010 Mathematics Subject Classification: 03E15 (primary); 03D60 (secondary)

1. Introduction

In 1955, Spector [Spe55] proved that every well ordering of ω with a
hyperarithmetic presentation has a computable presentation. This theorem
has been of great importance in recursion theory and in lightface descriptive set
theory. In this paper, we prove that Spector’s theorem can be extended to very
general circumstances which apply to a variety of known cases, unearthing a
more general phenomenon that is behind all of them.

Some years ago, the author [Mon05, Mon07] showed that Spector’s theorem
can be extended to the class of all linear orderings if we replace isomorphism by
biembeddability: every hyperarithmetic linear ordering is biembeddable with a
computable one. Notice that, among well orderings, the notions of isomorphism
and biembeddability coincide, so Spector’s theorem is a special case of this more
general result. Not much later, Greenberg and the author showed the same result
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for biembeddability of p-groups [GM08]. Let us remark that, for both countable
linear orderings and countable p-groups, the number of equivalence classes under
biembeddability is ℵ1, as proved by Laver [Lav71], and Barwise and Eklof
[BE71], respectively. Some time later, the author showed that any counterexample
to Vaught’s conjecture, that is, a theory which has ℵ1 but not continuum many
models, if it exists, would also satisfy the same property [Mon13], giving a
computability theoretic statement equivalent to Vaught’s conjecture. After all
these examples we started to think that something more general was going on.

DEFINITION 1.1. We say that an equivalence relation E on the reals, 2ω, satisfies
hyperarithmetic-is-recursive if every hyperarithmetic real is E-equivalent to a
computable one.

Our main result says that any analytic equivalence relation with less than
continuum many equivalence classes essentially satisfies hyperarithmetic-is-
recursive. We say ‘essentially’ because one can always build a nonnatural
equivalence relation for which this is not true. To overcome this problem, we
ask for the equivalence relation to satisfy hyperarithmetic-is-recursive relative to
almost every oracle, where ‘almost every’ is in the sense of Martin’s measure.
If we have a natural equivalence relation at hand, one would expect to be able
to prove either that it satisfies hyperarithmetic-is-recursive or that it does not,
and in either case, one would expect that this proof to relativize to every oracle.
Therefore, restricting oneself to almost every oracle should not make a difference
on natural equivalence relations.

By Martin’s measure we mean the {0, 1}-measure, where a set of reals has
Martin’s measure 1 if it contains a cone, where a cone is a set of reals of the form
{X ∈ 2ω : X >T Y } for some Y called the base of the cone. Martin showed that
this is a measure on the degree-invariant sets of reals of complexity Γ , assuming
Γ -determinacy, where Γ is a complexity class like for instance Borel, analytic,
etc.

DEFINITION 1.2. We say that an equivalence relation on 2ω satisfies
hyperarithmetic-is-recursive on a cone if there is a C ∈ 2ω (the base of the
cone) such that, for every X which computes C , every X -hyperarithmetic real is
equivalent to an X -computable one.

Here is our main theorem.

THEOREM 1.3 (ZF+Σ1
2 -Det). Let E be an analytic equivalence relation on 2ω.

The following are equivalent.
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Analytic equivalence relations satisfying hyperarithmetic-is-recursive 3

(H1) There is no perfect set all of whose elements are E-inequivalent.

(H2) E satisfies hyperarithmetic-is-recursive on a cone.

(H3) There is an oracle relative to which, for every Y ∈ 2ω, the degree spectrum
of its equivalence class, Sp([Y ]E), is of the form {X ∈ 2ω : ωX

1 > α} for
some ordinal α ∈ ω1.

Burgess [Bur78] showed that, given an analytic equivalence relation, either it
has at most ℵ1 many equivalence classes, or it has perfectly many classes (i.e.,
there is a perfect set of E-inequivalent reals). Thus, if the continuum hypothesis
is false, saying that E does not have perfectly many classes is equivalent to saying
that it has 6 ℵ1 many classes. The existence of such a perfect set is absolute (it is
Σ1

2 ) and does not depend on the continuum hypothesis.
The degree spectrum of an equivalence class is the analog of the degree

spectrum of a structure, a notion widely studied in Computable Structure Theory.
It gives us a way of measuring the complexity of the equivalence class in terms of
how difficult it is to compute a member. More precisely, define

Sp([Y ]E) = {X ∈ 2ω : ∃W 6T X (W E Y )}.

The set {X ∈ 2ω : ωX
1 > α} is the set of all reals that can compute copies of all

ordinals below α. It is a very particular set, and the fact that the spectrum of any
equivalence class would have this form seems to be a very strong statement. Let
us remark that the relativized version of the spectrum is defined as SpZ ([Y ]E) =
{X ∈ 2ω : ∃W 6T X ⊕ Z (W E Y )}, and that the set {X : ωX

1 > α} relativized to
Z becomes {X : ωX⊕Z

1 > α}.
Let us observe that this result applies to all the examples mentioned before.

For instance, let X Eω1 Y if either neither of X and Y codes a well ordering of
ω, or the orderings they code are isomorphic. This is a Σ1

1 equivalence relation
with one equivalence class for each countable ordinal, and one equivalence class
for all the reals not coding a well ordering. It has ℵ1 equivalence classes, and by
Spector’s theorem it satisfies hyperarithmetic-is-recursive. We can do the same
with biembeddability of linear orderings or p-groups, which we know have ℵ1

equivalence classes. So, Theorem 1.3 tells us that they satisfy hyperarithmetic-is-
recursive on a cone. The proofs in [Mon05, GM08] proved these results relative
to every oracle, and not just on a cone. Our general proof does not say anything
about what happens relative to every oracle. However, if the relation is natural
enough, we expect the behavior to be the same relative to every oracle and relative
to almost every oracle. The proofs in [Mon05, GM08] still require a deep analysis
of the embeddability relation among linear orderings and p-groups used for those
results. In [Mon13], the author showed that any counterexample to Vaught’s
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conjecture must satisfy hyperarithmetic-is-recursive on a cone, and that result
follows directly from Theorem 1.3. However, the proof in [Mon13] is much more
constructive, and analyzes the structure among the models of a counterexample
to Vaught’s conjecture, something we do not get from the proof in this paper.

Theorem 1.3 uses ZF + Σ1
2 -determinacy. That (H3) implies (H2), and that

(H2) implies (H1), can be proved in just ZF. The use of ZF + Σ1
2 -determinacy

is only necessary to show that (H1) implies (H3). That (H1) implies (H2) only
requires Σ1

1 -determinacy, which is equivalent to the existence of sharps (fo rall
X (X ] exists)), as proved by Harrington [Har78]. We show that the use of
Σ1

1 -determinacy is actually necessary.

THEOREM 1.4 (ZF). The following statements are equivalent.

(O1) Every lightface Σ1
1 equivalence relation without perfectly many classes

satisfies hyperarithmetic-is-recursive on a cone.

(O2) 0] exists.

This theorem will be proved in Section 3.
An interesting remark about our main theorem 1.3 is that it shows how

cardinality issues get reflected at the hyperarithmetic/computable level.

2. The proof of the main theorem

We start by proving the following effective version of Burgess’ theorem
[Bur79, Corollary 1].

LEMMA 2.1. For every Σ1
1 equivalence relation E there is a decreasing nested

sequence of equivalence relations {Eα : α ∈ ω1} such that Eα is Σ0
α+1 uniformly

in α, and E =
⋂

α∈ω1
Eα.

Proof. Using Kleene’s normal form, let T be a computable subtree of 2<ω×ω<ω×
2<ω such that, for all X, Y , if we let

TX,Y = {σ ∈ ω
<ω
: (X � |σ |, σ, Y � |σ |) ∈ T },

then X E Y if and only if TX,Y is ill founded. The first wrong idea would be
to let Eα = {(X, Y ) : rk(TX,Y ) > α}, which is known to be Σ0

α+1 uniformly
in α and satisfies E =

⋂
α∈ω1

Eα. Unfortunately Eα might not be transitive or
symmetric. In Burgess’ proof [Bur79], he shows that, for a club of ordinals α,
Eα is an equivalence relation, which is all he needs to get his result. This is not
enough for our more effective version.
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To get the symmetry property, let us replace T by the tree T ∪ {(τ, σ, ρ) : (ρ,
σ, τ ) ∈ T }. This way we get that TX,Y = TY,X , and we still have that X E Y ⇐⇒
¬W F(TX,Y ).

We will modify the tree even further to get transitivity. For each k > 1 and
X, Y ∈ 2ω, let

T k
X,Y = {(σ1, τ1, σ2, τ2, . . . , τk−1, σk) ∈ ω

n
× 2n
× · · · × 2n

× ωn
:

n ∈ ω, (X � n, σ1, τ1) ∈ T, (τ1, σ2, τ2) ∈ T, . . . , (τk−1, σk, Y � n) ∈ T }.

Note that T 1
X,Y = TX,Y . Let T̂X,Y =

∑
k∈ω T k

X,Y , that is, the disjoint union of
all the T k

X,Y identifying the roots of all these trees. We note that X E Y ⇐⇒

¬W F(T̂X,Y ): this is because, if there is a path through one of the T k
X,Y , then we

would have (Z1, X1, . . . , Xk−1, Zk) such that, for all i , Z i+1 ∈ TX i ,X i+1 , where
X0 = X and Xk = Y , and hence X = X0 E X1 E X2 E · · · E Xk = Y . On the
other hand, if X E Y , then T 1

X,Y is ill founded, and hence so is T̂X,Y .
We are now ready to define Eα as follows. Let

X Eα Y ⇐⇒ rk(T̂X,Y ) > α.

We still have that X E Y ⇐⇒ (∀α < ω1) X Eα Y , that these relations are nested,
and that they are uniformly Σ0

α+1. We now claim that each Eα is an equivalence
relation. They are reflexive just because E is. It is not hard to see that rk(T̂X,Y ) =

rk(T̂Y,X ), and hence that Eα is symmetric.
To prove transitivity, suppose that X Eα Y Eα Z . Then, since rk(T̂X,Y ) =

sup{rk(T k
X,Y ) : k ∈ ω}, for every β < α there exist k, l ∈ ω, rk(T k

X,Y ) > β,
and rk(T l

Y,Z ) > β. We claim that rk(T k+l
X,Z ) > β, which would imply that

rk(T̂X,Y ) > α, and hence that X Eα Z , as needed. For each (σ1, τ1, σ2, τ2, . . . ,

σk) ∈ T k
X,Y and (σ̂1, τ̂1, σ̂2, τ̂2, . . . , σ̂l) ∈ T l

Y,Z of the same length n, we note
that (σ1, τ1, σ2, τ2, . . . , σk, Y � n, σ̂1, τ̂1, σ̂2, τ̂2, . . . , σ̂l) ∈ T k+l

X,Z . This is an order-
preserving embedding from {(ρ, π) ∈ T k

X,Y × T l
Y,Z : |ρ| = |π |} into T k+l

X,Z . It
follows that rk(T k+l

X,Z ) > min{rk(T k
X,Y ), rk(T l

Y,Z )}, and hence that rk(T k+l
X,Z ) > β,

as wanted.

REMARK 2.2. Notice that, if X EωX⊕Y
1

Y , then X E Y . This is because T̂X,Y is
computable in X ⊕ Y , and hence, if it is well founded, it has rank below ωX⊕Y

1 .

The following is the key lemma to prove the main direction of Theorem 1.3.
We will then apply Turing determinacy to the set considered in the lemma, or
to a variation of it, to get what we want. Recall that, for a complexity class Γ ,
Γ -Turing determinacy says that any degree-invariant Γ -set of reals S which is
cofinal in the Turing degrees contains a cone. (A set S is degree invariant if
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∀X ≡T Y (X ∈ S ↔ Y ∈ S), and it is cofinal if ∀Z ∈ 2ω ∃X >T Z (X ∈ S).)
Γ -Turing determinacy was introduced by Martin, who showed that it follows from
plain Γ -determinacy [Mar68].

LEMMA 2.3 (ZF). For every analytic equivalence relation E without perfectly
many classes, the set S ⊆ 2ω, defined as follows

S = {X ∈ 2ω : ∀Y (ωX⊕Y
1 = ωX

1 ⇒ X ∈ Sp([Y ]E)},

is cofinal in the Turing degrees.

Proof. To prove that S is cofinal, take any Z , and let us build X ∈ S with X >T Z .
By relativizing the rest of the argument, let us assume that Z is computable and
that E is lightfaceΣ1

1 , and hence that the tree T̂ used in Lemma 2.1 is computable.
For each α, there is no perfect set of Eα-inequivalent reals, as otherwise there

would be one for E . Silver [Sil80] showed that any Borel equivalence relation
without perfectly many classes has countably many classes. Thus, each Eα has
countably many classes. For each α ∈ ω1, let 〈Aα,n : n ∈ ω〉 ⊆ 2ω be a list
which contains one real of each Eα-equivalence class. (For the reader who worries
about the use of choice, we will see how to avoid it later.) Let us code this
whole sequence as a single subset A of ω1 × ω × ω: just let (α, n,m) ∈ A if
and only if m ∈ Aα,n . Recall Gödel’s hierarchy Lα[A], where A is considered
as a relation symbol and Lα+1[A] consist of the first-order definable subsets of
(Lα[A]; ∈, A ∩ α × ω × ω) (see, for instance, [Kan03, Section 1.3]). For some
α ∈ ω1 we have that Lα[A] is admissible, and that every β < α can be coded
by a well ordering of ω within Lα[A]. (For instance, take any α where Lα[A] is
an elementary substructure of LωL[A]

1
[A].) Now, using Barwise compactness for

the admissible set Lα[A] [Bar75, Theorem III.5.6], we get an ill-founded model
M = (M; ∈M, AM) of K P whose ordinals have well-founded part equal to α,
with AM �α coinciding with A �α, and satisfying that every ordinal can be coded
by a real. (To show this, one has to consider the infinitary theory in the language
L = {∈, A, c} saying all this, plus axioms saying that the constant symbol c is an
ordinal and that any ordinal below α exists and that c is above it. Then observe
that whole the set of axioms is Σ1(Lα[A]), and that, choosing c appropriately,
Lα[A] is a model of any subset of these axioms which is a set in Lα[A]. Thus, by
Barwise compactness [Bar75, Theorem III.5.6], this theory has a model and its
ordinals have well-founded part at least α. Then, using [Bar75, Theorem III.7.5],
we get such a model with well-founded part exactly α.) Let α∗ ∈ O NM r α, and
let X be a real in M coding α∗ and AM �α∗. Notice that ωX

1 = α. (To see this,
we have that ωX

1 > α because X codes every initial segment of α, and ωX
1 6 α

because every X -computable well ordering is isomorphic to an ordinal in M.)
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We claim that X ∈ S . Consider Y with ωX⊕Y
1 6 α; we must show that X

computes a real E-equivalent to Y . Let us think of α∗ as the well ordering of ω of
type α∗ which is coded by X . Let

P = {β ∈ α∗ : (∃W 6T X) W Eβ Y }.

(Let us remark that, when β is not a true ordinal, i.e., β ∈ α∗rα, we can still talk
about Eβ using the definition from Lemma 2.1; that is, X Eβ Y ⇐⇒ rk(T̂X,Y )>
β ⇐⇒ ∃ f : β→ T̂X,Y (∀γ, δ < β ( f (γ ) ( f (δ)→ γ > δ))}.) The set P ⊆ ω is
Σ1

1 (X, Y ), using this Σ1
1 definition of Eβ . The set P contains all the true ordinals

β < α because X computes all the reals Aβ,n , which are taken one from each
Eβ-equivalence class. We can now apply an overspill argument: since ωX⊕Y

1 6 α,
α (viewed as the initial segment of the presentation of α∗) is not Σ1

1 (X ⊕ Y ) (as,
being the well-ordered part of α∗ is Π 1

1 (X), and it cannot be ∆1
1(X, Y )). Thus,

there must exist a nonstandard β∗ ∈ P r α. Let Y ∗ be the witness that β∗ ∈ P .
That is, Y ∗ 6T X and Y ∗ Eβ∗ Y . By the nestedness of these equivalence relations,
for all true ordinals β < α, Y ∗ Eβ Y . Since ωY⊕Y ∗

1 6 ωY⊕X
1 = α, by Remark 2.2,

we have that Y ∗ E Y , as needed to get that X ∈ S .
For the interested reader, let us see how to avoid the use of the axiom of choice.

This proof uses the axiom of choice only to define the sequence Aβ,n , which can
be defined directly as follows. By Shoenfield’s absoluteness, for each β < ωL

1 ,
the sequence 〈Aβ,n : n ∈ ω〉 can be taken to be inside LωL

1
, and hence we can

define it as the<L-least such that ∀Y∃n (Y Eβ Aβ,n)∀n,m ¬(Aβ,n Eβ Aβ,m). This
definition works inside LωL

1
, and hence (LωL

1
; ∈, A) is admissible, and we can let

α = ωL
1 . (Unless the reader is worried that for this lemma we might have ωL

1 = ω1,
in which case any ordinal α with Lα[A] an elementary substructure of (LωL

1
; ∈, A)

would work.)

We are now ready to prove the main theorem. Let us start by showing that,
if E does not have perfectly many classes, then E satisfies hyperarithmetic-is-
recursive on a cone.

Proof of (H1)⇒ (H2) in (ZF+Σ1
1 -Det). Consider the set S1 of the oracles

relative to which E satisfies hyperarithmetic-is-recursive; that is,

S1 = {X ∈ 2ω : ∀Y 6hyp X ∃W 6T X (W E Y ))},

where Y 6hyp X means that Y is hyperarithmetic-in-X . This set is Σ1
1 , as the

quantifier ∀Y 6hyp X can be replaced by an existential quantifier over all the reals
(see [Sac90, Exercise III.3.11]). The set S1 is clearly degree invariant. Also, it
contains the set S because, by Spector’s theorem, Y 6hyp X ⇒ ωX⊕Y

1 = ωX
1 ,

and hence, by Lemma 2.3, it is cofinal in the Turing degrees. By Σ1
1 -Turing

determinacy, which follows from Σ1
1 -determinacy, it contains a cone.
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Let us now show that, if E does not have perfectly many classes, then, relative
to some oracle, all the degree spectra of the E-equivalence classes are of the form
{X : ωX

1 > α}.

Proof of (H1)⇒ (H3) in (ZF+Σ1
2 -Det). Consider the set S from Lemma 2.3.

This set is Π 1
2 and degree invariant. (We are using that the relation ωY

1 = ωX
1

is Σ1
1 , as it says that every Y -computable well ordering is isomorphic to an X -

computable ordering, and vice versa. It is easy to see that ‘X ∈ Sp([Y ]E)’ is Σ1
1 .)

So, byΣ1
2 -Turing-determinacy, which follows fromΣ1

2 -determinacy, we have that
S contains a cone.

Relativize the rest of the proof to the base of this cone, and hence assume that
every real belongs to S . Take Y ∈ 2ω. We claim that

Sp([Y ]E) = {X ∈ 2ω : ωX
1 > ω

[Y ]
1 },

where ω[Y ]1 = min{ωW
1 : W E Y }. It is clear from the definition of ω[Y ]1 that,

if ω[Y ]1 > ωX
1 , then X computes no real E-equivalent to Y . Suppose now that

ω
[Y ]
1 6 ω

X
1 : we need to show that X computes a real E-equivalent to Y . Assume,

without loss of generality, that Y is such that ωY
1 = ω

[Y ]
1 (otherwise, replace it by

an E-equivalent real with this property).
The first step is to show that there exists a G satisfying

ωX
1 = ω

X⊕G
1 and ωG

1 = ω
G⊕Y
1 = ωY

1 .

Let us first show how we would use such a G. Since G ∈ S and ωG⊕Y
1 = ωG

1 , there
is a Y1 6T G such that Y1 E Y . Therefore ωY1⊕X

1 6 ωG⊕X
1 = ωX

1 . Since X ∈ S , X
computes Y2 such that Y2 E Y1, and hence Y2 E Y .

Now, we consider the existence of G: the proof is just a small modification of
the proof of [Mon13, Lemma 3.6], where the same is proved under the assumption
that ωX

1 = ω
Y
1 (which was also proved in [Har78, Lemma 2.10]). Let HY be a Y -

computable copy of ωY
1 · (1+Q) (the Harrison linear ordering relative to Y ), and

let HX be an X -computable copy of the same ordering, ωY
1 · (1 + Q). Let f be

an isomorphism between these two copies, and let g be a permutation of ω that
is hyperarithmetically generic relative to X , Y , and f . Let G be the pull-back of
HY through g. Exactly as in [Mon13, Lemma 3.6], we get that ωG⊕Y

1 6 ωY
1 by the

genericity of G, and that ωG
1 > ω

Y
1 because G computes a copy of ωY

1 · (1 + Q).
G is also the pull-back of HX through f ◦ g, which is a generic permutation of ω,
and hence ωG⊕X

1 6 ω f ◦g,X
1 6 ωX

1 .

It not hard to see that (H3) implies (H2).

Proof of (H2)⇒ (H1) in ZF. Suppose that there is a perfect tree R ⊆ 2<ω all of
whose paths are E-inequivalent. We need to show that, relative to every oracle
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on a cone, there is a hyperarithmetic real not E-equivalent to any computable
real. By relativizing the rest of the proof, assume that this oracle and R are both
computable.

First, let us observe that, for some α < ωC K
1 , all the paths through R are not

only E-inequivalent, but also Eα-inequivalent: for each X, Y ∈ [R] × [R] with
X 6= Y there is an ordinal β such that ¬(X Eβ Y ), namely the rank of T̂X,Y

plus 1 (where T̂X,Y is as in Lemma 2.1). Thus, T̂ gives us a computable map
from [R] × [R]r {(X, X) : X ∈ [R]} to the class of well-founded trees. By Σ1

1 -
boundedness (due to Spector [Spe55]), the ranks of these trees are all bounded
below some ordinal α ∈ ωC K

1 .
Let G be an (α + 1)-Cohen-generic real (i.e., it decides every Σ0

α+1 formula)
computable from 0(α+2), and let R(G) be the path through R following G at
every split. So R(G) is hyperarithmetic. We claim that it is not E-equivalent to
any computable real. Suppose it is, that X is computable, and that X E R(G).
Since all the paths are Eα-inequivalent, for any other path Z ∈ [R], Z 6= R(G),
we have that ¬(Z Eα X). The real G can then be defined as the unique real
such that R(G) Eα X , which is a Σ0

α+1 formula. By α + 1-genericity, there is
a condition p ∈ 2<ω forcing that G satisfies this formula. But then every other
α + 1-generic extending p would satisfy this formula too, contradicting the
uniqueness of G.

3. A reversal

In this section, we show that the use of Σ1
1 -determinacy in proving that (H1)

implies (H2) is not only sufficient but also necessary. We do not know, however,
if the use of Σ1

2 -determinacy in proving that (H1) implies (H3) is necessary.
Let us remark that, when E is a lightface-Σ1

1 equivalence relation, our proof
of (H1) ⇒ (H2) only uses lightface Σ1

1 -determinacy, which is equivalent to
the existence of 0]. Thus, have we already proved that (O2) implies (O1) in
Theorem 1.4.

Before proving the theorem, let us review a key lemma by Sami [Sam99]. First,
define

S = {Y ∈ 2ω : ∃Z ∈ 2ω (ωZ
1 = ω

Y
1 ∀W 6hyp Z (W 6T Y ))}.

Sami showed that, if S contains a cone, then 0] exists: he showed [Sam99,
Proposition 3.8] that, if S contains the cone with base C , then every C-admissible
ordinal is a cardinal in L , which then implies that 0] exists by a result of Silver
[Har78, Section 1].

Proof of (O1)⇒ (O2). To prove that 0] exists, we will prove that the set S above
contains a cone. For this, we will define a Σ1

1 equivalence relation E without
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perfectly many classes, and then show that the cone relative to which E satisfies
hyperarithmetic-is-recursive is contained in S .

Let R be the set of all reals coding a structure isomorphic to (Lα(A); ∈) for
some ordinal α ∈ ω1 and some A ⊆ ω. This set isΠ 1

1 , since to verify that a model
is a presentation of Lα(A) all one needs to do is check well foundedness, and then
check that each level is defined from the previous ones correctly.

Consider the equivalence relation E that holds of presentations of the structures
LαX (AX ) and LαY (AY ) if αX = αY and ωAX

1 = ω
AY
1 , and which lets all the reals

outside R be equivalent to each other. This relation isΣ1
1 , since R isΠ 1

1 , deciding
if αX = αY isΣ1

1 and deciding if ωAX
1 = ω

AY
1 is alsoΣ1

1 . This equivalence relation
has ℵ1 equivalence classes, one for each value of the pair (αX , ω

AX
1 ). Since this

is true in any model of ZF, E cannot contain perfectly many classes (because
having perfectly many classes is a Σ1

2 statement). So, by (O1), E must satisfy
hyperarithmetic-is-recursive on a cone, say with base C . Take Y >T C : we need
to show that Y ∈ S . For each α < ωY

1 there is a presentation of (Lα(Y ); ∈)
which is hyperarithmetic-in-Y . But then Y computes a real E-equivalent to this
presentation, that is, a presentation of (Lα(Z),∈) for some Z with ωZ

1 = ω
Y
1 . Let

α∗ be a presentation of the Harrison linear ordering [Har68] relative to Y , that is,
a Y -computable linear ordering isomorphic ωY

1 + ω
Y
1 ·Q. Let

P = {β ∈ α∗ : Y computes a presentation of (Lβ(Z); ∈)
for some Z with ωZ

1 = ω
Y
1 }.

This set is Σ1
1 (Y ) as, given β, checking that a structure is a presentation of

(Lβ(Z); ∈) is hyperarithmetic, and checking if ωZ
1 = ω

Y
1 isΣ1

1 . By our comments
before, the set P contains all β in the well-founded part of α∗, namely ωY

1 .
Therefore, by an overspill argument, P must contain some nonstandard β∗ ∈ α∗r
ωY

1 . Let Z ∗ be such that Y computes a copy of (Lβ∗(Z ∗); ∈). Every real W which
is hyperarithmetic in Z ∗ belongs to Lβ(Z ∗) for some β < ωY

1 and hence belongs
to this presentation of (Lβ∗(Z ∗); ∈) too. Therefore, W 6T Y . We have shown that
∀W 6hyp Z ∗ (W 6T Y )), as needed to get that Y ∈ S .
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