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ON THE BRÜCK CONJECTURE

TINGBIN CAO

(Received 12 May 2015; accepted 18 July 2015; first published online 2 October 2015)

Abstract

The Brück conjecture states that if a nonconstant entire function f with hyper-order σ2( f ) ∈ [0,+∞)\N
shares one finite value a (counting multiplicities) with its derivative f ′, then f ′ − a = c( f − a), where c is
a nonzero constant. The conjecture has been established for entire functions with order σ( f ) < +∞ and
hyper-order σ2( f ) < 1

2 . The purpose of this paper is to prove the Brück conjecture for the case σ2( f ) = 1
2

by studying the infinite hyper-order solutions of the linear differential equations f (k) + A(z) f = Q(z). The
shared value a is extended to be a ‘small’ function with respect to the entire function f .

2010 Mathematics subject classification: primary 30D35; secondary 34M10.
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equation.

1. Introduction and main results

In this paper, a meromorphic function is analytic at all points in the complex plane
except possibly at a set of poles. We say that two nonconstant meromorphic functions
f and g share a meromorphic function h provided that f (z) − h(z) = 0 if and only if
g(z) − h(z) = 0. The functions f and g share h CM if f − h and g − h have the same
zeros with the same multiplicities. In 1926, Nevanlinna [20] established the Second
Main Theorem concerning the counting function N(r, f ), proximity function m(r, f )
and characteristic function T (r, f ) of a meromorphic function f , and proved the five-
value theorem which states that two nonconstant meromorphic functions having the
same inverse images (ignoring multiplicities) for five distinct values in the complex
plane are identically equal. In 1977, Rubel and Yang proved the following result.

Theorem 1.1 [21]. Let f be a nonconstant entire function. If f and f ′ share two distinct
finite values CM, then f (z) ≡ f ′(z): that is, f (z) = cez, where c is a nonzero constant.

Example 1.2 [2]. It is easy to check that the entire function

f (z) = eez
∫ z

0
e−et

(1 − et) dt
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satisfies the equation
f ′ − 1
f − 1

= ez.

This means that f and f ′ share 1 CM. However, f , f ′. Thus the number of shared
values in Theorem 1.1 cannot be reduced to one.

This naturally leads to the following question.

Question 1.3 [2, 23]. What can be said when a nonconstant entire function f shares
one finite value CM with f ′?

The order and hyper-order of an entire function f are defined respectively by

σ( f ) = lim sup
r→+∞

log+ T (r, f )
log r

= lim sup
r→+∞

log+ log+ M(r, f )
log r

,

σ2( f ) = lim sup
r→+∞

log+ log+ T (r, f )
log r

= lim sup
r→+∞

log+ log+ log+ M(r, f )
log r

,

where log+ x means max{log x, 0} and M(r, f ) denotes the maximum modulus of f
on the circle |z| = r centred at the origin. Another entire function h is said to be
‘small’ with respect to f if T (r, h) = o(T (r, f )) as r→ +∞ (thus, |h(z)| = o(| f (z)|) as
|z| = r→ +∞ by the definition of the characteristic functions of the entire functions
of f and h). For example, polynomials are ‘small’ with respect to any transcendental
entire function.

Note that the function f in Example 1.2 satisfies σ2( f ) = 1. Similarly, one can
construct entire functions f satisfying the equations

f ′ − 1
f − 1

= ezn
where σ2( f ) = n ∈ N

f ′ − 1
f − 1

= eez
where σ2( f ) = +∞

(see [2]). In 1996, Brück [2] proposed the following conjecture.

Conjecture 1.4 [2]. Let f be a nonconstant entire function such that its hyper-order
is finite but not a positive integer. If f and f ′ share one finite value a CM, then
f ′ − a = c( f − a), where c is a nonzero constant.

The conjecture for the case a = 0 was affirmed by Brück [2]. In this case, we
have f = c1ecz, where c1 and c are two nonzero constants. In 1998, Gundersen and
Yang [11] affirmed the conjecture for the case where f is of finite order. Chen and
Shon [8] affirmed it when f is of hyper-order strictly less than 1

2 .
These conclusions on the Brück conjecture have been extended in two directions.

One replaces the shared value by a nonconstant function: Li [17, Corollary 1.4] proved
that the result of Gundersen and Yang [11] is true for a shared polynomial; Chang and
Zhu [5] considered the case where the order of a shared function is strictly less than
the order of f ; and Wang [22] showed that the conclusion of Gundersen and Yang [11]
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is true for a shared function that is ‘small’ with respect to f . In all these papers, the
order of f is finite.

The other direction is to consider the case of arbitrary kth derivatives f (k) instead of
f ′. Thus, Yang [23] and Chen and Shon [7] respectively extended the results of [11]
and [8] to kth derivatives f (k). In [9], Chen and Zhang considered the case where f
with hyper-order < 1

2 shares fixed points with f (k). Li and Gao [18, Theorem 1.2] and
Cao [3, Theorem 5.1] studied the case of a polynomial shared by f and f (k).

For meromorphic functions of finite order, the Brück conjecture fails in general.
For example [11], the meromorphic function f (z) = (2ez + z + 1)/(ez + 1) shares the
value 1 CM with f ′, while ( f ′ − 1)/( f − 1) is not a constant.

The main purpose of this paper is to confirm the Brück conjecture for the case when
the hyper-order of f is equal to 1

2 . Furthermore, the shared value is extended to entire
functions that are ‘small’ with respect to f .We obtain the following result on the Brück
conjecture, which improves and generalises all the results mentioned above.

Theorem 1.5. Let f be a nonconstant entire function with hyper-order ≤ 1
2 , and let a1

and a2 be entire functions that are ‘small’ with respect to f . If f − a1 and f (k) − a2 share
the same zeros with the same multiplicities, then f (k) − a2(z) = c( f − a1(z)), where c is
a nonzero constant.

Set f (z) = e2z − (z − 1)ez and a(z) = e2z − zez. Then T (r, a) = T (r, f ) = O(r), while
( f ′ − a(z))/( f − a(z)) = ez is not a constant (see [22]). This example shows that it is
necessary for a1, a2 to be ‘small’ functions with respect to f in Theorem 1.5.

The following corollary follows immediately from Theorem 1.5 for the special case
when a1 and a2 are the same constant.

Corollary 1.6. Let f be a nonconstant entire function with hyper-order ≤ 1
2 . If f shares

one finite value a CM with its kth derivative, then f (k) − a = c( f − a), where c is a
nonzero constant.

The Brück conjecture remains open when the hyper-order of f is in ( 1
2 ,+∞)\N.

To handle the case of hyper-order σ2( f ) = 1
2 in Theorem 1.5, we first study,

in Section 2, the infinite hyper-order solutions of the linear differential equations
f (k) + A(z) f = Q(z), where the hyper-order of A is less than or equal to 1

2 . Theorem 1.5
is proved in Section 3.

2. Results on the differential equations f (k) + A(z) f = Q(z)

In 1982, Bank and Laine [1] proved that any nonzero solution of the differential
equation f ′′ + A(z) f = 0 with a polynomial coefficient A is an entire function with
order σ( f ) = 1

2 (deg(A) + 2), where deg(A) denotes the degree of A. If A is a
transcendental entire function, then all solutions f of f ′′ + A(z) f = 0 satisfy σ( f ) =

+∞ by the lemma of the logarithmic derivative. For the nonhomogeneous linear
differential equation

f (k) + A(z) f = Q(z) (k ∈ N), (2.1)
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where k ≥ 2, Q(. 0) is an entire function of finite order and A is a transcendental
entire function, Chen and Gao [6] showed that every solution f is an entire function of
infinite order, with at most one possible exception.

Many authors concentrated on the special case when A has no zeros and every
solution of (2.1) is of infinite order. For example, in [11, 23] it was proved that every
solution of the differential equation

f (k) − eP(z) f = 1 (k ∈ N) (2.2)

is an entire function of infinite order when P is a nonconstant polynomial. In [24, 25],
Yang asked whether the hyper-order of every solution f of equation (2.2) is a positive
integer or infinite when P is a nonconstant entire function. It was shown later [3] that,
when Q is a nonzero polynomial and P is a nonconstant polynomial, every solution of

f (k) − eP(z) f = Q(z) (k ∈ N) (2.3)

has infinite order and its hyper-order is a positive integer less than or equal to the
degree of P. It follows from [18, Theorem 1.1] that the hyper-order of f is equal to
the degree of P. When P is a transcendental entire function with order < 1

2 and Q is a
nonzero polynomial, all solutions f of (2.3) have infinite hyper-order (see [3]).

For r ∈ [0,+∞), define exp1 r = er and expn+1 r = exp(expn r) for n ∈ N. For all r
sufficiently large, define log1 r = log r and logn+1 r = log(logn r) for n ∈ N. We also
write exp0 r = r = log0 r, log−1 r = exp1 r and exp−1 r = log1 r. As in [15, 16], the
p-iterated order σp( f ) and p-iterated convergent exponent λp( f ) of an entire function
f are respectively defined by

σp( f ) = lim sup
r→+∞

logp T (r, f )

log r
= lim sup

r→+∞

logp+1 M(r, f )

log r
,

λp( f ) = lim sup
r→+∞

logp N(r, 1/ f )

log r
.

The iterated order for an entire function f can also be defined by its central index (see
[4, Lemma 6]) as

σp( f ) = lim sup
r→+∞

logp ν(r, f )

log r
.

Also, as in [15, 16], the growth index of the iterated order of a meromorphic function
f is defined by i( f ) = 0 if f is rational and, for a transcendental function f ,

i( f ) =

{
min{p ∈ N : σp( f ) < +∞} if σp( f ) < +∞ for some p ∈ N,
+∞ if σp( f ) = +∞ for all p ∈ N.

In this section, we continue to consider (2.3) in cases where every solution has
infinite order. The first result is concerned with the case when Q is an entire function
that is ‘small’ with respect to the solutions and P is a nonconstant polynomial.
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Theorem 2.1. Let P be a nonconstant polynomial and let f be a nonzero entire solution
of the differential equation (2.3), where Q is an entire function that is ‘small’ with
respect to f . Then the hyper-order of f is equal to the degree of P.

Proof. Since P is a nonconstant polynomial, any solution f (. 0) of (2.3) is
transcendental. By the Wiman–Valiron theory (see, for example, [13, 16]), there exists
a subset E ⊂ (1,+∞) with finite logarithmic measure (that is

∫
E t−1 dt < +∞), such that

for some point zr = reiθ (θ ∈ [0, 2π)) satisfying |zr | = r < E and M(r, f ) = | f (zr)|,

f (k)(zr)
f (zr)

=

(
ν(r, f )

zr

)k
(1 + o(1)) (2.4)

as r→ +∞, where ν(r, f ) denotes the central index of the entire function f .
Since Q is an entire function that is ‘small’ with respect to f ,

|Q(z)|
| f (z)|

= o(1) (2.5)

as r→ +∞, for sufficiently large |z| = r < E. (We remark that if Q is identically equal
to zero, the proof will still work.)

We may assume that P(z) = anzn + an−1zn−1 + · · · + a1z + a0 is a polynomial with
degree deg(P) := n and an , 0. Then, for |z| = r,

|an|rn(1 − o(1)) ≤ |P(z)| ≤ |an|rn(1 + o(1)). (2.6)

On the one hand, it follows from (2.3) that∣∣∣∣∣ f (k)

f

∣∣∣∣∣ ≤ |Q(z)|
| f |

+ |eP(z)|. (2.7)

Substituting (2.4)–(2.6) into (2.7) gives

k log ν(r, f ) ≤ log
(
|Q(zr)|
f (zr)

+ e|P(zr)|
)

+ k log r + o(1)

≤ |P(zr)| + k log r + O(1)
≤ |an|rn(1 + o(1)) + k log r + O(1),

and thus

log log ν(r, f ) ≤ n log r + log log r + O(1)

for sufficiently large r = |zr | < E. Since M(r, f ) = | f (zr)|, we have σ2( f ) ≤ n = deg(P).
On the other hand, rewrite (2.3) as

eP(z) =
f (k)

f
−

Q(z)
f
. (2.8)

Taking the principal branch of the logarithm, (2.8) becomes

P(z) = log
( f (k)

f
−

Q(z)
f

)
= log

∣∣∣∣∣ f (k)

f
−

Q(z)
f

∣∣∣∣∣ + i arg
( f (k)

f
−

Q(z)
f

)
. (2.9)
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Substituting (2.4)–(2.6) into (2.9), we obtain

|an|rn(1 − o(1)) ≤ |P(zr)|

≤ log
∣∣∣∣∣ f (k)

f
(zr)

∣∣∣∣∣ + log
(∣∣∣∣∣Q(zr)

f (zr)

∣∣∣∣∣ + e
)

+ O(1)

≤ k log
ν(r, f )

r
+ O(1)

and thus

n log r ≤ log log ν(r, f ) − log log r + O(1)

for sufficiently large r = |zr | < E. Since M(r, f ) = | f (zr)|, we have deg(P) = n ≤ σ2( f ).
Therefore, σ2( f ) = deg(P). �

Next, we adapt the method of Rossi [19] to consider the case when the p-iterated
order of all solutions of (2.1) is infinite and A is a transcendental entire function with
i(A) = p and Q(. 0) is a ‘small’ function with respect to solutions f .

Theorem 2.2. Let A be a transcendental entire function with i(A) = p (0 < p < +∞),
and let f be an entire solution of the differential equation (2.1), where Q is a nonzero
entire function that is ‘small’ with respect to f . Then either σp( f ) = +∞ or

1
σp(A)

+
1

σp( f )
≤ 2.

In particular, if σp(A) ≤ 1
2 , then σp( f ) = +∞.

For the proof of Theorem 2.2, we introduce three lemmas as follows.

Lemma 2.3 [10]. Let f be a transcendental meromorphic function. Let α > 1 be a
constant and k, j integers satisfying k > j ≥ 0.

(i) There exist a set E1 ⊂ (1,+∞) of finite logarithmic measure and a constant K > 0
such that, for all z satisfying |z| = r < E1 ∪ [0, 1],∣∣∣∣∣ f (k)(z)

f ( j)(z)

∣∣∣∣∣ ≤ K
[T (αr, f )

r
(log r)α log T (αr, f )

]k− j
. (2.10)

(ii) There exists a set E2 ⊂ [0, 2π) of zero linear measure such that, if θ ∈ [0, 2π)\E2,

then there is a constant R(= R(θ) > 0) such that (2.10) holds for all z satisfying
arg z = θ and |z| ≥ R.

Let D be a region in C. For r ∈ R+, set θ∗D(r) = θ∗(r) = +∞, if the entire circle |z| = r
lies in D. Otherwise, let θ∗D(r) = θ∗(r) be the measure of the set of θ ∈ [0, 2π) such that
reiθ ∈ D.
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Lemma 2.4 [19]. Let u be a subharmonic function in C and let D be an open
component of {z : u(z) > 0}. Set ρ(u) := lim supr→+∞ log M(r, u)/log , r, where M(r, u)
is the maximum modulus of the function u on a circle of radius r. Then

ρ(u) ≥ lim sup
R→+∞

π

log R

∫ R

1

dt
tθ∗D(t)

. (2.11)

Furthermore, given ε > 0, define F = {r : θ∗D ≤ επ}. Then

lim sup
R→+∞

1
log R

∫
F∩[1,R]

dt
t
≤ ερ(u). (2.12)

Lemma 2.5 [19]. Let l1(t), l2(t) > 0 (t ≥ t0) be two measurable functions on (0,+∞)
with l1(t) + l2(t) ≤ (2 + ε)π, where ε > 0. If G ⊆ (0,+∞) is any measurable set and

π

∫
G

dt
tl1(t)

≤ α

∫
G

dt
t
, α ≥

1
2
,

then
π

∫
G

dt
tl2(t)

≥
α

(2 + ε)α − 1

∫
G

dt
t
.

Proof of Theorem 2.2. Since Q is a nonzero entire function that is ‘small’ with respect
to f and A is transcendental, (2.1) implies that f is transcendental. From

A(z) =
f (k)

f
−

Q(z)
f

and the basic Nevanlinna theory (see, for example, [12]),

T (r, A) = m(r, A) ≤ m(r, 1/ f ) + m(r,Q) + m(r, f (k)/ f ) + O(1)
= T (r, 1/ f ) − N(r, 1/ f ) + T (r,Q) + O(log(rT (r, f )))
= T (r, f ) − N(r, 1/ f ) + T (r,Q) + O(log(rT (r, f )))

for all sufficiently large r possibly outside a set F with finite linear measure. Since Q
is a ‘small’ function with respect to f ,

(1 + o(1))T (r, f ) ≥ T (r, A) + N(r, 1/ f ), r < F.

This implies that i( f ) ≥ i(A) = p and σp( f ) ≥ σp(A).
Now we may assume that σp( f ) < +∞. By Lemma 2.3(ii) and the definition of the

iterated order, there exists a constant C = C(ε) such that∣∣∣∣∣ f (k)

f
(reiθ)

∣∣∣∣∣ ≤ O
(T (αr, f )

r
(log r)α log T (αr, f )

)k
≤ expp−1(rC) (2.13)

for all r > r0 = R(θ) and θ < J(r), where J(r) is a set with zero linear measure. Note
that m(J(r)) < επ for any given ε > 0, which may be arbitrarily small.
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Let N ∈ N such that N > C = C(ε), and

logp M(2, A) < N log 2.

Since A is transcendental and +∞ > i(A) = p > 0, there exists z0 (|z0| > 2) such that

logp |A(z0)| > N log |z0|.

Let D1 be the component of the set {z : logp |A(z)| − N log |z| > 0} containing z0.
Observe that D1 is an open set. So, logp |A(z)| − N log |z| is subharmonic in D1 and
identically zero on ∂D1. If we define

u(z) =

{
logp |A(z)| − N log |z|, z ∈ D,
0, z ∈ C\D,

then u(z) is subharmonic in C with

ρ(u) ≤ σp(A). (2.14)

Set D2 := {z : logp | f (z)| − logp |Q(z)| > 0} and D3 := {reiθ : θ ∈ J(r)}. Observe that
if (D1 ∩ D2)\D3 contains an unbounded sequence {rneiθn}, then

expp−1(rN
n ) < |A(rneiθn )|

≤

∣∣∣∣∣ f (k)

f
(rneiθn )

∣∣∣∣∣ +
|Q(rneiθn )|
| f (rneiθn )|

≤

∣∣∣∣∣ f (k)

f
(rneiθn )

∣∣∣∣∣ + o(1)

≤ expp−1(rC
n ) + o(1)

holds for sufficiently large rn. But this contradicts N > C = C(ε). Thus, for arbitrary ε,
we may assume that (D1 ∩ D2)\D3 is bounded. This means that, for r ≥ r1 ≥ r0 (where
r0 is defined as above),

Kr = {θ : reiθ ∈ D1 ∩ D2} ⊆ J(r).

Therefore,
m(Kr) ≤ m(J(r)) < επ. (2.15)

(We remark here that the proof of Theorem 2.2 would now follow easily from (2.11)
and Lemma 2.5 if D1 and D2 were disjoint. As we shall see, (2.12), (2.13) and (2.15)
imply that these sets are ‘essentially’ disjoint.)

For j = 1, 2, define

l j(t) =

2π if θ∗D j
(t) = +∞,

θ∗D j
(t) otherwise.

Since +∞ > i(A) = p > 0 and Q is ‘small’ with respect to f , it follows that D1 and D2
are unbounded open sets. Thus, l1(t), l2(t) > 0 for t sufficiently large, and

l1(t) + l2(t) ≤ 2π + επ.
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Now let

α := lim sup
R→+∞

π

log R

∫ R

1

dt
tl1(t)

. (2.16)

Since l1(t) ≤ 2π, we have α ≥ 1
2 . If

π

∫ R

1

dt
tl1(t)

≤ α log R = α

∫ R

1

dt
t
,

then by Lemma 2.5,

π

∫ R

1

dt
tl2(t)

≥
α

(2 + ε)α − 1

∫ R

1

dt
t

=
α

(2 + ε)α − 1
log R,

and thus,

lim sup
R→+∞

π

log R

∫ R

1

dt
tl2(t)

≥
α

(2 + ε)α − 1
. (2.17)

For j = 1, 2, define B j = {r : θ∗D j
(r) = +∞}. If r ∈ B1 and r ≥ r1, then θ∗D2

(r) ≤ επ by
(2.15) and so B1 ⊆ {r : θ∗D2

(r) ≤ επ}. It follows from Lemma 2.4 that

lim sup
R→+∞

1
log R

∫
B1∩[1,R]

dt
t
≤ ερ(logp | f | − logp |Q|) ≤ εσp( f ). (2.18)

Let B̃ j := R+\B j for j = 1, 2. Then it follows from (2.11), (2.16), (2.18) that

ρ(u) ≥ lim sup
R→+∞

π

log R

∫ R

1

dt
tθ∗D1

(t)

= lim sup
R→+∞

π

log R

∫
B̃1∩[1,R]

dt
tθ∗D1

(t)

= lim sup
R→+∞

1
log R

·

[
π

∫ R

1

dt
tl1(t)

−
1
2

∫
B1∩[1,R]

dt
t

]
≥ α −

ε

2
σp( f ),

which together with (2.14) shows that

σp(A) ≥ α −
ε

2
σp( f ). (2.19)

By a similar discussion as above for B2 instead of B1, if r ∈ B2 and r ≥ r1, then
θ∗D1

(r) ≤ επ and B2 ⊆ {r : θ∗D1
(r) ≤ επ}. Then we obtain, also from Lemma 2.4, that

lim sup
R→+∞

1
log R

∫
B2∩[1,R]

dt
t
≤ ερ(u) ≤ εσp(A). (2.20)
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It follows from (2.11), (2.17), (2.20) that

σp( f ) ≥ ρ(logp | f | − logp |Q|)

≥ lim sup
R→+∞

π

log R

∫ R

1

dt
tθ∗D2

(t)

= lim sup
R→+∞

π

log R

∫
B̃2∩[1,R]

dt
tθ∗D2

(t)

= lim sup
R→+∞

1
log R

·

[
π

∫ R

1

dt
tl2(t)

−
1
2

∫
B2∩[1,R]

dt
t

]
≥

α

(2 + ε)α − 1
−
ε

2
σp(A).

Substituting (2.19) into the above inequality and eliminating α, gives

σp( f ) ≥
σp(A) + 1

2εσp( f )

(2 + ε)(σp(A) + 1
2εσp( f )) − 1

−
ε

2
σp(A),

where ε > 0 may be arbitrarily small. Letting ε→ 0 and rearranging yields

1
σp(A)

+
1

σp( f )
≤ 2.

�

From Theorem 2.2 and [15, Theorem 2.3], we have the following result.

Theorem 2.6. Let P be a transcendental entire function of order σ(P) ≤ 1
2 and f a

nonzero entire solution of the differential equation (2.3), where Q is an entire function
that is ‘small’ with respect to f . Then σ2( f ) = +∞.

Proof. Case 1. Q ≡ 0. Since P is a transcendental entire function, it follows from
[15, Theorem 2.3] that every nonzero solution f of (2.3) where Q ≡ 0 satisfies
i( f ) = 3 = i(eP) + 1, and thus σ2( f ) = +∞.

Case 2. Q . 0. Since P is an entire transcendental function with σ(P) ≤ 1
2 , we have

i(eP) = 2 and σ2(eP) ≤ 1
2 . Then it follows from Theorem 2.2 that all solutions f of (2.3)

satisfy σ2( f ) = +∞. �

3. Proof of Theorem 1.5

Since f is a nonconstant entire function with hyper-orderσ2( f ) ≤ 1
2 , and since a1,a2

are ‘small’ functions with respect to f , we have σ2(( f (k) − a2(z))/( f − a1(z))) ≤ 1
2 . By

the assumption that f (k) − a2 and f − a1 share 0 CM, it follows from the essential
part of the factorisation theorem for meromorphic functions of finite iterated order
[14, Satz 12.4], that

f (k) − a2(z)
f − a1(z)

= eP(z),

where P is an entire function with σ(P) = σ2(eP) ≤ 1
2 .
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We may assume that P is not a constant. Set F := f − a1, which is not identically
equal to zero. Then f (k) = F(k) + a(k)

1 and (2.3) becomes

F(k) − eP(z)F = Q(z),

where Q(z) := a2(z) − a(k)
1 (z) is an entire function that is ‘small’ with respect to F. Since

P is a nonconstant entire function with σ(P) ≤ 1
2 , it follows from Theorems 2.1 and 2.6

that σ2(F), and thus σ2( f ) is equal to a positive integer or infinite. This contradicts
the assumption of σ2( f ) ≤ 1

2 . Therefore, P must be a constant and consequently eP is
a nonzero constant. This completes the proof of Theorem 1.5.

4. Remark

Consider again the equation f (k) − a = c( f − a) for k ∈ N, where c is a nonzero
constant and a is a constant (or even a ‘small’ function of f ). Set F := f − a, so that

F(k) − cF = a − a(k).

By the Wiman–Valiron theory as in the proof of Theorem 2.1, it is not difficult to
see that all solutions of the differential equation F(k) − cF = Q, where Q is a ‘small’
function of F, satisfy σ(F) = k. Thus, Corollary 1.6 leads to the following result.

Theorem 4.1. There is no entire function f with hyper-order σ2( f ) ≤ 1
2 which shares

a finite value CM with its kth derivative f (k), unless the order of f satisfies σ( f ) = k.

We do not know whether there exists an entire function f with σ2( f ) ∈ ( 1
2 ,+∞)\N

that shares a finite value CM with its kth derivative f (k) and does not satisfy the linear
differential equation f (k) − a = c( f − a), where c is a nonzero constant.
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