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PROPER MORPHISMS AND EXCELLENT SCHEMES

BARBARA BELLACCINI

Introduction

Let /: X —> Y be a finite type morphism of locally noetherian schemes.
It is well known ([3, IV, 7.8.6]) that the excellent property ascends from
Y to X. On the other side there are counter-examples where X is ex-
cellent and Y is not. First of all it is easy to show that the condition
on chains of prime ideals does not descend (see [3, IV, 7.8.4]), even by
finite morphisms. Secondly in [2] it is produced an example where X is
excellent while Y is not a G-scheme (i.e. it has not the good properties
of formal fibers). However in [2] it is also proved that the property con-
cerning the openness of regular loci (the so called "J-2") descends by
finite type surjective morphisms. Therefore we are led to the following
question: When does the G-scheme property descend? I.e. what con-
ditions do we need on /? A reasonable condition is conjectured (in [2])
as the following: / is proper surjective. The aim of the present paper
is precisely to give an answer to such a question. What we really prove
is the following. If X is a G-scheme and J-2 (quasi-excellent), then the
same is true for Y, provided that / is proper surjective and moreover all
the residue fields of Y have characteristic 0. We remark that the result
is strongly based on Hironaka's desingularization for quasi-excellent
schemes defined over a field of characteristic 0.

I wish to thank Prof. Paolo Valabrega for several useful conver-
sations on the subject of this paper.

§0. Recalls and definitions

All rings are assumed to be commutative noetherian rings with unit
and all schemes are assumed to be locally noetherian.

1. We recall that a graded ring is a ring S with a direct decompo-
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sition of the underlying additive group, S = Θ~=o Sn9 such that SnSm c: Sn

for every n, m > 0.

An element of Sn is called a homogeneous element of degree n.

So is a subring of S and S+ = ®n>0 Sn is an ideal of S.

An ideal $ of S is homogeneous if it has a basis consisting of homo-

geneous elements.

A homogeneous ideal $ of S is irrelevant if V $ 2 S + and otherwise

it is relevant.

Since S is noetherian, S is finitely generated as an S0-algebra.

Convention: Once for all we assume that the graded SΌ-algebra S =

φ~= 0 Sn is generated over So by x0, , xn e Sl9 say S = S0[x0, -,xn].

2. Let Proj (S) = {ψ e Spec (S)/^β is a homogeneous relevant ideal}.

We can give Proj (S) a structure of scheme. For this construction and

for the properties of Proj (S) we refer to [4]. (See also [3, II] where homo-

geneous prime ideals are defined in a slightly different but equivalent

way).

3. The dimension of a scheme X, denoted by dim (X), is its dimension

as a topological space. If X = Spec (A) for a ring A, then the dimension

of X is the same as the Krull dimension of A and we shall write as

dim (A). If X = Proj (S) then dim (X) = d means that there exists a chain

Po Q Pi Q - - Q Pr oί relevant homogeneous prime ideals in S, while no

such chain of length r + 1 exists (see [3, II, 2.3.17]).

4. Let X be an integral scheme. We denote by φ(X) the function

field of X. For a ring A we shall write φ(A) instead of 0(Sρec (A)).

5. A ring A is quasi-excellent (QE for short) iff:

(i) A is a G-ring, i.e. the formal fibers of A are geometrically

regular.

(ii) A is J-2; i.e. the regular locus of Spec (A') is Zariski open when-

ever A; is any A-algebra of finite type.

A ring A is excellent if it is QE and universally catenary (UC for

short).

A scheme X is excellent (resp. QE) if there exists a covering of X

by open affine subsets Όt = Spec (At) such that At is excellent (resp. QE),

for each i.

For excellent rings and schemes we refer to [3, IV2] and [6, chap. 13].

6. Let /: X -> Y be a scheme morphism. / is proper if it is separated,

of finite type and universally closed. / is projective if it factors into a
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Yclosed immersion i\X->Pn

γ for some n, followed by the projection P\

Y (Py denotes the projective 7i-space over Y).

EXAMPLE. Let A be a ring, let S be a graded ring with So = A,

which is finitely generated by the elements of Sj as an S0-algebra. Then

the natural map Proj (S) —> Spec (A) is a projective morphism.

7. Remark. Let A be a ring. A scheme Y over Spec (A) is pro-

jective if and only if it is isomorphic to Proj (S) for some graded ring S,

where So = A, and S is finitely generated by the elements of Sj as an

S0-algebra ([4, II, 5.18]).

8. Let X, Y be two reduced schemes. A morphism /: X-> Y is bira-

tional if for every maximal point y e Y, f~ι{y] — {x} with x maximal point

of X and if the homomorphism between the residue fields k(y) -> k(x)

deduced by / is a bijection. ([3, IV, 6.15.4]).

If both X and Y are integral schemes, then the generic points of X

and Y correspond through / and the fraction fields of X and Y are iso-

morphic.

9. Let X be a reduced scheme. A scheme Y is a resolution of singu-

larities of X if there is a proper and birational morphism /: Y -> X and

Y is regular. If such Y exists, then we say that X is desingularizable.

10. We recall the following results on resolution of singularities due

to Hironaka ((a)) and Grothendieck ((b), (c)):

(a) Let X be a reduced noetherian scheme with all the residue fields

of characteristic 0. If X is QE then X is desingularizable.

(b) Let -X" be a locally noetherian scheme. If any integral finite

X-scheme is desingularizable, then X is QE.

(c) Let X be a locally noetherian scheme such that all the residue

fields of X have characteristic 0. If every closed integral subscheme of

X is desingularizable, then X is QE.

For more details see [5], [3, IV, 7.9.5] and also [7, Proposition 3.1.,

Example 3 and Theorem 3.2 with Remark 1],

§ 1 .

The present section is concerned with some preliminary results on

the graded S0-algebra S and on Proj (S). Mainly we will see when Proj (S)

and Spec (SQ) have the same dimension and when φ (Proj (S)) is a finite

algebraic extension of φ(S0).
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LEMMA 1.1. Let SQ be a domain and S = S0[xQ, , xn] a graded So-

algebra generated by x0, , xn e S^ Let f: Proj (S) -> Spec (So) be a scheme

morphism. Consider the following conditions:

(a) For each ί (0 < ί < n) and for each ψ e Proj (S) with xtS c= 5β, it

holds φ n S o ΐ (0).

(b) For each ί, S+ is a minimal prime ideal of xtS.

(c) There exists i such that S+ is a minimal prime ideal of xtS.

Then we have: (a) —> (b) —• (c).

Proof, (a) -> (b). By (a) it follows that there is an irrelevant ideal

& e Ass (XiS) such that Q ί l S 0 = (0). In fact assume the contrary and

consider V~xJS = Π5=i &J where Q, 6 Ass (xtS) for 1 < j < k. Then jQ, Π

5 0 ^ (0) for each 7 and Vx^S f) So Φ (0). But this means that there are

t e SQ, t Φ 0 and r e ΛΓ such that tr e ̂ S , and this is absurd because the

degree of V is zero if t e So while the elements of xtS have positive degree.

So there exists an irrelevant minimal prime ideal Cl of xtS with Cl Π

SQ — (0). But Cl 2 S+ because it is irrelevant and O c S + because Cl Π So

= (0). Therefore Q = S+.

(b) -> (c). Obvious.

LEMMA 1.2. Let S be a graded ring, with So domain, and assume

that f: Proj (S) -> Spec (So) is a surjective morphism. Then there exists a

homogeneous relevant prime ideal ψ0 of So such that the induced morphism

fr: Proj (S/Po) -> Spec (SQ) is again surjective.

Proof. Since (0) 6 Spec (So) and / is surjective, there exists ψQ e Proj (S)

such that φ o ΠS o = (0). Now consider the following diagram

Proj (S) f—> Spec (So)

Proj (SWά

where g is the closed immersion determined by the surjective homo-
morphism of graded rings S -> S/ψ0 a n d / / = / o ^ . Then/7 is surjective
because it is proper, hence closed and (0) e Im (/')•

PROPOSITION 1.3. Let So be a domain and let S = SQ [xQ, , xn] be a

graded domain generated by x0, , xn e Sj over So. Let f: Proj (S) ->

Spec(S0) be a surjective morphism. Consider the following conditions:

(d) dim (SO) = dim (Proj (S)).
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(e) ^(Proj (S)) is a finite algebraic extension of φ(S0). Then condition

(c) of 1.1 implies (d) and (d) implies (e).

Proof, (c) -> (d). The morphism /: Proj (S) -> Spec (So) is closed and

surjective so dim (Proj (S)) > dim (So) ([3, IV, 5.4.1 (ii)]). Now we dis-

tinguish two cases:

(i) dim (So) = + oo. Then, by the foregoing inequality, dim (Proj (S))

= + oo, that is (d) holds.

(ii) dim (So) jg + °°. Then it is enough to verify the inequality

dim (Proj (S)) < dim (So). It is clear that (ii) implies dim (S) <^ + oo.

Let £} = (xQ9 , xn), then ht (Q) < 1 by (c). But Q =£ (0) implies

ht(sθ) = 1 by the hypothesis that S is a domain.

Now we prove that dim (S) = dim (So) + 1. We have dim (S) —

dim (S/G) > ht (£>) ([6, Sec. 12. A]), that is, dim (S) - dim (So) > ht (Q) - 1.

On the other hand, we compute the dimension of the fiber of the natural

morphism ψ\ Spec (S) -> Spec (So) over the generic point (0) e Spec (So),

i.e. dim (φ(S0)[x09 , xn]) = dim (φ(S0)[xQ9 , xj/(xo, , Λn)) + ht (x0, , xn)

= 1 ([6, Sec. 14. H]). Since we have dim (S) - dim (So) < dim (0(SO)[*O, ,

xj) ([4, II, Example 3.22]) we get dim(S) < dim (So) + 1, hence dim(S) =

dim (So) + 1.

On the other hand, since Proj (S) is a topological subspace of Spec (S),

it is true that dim (Proj (S)) < dim (S). If we show that dim (S) Ξg

dim (Proj (S)), then by the foregoing inequality, we may deduce dim (Proj (S))

= dim (So).

Now, let q0 Q Q qr be a maximal chain of homogeneous primes

of Proj (S) such that dim (Proj (S)) = r. Consider the ideal q' of S generated

by qr and x0, , #n. Then q; is proper and different from qr, because

otherwise x0 = = xre = 0, but in this case Proj (S) = 0 and so

dim (Proj (S)) < dim (So). Let ^ be a minimal prime ideal of q'. Then

q0 Q Q qr Q ψ is a chain of Spec (S), that is dim (S) > r + 1 >

dim (Proj (S)).

(d) -» (e). Since /: Proj (S) -> Spec (So) is a surjective morphism of

integral schemes of the same dimension by (d), the fiber over the generic

point of Spec (So) has dimension 0 and hence it is finite. By [4, II, Example

3.7], it follows that ^(Proj (S)) is a finite field extension of

PROPOSITION 1.4. Let So be a domain and let S = S0[x0, , xn] be a

graded domain generated by x0, , xn e Sj over So. Let f: Proj (S) ->
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Spec (SO) be a surjective morphism. If the condition (e) of 1.3 holds then

there exist a finite extension S'o of So and a proper birational morphism g:

Proj (S) -> Spec (So) such that the following diagram

Proj (S) 1 > Spec (So)

\

Spec (S'o)

is commutative.

Proof Observe that, if we define a finite extension So of So such that

there exists a morphism g: Proj(S) —> Spec (So) which makes the diagram

commutative, then we deduce that g is proper. In fact, since / (=hog)

and h are proper (in addition h is finite), g is also such ([4, II, 4.8. (e)]).

Now we have to define So such that g is birational too. Consider

the integral closure X" of Spec (So) in Proj (S) ([3, II, 6.3]). Then X" is

an affine scheme Spec (S"), because the morphism h': X" -> Spec (So) is

integral. Moreover there is a natural morphism g': Proj (S) -> X". So is

a suitable subring of S". In fact, let L = 0(Proj (S)) and K = φ(S0), then

by (e) it follows that L — K[t19 , tm], where tt is algebraic over K for

i = 1, , m. Let ft(X) be the minimal polynomial of tt over K (1 < i <

m), then it holds ft(Q = %* + (anlbn)tsrl + + (aisJbίSi) = 0 where aij9

bij e So for 1 < j < st. Multiplying this equation by (bn bis)
Si = 6{', it

becomes an equation of integral dependence for b^ over So. Put S$ =

S0[6i^i, , bmtm]. Then S$ is finite as an S0-module and clearly φ(S'o) =

^(Proj (S)). Moreover there is a morphism gn\ Spec (SJO -> Spec (SJ). If

we put ̂  = g" °g\ then ^ is a proper and birational morphism.

§2.

Here we prove our main theorem on descent of excellent property by

proper surjective morphisms.

THEOREM 2.1. Let Y be a locally noetherian scheme defined over a field

of characteristic 0. Suppose f: X-+Y is a proper surjective scheme morphism,

then X is QE if and only if Y is QE.

Proof. The "if" part is clear by definition (see [6 chap. 13]). Con-

versely, in our hypothesis we may apply 2.3 of [2] and we deduce that Y

is J-2. So it is enough to show that Y is a G-scheme.

We verify that we may assume:
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1) Y is affine, say Y = Spec (So).

2) SQ in 1) is a domain.

3) So is local.

1) In fact, if {VJ is an open affine covering of Y and Ut =/- 1 (y . ) r

then /IL.: Ut -> Vt is proper ([4, II, 4.8]) and surjective (since / is surjective

it follows fif'^UJ) = Vt). Vt satisfies the hypotheses and Ut is QE for

any L Hence it suffices to prove that Vi is QE, but this means that we

may assume Y = Spec (So).

2) It is known that Y = Spec (So) is a G-scheme if and only if Spec (SJψ)

is a G-scheme for every $β e Spec (So) with ht ($β) = 0.

Let ?fi e Spec (So) with ht 0β) = 0. For proper and surjective morphism

/: X —> Spec (So), let /' be the morphism obtained from / by the base ex-

tension h: Spec (So/$) -> Spec (So), where Λ is finite. Now consider the

following diagram

Spec (So)

where X' = X ®Spec()So) Spec (So/^) Then /' is proper and surjective (such

properties are stable under base extension by [3, II, 5.4.2 and I, 3.5.2]) and

X/ is QE because h', obtained from h by the base extension /, is finite

and X is QE by hypothesis. Hence it follows that we may assume So is

a domain.

3) Proceeding similarly to point 2)—that is using the fact that our

properties are stable under base extension—we show that So may be taken

local.

It is known that So is a G-ring if and only if (S0)m is a G-ring for

every m e Max (So). For /: X-> Y = Spec (So), let / ' be the morphism ob-

tained from / by the base extension h: Spec ((S0)m) -> Spec (So), where h is

a morphism essentially of finite type. We have

X—^->Spec(S 0 )

„ v
X'

where X' = X ®Spec(s0) Spec ((So)«) Then /' is proper and surjective and

X' is QE because h! is essentially of finite type. So we may assume that

So is local.
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Summarizing, we have a proper and surjective morphism f: X-> Y

where X is QE and Y — Spec (So) with So a local domain. In this case

we may apply 5.6.2 of [3, II] and we find a projective scheme X' over

Spec (So) and a morphism g: Xr -> X projective and surjective. The scheme

X1 is isomorphic to Proj (S) for some graded ring S (Remark 7). Then

Proj (S) is QE because this property ascends by g, and h = fog: Xf —> Y

is surjective because it is the composition of two surjective morphisms.

By 1.2 we may replace S by S/$β0 for a suitable $β0 e Proj (S) and assume

that S is a domain. Now it is enough to show the theorem with X =

Proj (S) and Y = Spec (So), where So is a local domain and S = S0[x0, ,

xn] is a domain.

We proceed by double induction with respect to {n, d) where n is the

number of minimal generators of S over So and d = dim (SQ). Note that

assuming So local it holds dim (So) ^ + co and so the proof by induction

covers all the cases.

For (0, d) it holds S = S0[x0]. If we prove that x0 is transcendental

over So, then we see that S is isomorphic to S0[X0] with XQ indeterminate

and Spec (So) is isomorphic to Proj (S).

We show by absurdity that x0 is transcendental over So. So suppose

that we have an equation a0 + axxQ + a2x
2

0 + + amx^ = 0 of algebraic

dependence for x0 of minimal degree m with at e So. Then a0 e So Π (x0) =

(0), i.e. α0 = 0. But this means that x0 is a zero-divisor, and this is im-

possible because S is a domain.

For {n, 0), it follows immediately that So is QE. In fact it is a field.

Assuming that the theorem is true for (n — 1, d) and (n, d — 1), we

prove it for (n9 d). We distinguish two cases:

Case 1. There exist ί (0 < i < ή) and φ e Proj (S) with xtS c; φ such

that $ Π So = (0). Take such a ψ e Proj (S) and consider the quotient

S/Sβ. The surjective homomorphism of graded rings S -> S/$β gives rise

to a closed immersion g: Proj (S/$β) -> Proj (S) which, in particular, is of

finite type, hence the QE property ascends to Proj (S/ψ)) from Proj (S).

Consider the following commutative diagram

Proj ( S ) — ^ Spec (So)

Proj
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Obviously h is projective ([4, II, Example 4.8.1]). Moreover, in our

case, the prime ideal (0) of So belongs to Im (h) and, since h is closed, we

have (D) c: Im (h), that is h is surjective.

Applying now the inductive hypothesis we get that So is QE. (In

fact xt e ψ hence the number of generators of S/$β over So is strictly less

than n.)

Case 2. For each i (0 < i < n) and for each ψ e Proj (S) with xβ c φ,

it holds that φ Π So =£ (0). In that case condition (a) of 1.1 holds. Then

applying 1.1, 1.3, and 1.4, we have a ring So finite over So and a proper

birational morphism g: Proj (S) -» Spec (So). Moreover the morphism h:

Spec (So) —> Spec (So) defined in 1.4 is finite and surjective. Hence by [2,

1.3], it suffices to verify that S'o is a G-ring. We recall that So and S'o
have the residue fields of characteristic 0. So, in order to see that So is

a G-ring, it is sufficient to verify that every closed integral subscheme of

Spec (So) is desingularizable. (See 0.10 (c)).

First prove that So is desingularizable. In fact Proj (S) satisfies the

hypothesis of Hironaka's theorem (0.10 (a)) and it is desingularizable. Let

Z be a resolution of Proj (S), then, through the morphism g: Proj (S) -»

Spec (So), Z resolves also Spec (So).

Now we see that every integral quotient S'Q/ψ is desingularizable.

For ψ e Spec (S'Q), put p = Sβ Π So. Then ψ Φ (0) implies p = ψ f] So Φ (0)

because So is integral over So. For the morphism /: Proj (S) -> Spec (So)

take the base extension ψ: Spec (S0/p)-> Spec (So) and consider the follow-

ing diagram

/

Prόj(S) g > Spec (gθ h > SpeΨc (So)

Proj (S ®So Solp) -£-> Spec (S'JpSζ) -£-» Spec (SJp)
I t

/'

where the morphism /' and h! are obtained by φ respectively from / and

h. Then /' is a surjective and projective morphism by [3, II, 5.6.5. and I,

3.5.2.] and Proj (S®S o S0/ί>) is clearly QE. Since p Φ (0), we have dim (&,/£)

^ dim (So) and applying the inductive hypothesis, we deduce that S0/p is

QE. Moreover since hf is finite ([3, II, 6.1.5]) the QE property passes

from Solp to S^So* and from SJ/JDS^ to the quotient S$/φ Oβ 3 pSJ). There-

fore, by Hironaka's theorem, So/̂ 5 is desingularizable. This concludes our
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proof: We have seen that So is a G-ring, so also So is a G-ring, hence QE.

Remark 2.2. We need in our proof of the fact that Proj (S) is desingu-

larizable. Therefore we use both the G-scheme and the J-2 properties.

We are not able to make the G-scheme property descend separately.

Remark 2.3. The UC property does not descend by proper surjective

morphisms. See [3, IV, 7.8.4].
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