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Existence theory

for the complex nonlinear

complementarity problem

J. Parida and B. Sahoo

The main result in this paper is an existence theorem for the

following complex nonlinear complementarity problem: find z

such that

g{z) € S* , z € S ,

Re (^(s), z) = 0 ,

where 5 is a polyhedral cone in u , S* the polar cone , and

g is a mapping from (P into itself. It is shown that the

above problem has a unique solution if the mapping g is

continuous and strongly monotone on the polyhedral cone S .

1. Introduction

In a recent paper [4], the authors have shown that if g : <J •+ u is

continuous and monotone on the polyhedral cone S c. C and if there is a

u € S with g(u) € int 5* , then the nonlinear complementarity problem

g(z) € S* , z € S ,
(1.1)

Re (0(2), z) = 0 ,

has a solution. The solution is unique if g is strictly monotone on S .

In this paper, we are concerned mainly with the problem of the

existence and uniqueness of a solution to (1.1) under coercivity conditions
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on the mapping g . I t i s shown that ( l . l ) has a unique solution i f g i s

continuous and strongly monotone on the polyhedral cone S c Cr . Further,

assuming that g i s analytic on an open convex set containing S , some

existence resu l t s have also been obtained by res t r i c t ing the growth of the

jacobian matrix J (s) of g . Through our r e s u l t s , some well-known

theorems proved by Mond [2] in the complex l inear case, and Karamardian [7]

and More [3] in the rea l case are carried over to nonlinear mappings in

complex space.

2. Notations and d e f i n i t i o n s

Let Cr [ifj denote the n-dimensional complex [real] space, with

hermitian [euclidean] norm. R^ = \x ? IT : x . > 0, 1 £ •£ £ n> denotes the

non-negative orthant of It . If A i s a complex matrix or vector, then
rp TJ

A , A , and A denote its transpose, complex conjugate, and conjugate

transpose. For x, y € Cr , (x, y) = y x denotes the inner product of x

and y . For an analytic mapping g : Cr -*• Cr , J (s) denotes the

9
jacobian matrix of g a t z .

A nonempty set S c Cr i s a polyhedral cone i f for some posit ive

integer k and A € C ,

S = {Ax : x £ R\) .

The polar of S i s the cone S* defined by

S* = {y € d1 : x € S =* Re(x, y) > o} .

Let S be a polyhedral cone in (f . For a scalar p > 0 , we denote

s(p) = {Ax : x . = p , l £ - t £ f e } , where A and k determine the cone S .

For any z = Ax € S , we write z £ zip) i f llxll^ £ p , and z < zip) i f

IML < P » where HxĤ  = max{1^1 : 1 £ i £ fe} .

A mapping g : Cr ->• Cr i s said to be monotone on S i f

Re^CxJ-g-Cy), x-i/) 5 0 for each x, y € S , and s t r i c t l y monotone i f the
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s t r i c t inequality holds whenever x # y .

A mapping g : (j -»• u i s said to be strongly S-monotone i f there

exists a scalar a > 0 such tha t , for a l l x, y € 5 with x-y € 5 ,

(A) Re{g(x)-g(y), x-y) > a\\x-yf ,

where ||«|| denotes the hermitian norm. It is said to be strongly monotone

on S if (A) holds for all x and y in 5 .

An n x n matrix M(z) , whose elements m. .(z) are functions

defined on S c c" , is said to be strongly positive definite on 5 if

there exists a scalar c > 0 such that, for every z € S ,

Re(jyHM(z)y) > c\\yf

for all y € d1 .

3. An existence theorem for the nonlinear complementarity problem

We shall make use of the following resu l t s obtained in [4 ] .

THEOREM 3.1. Let g : (P •* d1 be a continuous mapping on the

polyhedral cone S c u . If there are vectors z(p) , u € S 3 with

u < z(p) such that Re[g(z), z-u) 2 0 for all z = Ax in S with

llxll^ = p , then there is a z < z(p) in S with Re(3(2 ) , z-z ) 2 0

for all z € 5 .

LEMMA 3.2. Let S be a polyhedral cone in Cr , and let

g : Cr -*• (r be continuous on S . If there is a z € S such that

'Re[g[z ) , z-z ) > 0 for all z € S , then z is a solution to ( l . l ) .

We now prove a lemma which plays an important role in establishing our

main existence and uniqueness theorem.

LEMMA 3.3. Let g : u -*• d1 be a continuous function on the

polyhedral cone S c (f1 . If there ie a u € 5 with

(3-D lim
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then we can find a scalar p > 0 such that u < z(p) , and for all z = Ax

in S with Hxll̂  = p ,

(3.2) RefoU), z-u) > 0 .

Proof. Let u 6 S satisfy (3 .1) . This implies that there i s a

vector v i S such that ||u|| > ||u|| , and Re[g(z), z-u) > 0 for a l l z

in S with llsll > ||u|| . Since S i s a polyhedral cone, there exist a

posit ive integer k and a matrix A € c"* such that 5 = {Ax : x € R^} .

If v = At , t e flj , set a = 11*11̂  and

3 = min \\y\\ ,
yZV

where V = {Ax € S : Hxll̂  = a} . Now choose p = a||w||/6 • By the

defini t ion of p , i t i s clear that u < z(p) , and for a l l z = Ax € 5

with 11*11,,, = P , we have ||z|| > ||u|| . The resu l t of the lemma i s then

obvious.

Now we are ready to establish the following existence and uniqueness

theorem.

THEOREM 3.4. Let g : Cr •* u he a continuous mapping on the

polyhedral cone S , and assume that g is strongly monotone on S . Then

there is a unique solution to (1.1) .

Proof. Since g i s strongly monotone on S , there i s a scalar

a > 0 such t ha t , for x and y in S ,

(3-3) Ke{g(x)-g(y), x-y) > c\\x-y\\2 .

I f we s e t y = 0 i n ( 3 . 3 ) , then we have

(3.U) 1 4 ' - 1 4

Since by the Schwarz inequality,

Be(ff(0), x) <

from (3.U) we obtain

,al Refg(0),xl ,, ,,

' - 1 4 + e||x" •

and consequently the hypothesis of Lemma 3.3 is satisfied by g(z) with
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u = 0 . The existence of a solution to (1.1) then follows from Theorem 3.1

and Lemmas 3.2 and 3.3. Since strong monotonicity implies strict mono-

tonicity, uniqueness follows from Remarks U.3 of [4].

REMARKS 3.5. If g(z) is defined by g(z) = Mz + q for some matrix

M and q € C , then g is strictly monotone on S if M is positive

definite. Thus, strictly monotone functions are nonlinear versions of

positive definite matrices. Although the uniqueness part of Theorem 6 of

Mond [2] in the linear complementarity problem on positive definite

matrices extends to the nonlinear strictly monotone functions, it is not

known whether this is the case for the existence part. However, Theorem

3-h extends these results to the nonlinear strongly monotone functions

which are necessarily strictly monotone.

An n * n matrix M is said to be strictly copositive with respect

to S e c " if Re[zHMz) > 0 for all z € S . It is easy to see that if

g(z) = Mz + b , where M is strictly copositive with respect to 5 , then

g satisfies (3.1) with u = 0 . In that case, the linear complementarity

problem

s € S , Mz + b € S* ,
(3.5)

Re(/(Afe+2>)) = 0

possesses a solution, but uniqueness is not assured.

If S = if and g : R -*• it is a continuous mapping on if , then

Theorem 3.It reduces to the result of Karamardian [7, Theorem 2.1]. In [3],

More has extensively studied coercivity conditions in nonlinear

complementarity problems in real n-space. It is to be noted that in this

section an effort is made to extend some of his results to nonlinear

mappings in complex space.

4. The nonlinear complementarity problem with positive definite jacobians

In what follows, we shall always assume that g : u •*• d1 is analytic

on (J and that its jacobian matrix J (z) is positive definite at some

or all points z € (f1 .

We shall make use of the following two lemmas.
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LEMMA 4.1. Let g : S •* (f1 be analytic on S . Let J (2) be its

jacobian matrix at z $. S , and let M{z) be the hermitian part of

JQ(z) . If 01(2) is the smallest eigenvalue, which is necessarily real,

of M{z) , then J (2) is strongly positive definite on S if, and only
9

if, there exists a scalar c > 0 such that 0(2) > c for all 2 € S .

Proof. Note that J (2) is strongly positive definite if, and only

if, M{z) is strongly positive definite in the usual sense of the term.

This follows since only the hermitian part of a complex matrix contributes

to the real part of its quadratic form. It can be checked that a hermitian

matrix is strongly positive definite if, and only if, its eigenvalues are

positive and bounded below by a positive scalar. The assertion of the

lemma follows by taking a to be the least of all such lower bounds as z

varies over the whole of S .

LEMMA 4.2. Let g : K c (f1 -+ (f1 be analytic on the open convex set

K . Let J (2) be its Jacobian matrix at z € K . Then g is strongly

monotone on K if J (2) is strongly positive definite on K .

Proof. Consider the scalar function <p : [0, 1] •*• CT defined as

Ct.l) <p(X) = (x-y)Hg[\x+(l-\)y) •

From C+.l) and the analyticity of g , we have

ik.2) (p(l) - cp(O) = (x-y)H[g(x)-g(y)) ,

(It.3) cp'(X) = (x-y)HJ (\x+(l-\)y)(x-y) .

y

Since K i s convex, x, y £ K implies that Xx + (l-\)y € K for a l l

0 £ X £ 1 . From the strong positive definiteness of J (2) on K , we

then have

(h.k) Re{x-yfj(\x+(l-\)y)(x-y) > c\\x-y\\2

for a l l x, y € K and a l l 0 £ X £ 1 . But
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(1
(h.5) Re <p'(X)cZX = Ee(cp(l)-<p(O)) .

J0

Finally, from (k.2)-(h.5), it follows that g is strongly monotone on K .

THEOREM 4.3. Let g : K c c" -*• (? he analytic on the open convex

set K z> S . If all the eigenvalues of the hermitian part of the jacobian

matrix J (2) of g are bounded below by a positive scalar for all
3

z € S , then there exists a unique solution to (1.1).

Proof. The result follows from Theorem 3.!+ and Lemmas l+.l and k.2.
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