DISK-LIKE FUNCTIONS

RICHARD J. LIBERA *

(Received 4 November 1968)
Communicated by E. Strzelecki

1. Introduction

The class \mathscr{S} of functions $f(z)$ which are regular and univalent in the open unit disk $\Delta=\{z:|z|<1\}$ each normalized by the conditions

$$
\begin{equation*}
f(0)=0 \quad \text { and } \quad f^{\prime}(0)=1 \tag{1.1}
\end{equation*}
$$

has been studied intensively for over fifty years. A large and very successful portion of this work has dealt with subclasses of \mathscr{S} characterized by some geometric property of $f[\Delta]$, the image of Δ under $f(z)$, which is expressible in analytic terms. The class of starlike functions in \mathscr{S} is one of these [3]; $f(z)$ is starlike with respect to the origin if the segment $[0, f(z)]$ is in $f[\Delta]$ for every z in Δ and this condition is equivalent to requiring that

$$
\begin{equation*}
z f^{\prime}(z) / f(z) \tag{1.2}
\end{equation*}
$$

have a positive real part in Δ.
In this note the class of 'disk-like' functions is introduced by placing restrictions on the behavior of the imaginary part of (1.2) and a representation formula for these functions is given in terms of Robertson's functions which are starlike in one direction [4].

2. The class \mathscr{D}

In the definition which follows the notation $g(t) \in \uparrow(a, b)$ means that $g(t)$ is strictly increasing in the interval $a<t<b . g(t) \in \downarrow(a, b)$ has a similar meaning.

Definition 1: $f(z)$ is regular in Δ, satisfies (1.1) and $f(z) \neq 0$ for z in Δ unless $z=0 . f(z)$ is disk like with respect to the origin in Δ, or $f(z) \in \mathscr{D}$, if and only if one of the following conditions is satisfied:
i) There exists a constant $\rho=\rho(f(z))>0$ and two functions $\theta_{k}(r)=$ $\theta_{k}(r ; f(z)), k=1,2 ; 0<\theta_{2}(r)-\theta_{1}(r)<2 \pi$; such that for $\rho<r<1$ $\left|f\left(r e^{i \theta}\right)\right| \in \downarrow\left(\theta_{1}(r), \theta_{2}(r)\right)$ and $\left|f\left(r e^{i \theta}\right)\right| \in \uparrow\left(\theta_{2}(r), \theta_{1}(r)+2 \pi\right)$.

* This work was supported by National Science Foundation Grant NSF-GP-7439.
ii) $f(z)$ is regular in $\bar{\Lambda}$, the closure of Δ, and there exist real numbers θ_{1} and $\theta_{2}, 0<\theta_{2}-\theta_{1}<2 \pi$, such that

$$
\begin{equation*}
\left|f\left(e^{i \theta}\right)\right| \in \downarrow\left(\theta_{1}, \theta_{2}\right) \quad \text { and } \quad\left|f\left(e^{i \theta}\right)\right| \in \uparrow\left(\theta_{2}, \theta_{1}+2 \pi\right) \tag{2.2}
\end{equation*}
$$

Functions in \mathscr{D} are not necessarily univalent; \mathscr{D}^{\prime} will denote the class of univalent members of \mathscr{D}, i.e., $\mathscr{D}^{\prime}=\mathscr{D} \cap \mathscr{S} . \theta_{1}(r)$ may be chosen so that $0 \leqq \theta_{1}(r)$ $<2 \pi$ and a similar choice can be made for θ_{1} in (ii). Hereafter, unless otherwise implied, $f(z)$ in \mathscr{D} will satisfy part (i) of the definition as this is no restriction on the development.

A subclass of \mathscr{D}, the circularly symmetric functions, was introduced earlier by Jenkins [1] and has appeared in the recent investigations of Krzyż and Reade [2]. Tammi [5] has obtained distortion theorems and coefficient bounds for functions defined in terms of restrictions on the quotient (1.2).

A geometric interpretation of the conditions of Definition 1 may be given. Let $f(z), \rho, \theta_{1}(r)$ and $\theta_{2}(r)$ satisfy (i), let $\left|f\left(r e^{i \theta_{1}(r)}\right)\right|=R_{1}(r)$ and $\left|f\left(r e^{i \theta_{2}(r)}\right)\right|=$ $R_{2}(r)$ and let C_{r}, the image of $|z|=r$ under $f(z)$, enclose a domain D_{r}. Then C_{r} is contained entirely in the annulus $R_{2}(r) \leqq|w| \leqq R_{1}(r)$ and C_{r} intersects every circle $|w|=R, R_{2}(r)<R<R_{1}(r)$, exactly twice (perhaps in the same point) for $\rho<r<1$. If for $R_{2}(r)<R<R_{1}(r)$ we let $\Phi_{1}(r ; R)$ and $\Phi_{2}(r ; R)$ be the arguments, chosen to be unique by continuity, of the intersection of $|w|=R$ with the arcs $\left\{f\left(r e^{i \theta}\right) \mid \theta_{1}(r)<\theta<\theta_{2}(r)\right\}$ and $\left\{f\left(r e^{i \theta}\right) \mid \theta_{2}(r)<\theta<\theta_{1}(r)+2 \pi\right\}$, respectively, then D_{r} contains the arc $\operatorname{Re}^{i \Phi}, \Phi_{2}(r ; R)<\Phi<\Phi_{1}(r ; R)$. It is clear that $f(z)$ is not univalent in Δ if there exist r and R such that $\Phi_{1}(r ; R)-\Phi_{2}(r, R) \geqq 2 \pi$ for all choices of arguments. On the other hand $f(z)$ is univalent in Δ whenever $0<\Phi_{1}(r ; R)-\Phi_{2}(r ; R)<2 \pi$ for all admissible r and R and appropriate $\Phi_{1}(r ; R)$ and $\Phi_{2}(r ; R)$, and conversely; hence $f(z) \in \mathscr{D}^{\prime}$, or $f(z)=z$, if and only if every circle centered at the origin meets $f[\Delta]$ in a single, non-overlapping arc or not at all. This gives rise to the following observation which we will use: $f(z)$ is univalent for $|z| \leqq r$ if the plane can be cut from $f\left(r e^{i \theta_{2}(r)}\right)$ to ∞ by a curve which does not meet C_{r} in any point other than $f\left(r e^{i \theta_{2}(r)}\right)$.

Returning now to the definition, we see that for $\rho<r<1$, (2.1) can be written as

$$
\begin{align*}
& \frac{\partial}{\partial \theta}\left|f\left(r e^{i \theta}\right)\right|<0 \tag{2.3}\\
&>0 \text { for } \theta_{1}(r)<\theta<\theta_{2}(r) \\
& \text { for } \theta_{2}(r)<\theta<\theta_{1}(r)+2 \pi
\end{align*}
$$

or as

$$
\begin{align*}
\frac{\partial}{\partial \theta} \log \left|f\left(r e^{i \theta}\right)\right|<0 & \text { for } \theta_{1}(r)<\theta<\theta_{2}(r) \tag{2.4}\\
>0 & \text { for } \theta_{2}(r)<\theta<\theta_{1}(r)+2 \pi
\end{align*}
$$

Because

$$
\operatorname{Re}\left\{\frac{\partial}{\partial \theta} \log f(z)\right\}=\operatorname{Re}\left\{\frac{d}{d z} \log f(z) \cdot \frac{d z}{d \theta}\right\}=\operatorname{Re}\left\{i \frac{z f^{\prime}(z)}{f(z)}\right\}=-\operatorname{Im}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}
$$

for $z=r e^{i \theta},(2.2)$ is equivalent to

$$
\operatorname{Im}\left\{\frac{r e^{i \theta} f^{\prime}\left(r e^{i \theta}\right)}{f\left(r e^{i \theta}\right)}\right\}>0 \quad \begin{array}{ll}
>0 & \text { if } \theta_{1}(r)<\theta<\theta_{2}(r) \tag{2.5}\\
<0 & \text { if } \theta_{2}(r)<\theta<\theta_{1}(r)+2 \pi
\end{array}
$$

The last form upon normalization relates to functions starlike in one direction. Letting

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, z \in \Delta, \tag{2.6}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}-1=a_{2} z-\left(2 a_{3}-a_{2}^{2}\right) z^{2}+\cdots \tag{2.7}
\end{equation*}
$$

Consequently $a_{2} \neq 0$, otherwise (2.7) has a multiple zero which is a contradiction of (2.5). It is, therefore, no restriction to assume that a_{2} is real and positive. The above discussion yields the following conclusions.

Theorem 1: $f(z)$ has the form (2.6) and $a_{2}>0 . f(z)$ is in \mathscr{D} if and only if

$$
a_{2}^{-1}\left\{\frac{z f^{\prime}(z)}{f(z)}-1\right\}
$$

is starlike in the direction of the real axis.
It should be noticed that if $a_{2} \neq 0$, then $f(z)$ is not odd; this is consistent with the geometrical interpretation given above. Consequently the identity function $f(z)=z$ is not in \mathscr{D}. A modification of Definition 1 to admit simple monotonic rather than strictly monotonic functions in (2.1) and (2.2) admits the identity function into \mathscr{D}, in which case (2.7) is identically zero.

Making use of the fact that $g(z)$ regular in Δ and normalized by (1.1) is convex in one direction if and only if ${z g^{\prime}}^{\prime}(z)$ is starlike in one direction [4] we can write the last theorem in another form.

Corollary: $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, a_{2}>0$, is in \mathscr{D} if and only if $f(z)=z e^{a_{2} g(z)}$ and $g(z)$ is convex in the direction of the imaginary axis.

This can be obtained directly from Theorem 1 or by observing that for $z=r e^{i \theta}, \rho<r<1,(2.4)$ is equivalent to

$$
\operatorname{Re} \frac{\partial}{\partial \theta} \log \left(\frac{f(z)}{z}\right)<0 \quad \begin{array}{ll}
\text { for } \theta_{1}(r)<\theta<\theta_{2}(r) \tag{2.8}\\
>0 & \text { for } \theta_{2}(r)<\theta<\theta_{1}(r)+2 \pi
\end{array}
$$

Hence,

$$
\log \left(\frac{f(z)}{z}\right)=a_{2} z+\left(a_{3}-\frac{a_{2}^{2}}{2}\right) z^{2}+\cdots
$$

is convex in one direction.

3. A univalent subclass of \mathscr{D}

For a fixed $\phi,-\pi<\phi \leqq \pi$, we say that $f(z)$ regular in Δ, or in $\bar{\Delta}$, and normalized by (1.1) is in \mathscr{R}_{ϕ} if and only if $f(z)$ is starlike in the direction with inclination ϕ. That is, the line $w=t e^{i \phi}, t$ real, intersects C_{r}, the image of $|z|=r$ under $f(z)$, for r near or equal to 1 exactly twice. Evidently $f(z) \in \mathscr{R}_{\phi}$ whenever $e^{-i \phi} f\left(z e^{i \phi}\right)$ is starlike in the direction of the real axis, and conversely. Consequently, there exist functions $\tau_{1}(r ; f(z))$ and $\tau_{2}(r ; f(z))$ such that for $\sigma<r<1$, or for $r=1$, and suitable choice of arguments, $\phi<\arg \left\{f\left(r e^{i \phi}\right)\right\}<\phi+\pi$ whenever

$$
\tau_{1}(r ; f(z))<\theta<\tau_{2}(r ; f(z))
$$

and

$$
\phi+\pi<\arg \left\{f\left(r e^{i \phi}\right)\right\}<\phi+2 \pi
$$

whenever

$$
\tau_{2}(r ; f(z))<\theta<\tau_{1}(r ; f(z))+2 \pi
$$

Clearly σ depends on $f(z), \sigma=\sigma(f(z))$, and in the case $r=1$ it is assumed that $f(z)$ is holomorphic in $\bar{\Delta}$.

Using these ideas we may restate Theorem 1 in the following useful form.
Theorem 2: $f(z)$ has series representation (2.6) and $a_{2} \neq 0 . f(z)$ is in \mathscr{D} if and only if

$$
a_{2}^{-1}\left\{\frac{z f^{\prime}(z)}{f(z)}-1\right\} \in \mathscr{R}_{\phi}
$$

for $\phi=\operatorname{Arg}\left\{a_{2}^{-1}\right\}$.
Choose $\alpha=\operatorname{Arg} a_{2}$, where Arg denotes the principal argument, then

$$
f_{0}(z)=e^{i \alpha} f\left(z e^{-i \alpha}\right)=z+\left|a_{2}\right| z^{2}+\cdots
$$

is in \mathscr{D}, since membership in \mathscr{D} is preserved under rotation. Therefore writing

$$
\left|a_{2}\right|^{-1}\left\{\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}-1\right\}=g(z)
$$

where $g(z)$ is starlike in the direction of the real axis, yields, upon substitution, the relation

$$
a_{2}^{-1}\left\{\frac{z f^{\prime}(z)}{f(z)}-1\right\}=e^{-i \alpha} g\left(z e^{i \alpha}\right)
$$

The last function is in $\mathscr{R}_{-\alpha}$ and $-\alpha=\phi$.
DEFINITION 2: $f(z)$ and $g(z)$, both in \mathscr{R}_{ϕ}, are similar if and only if

$$
\tau_{k}(r ; f(z))=\tau_{k}(r ; g(z)), k=1,2
$$

for $r=1$ when $f(z)$ and $g(z)$ are regular in $\bar{\Delta}$ and for $\sigma<r<1$,

$$
\sigma=\sigma(f(z) ; g(z))
$$

otherwise.
Let $\tau_{k}(r)=\tau_{k}(r ; f(z))=\tau_{k}(r ; g(z)), k=1,2$, then a geometric interpretation of similarity is that for r near or equal to $1, f\left(r e^{i \tau_{1}(r)}\right)$ and $g\left(r e^{i \tau_{1}(r)}\right)$ both lie on one ray of the line $w=t e^{i \phi}, t$ real, whereas $f\left(r e^{i \tau_{2}(r)}\right)$ and $g\left(r e^{i \tau_{2}(r)}\right)$ both lie on the complementary ray. \mathscr{R}_{0} is the class of functions starlike in the direction of the real axis and any two typically-real functions, all of which are in \mathscr{R}_{0}, are similar.

Theorem 3: If

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, a_{2} \neq 0, \text { and } g(z)=a_{2}^{-1}\left\{\frac{z f^{\prime}(z)}{f(z)}-1\right\}
$$

are similar and in $\mathscr{R}_{\phi}, \phi=\operatorname{Arg}\left\{a_{2}^{-1}\right\}$, then $f(z)$ is univalent in Δ.
To give a proof let $\tau_{k}(r), k=1,2$, and σ be as in Definition 2 and the above paragraph. Suppose furthermore that $f\left(r e^{i \tau_{1}(r)}\right)$ and $g\left(r e^{i \tau_{1}(r)}\right)$ fall on the ray $w=t e^{i \phi}, t>0$, for $\sigma<r<1$. Then for $z=r e^{i \phi}, \sigma<r<1$ and appropriate choice of arguments

$$
\phi<\arg \{g(z)\}<\phi+\pi \text { for } \tau_{1}(r)<\theta<\tau_{2}(r)
$$

and

$$
\phi+\pi<\arg \{g(z)\}<\phi+2 \pi \text { for } \tau_{2}(r)<\theta<\tau_{1}(r)+2 \pi
$$

or

$$
0<\arg \left\{e^{-i \phi} g(z)\right\}<\pi \text { when } \tau_{1}(r)<\theta<\tau_{2}(r)
$$

and

$$
\pi<\arg \left\{e^{-i \phi} g(z)\right\}<2 \pi \text { when } \tau_{2}(r)<\theta<\tau_{1}(r)+2 \pi
$$

This is equivalent to

$$
\operatorname{Im}\left\{\begin{array}{ll}
z f^{\prime}(z) \\
f(z)
\end{array}>0, \quad \tau_{1}(r)<\theta<\tau_{2}(r) .\right.
$$

Consequently, $\left|f\left(r e^{i \phi}\right)\right|$ is strictly decreasing for $\tau_{1}(r)<\theta<\tau_{2}(r)$ and for a fixed $r, \rho<r<1$, hence $f\left(r e^{i \phi}\right)$ cuts every circle $|w|=R,\left|f\left(r e^{i \tau_{2}(r)}\right)\right|<R<\left|f\left(r e^{i \tau_{1}(r)}\right)\right|$ exactly once at a point $\operatorname{Re}^{i \mu}, \phi<\mu<\phi+\pi$ because $f(z) \in \mathscr{R}_{\phi}$. We see in the same way that every semicircle $\operatorname{Re}^{i \mu}, \phi+\pi<\mu<\phi+2 \pi$ is intercepted only once. Therefore $f(z)$ is univalent on $|z|=r$ and is, for that reason [3], univalent for $|z| \leqq r$. A similar argument covers the remaining cases.

References

[1] J. A. Jenkins, 'On circularly symmetric functions', Proc. Amer. Math. Soc., 6 (1955), 620-624.
[2] J. Krzyż and M. O. Reade, 'Koebe domains for certain classes of analytic functions', J. d'Analyse Math., 18 (1967), 185-195.
[3] Z. Nehari, Conformal Mapping, (McGraw-Hill, New York, 1952).
[4] M. S. Robertson, 'Analytic functions starlike in one direction', Amer. J. Math., 58 (1936), 465-472.
[5] O. Tammi, 'On certain combinations of the coefficients of schlicht functions', Ann. Acad. Sci. Fennicae Ser. A. I. Màth.-Phys:, No. 140, (1952) 13 pp.,

The University of Delaware
Newark, Delaware

