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1. Introduction

The class £f of functions f(z) which are regular and univalent in the open
unit disk A = {z : \z\ < 1} each normalized by the conditions

/(0) = 0 and / ' (0) = 1 (1.1)

has been studied intensively for over fifty years. A large and very successful por-
tion of this work has dealt with subclasses of S? characterized by some geometric
property of/[J] , the image of J under/(z), which is expressible in analytic terms.
The class of starlike functions in £P is one of these [3];/(z) is starlike with respect
to the origin if the segment [0,/(z)] is in f[A] for every z in A and this condition
is equivalent to requiring that

zf'{z)lf{z) (1-2)
have a positive real part in A.

In this note the class of 'disk-like' functions is introduced by placing restric-
tions on the behavior of the imaginary part of (1.2) and a representation formula
for these functions is given in terms of Robertson's functions which are starlike
in one direction [4],

2. The class S>

In the definition which follows the notation g(t) e f (a, b) means that g(t) is
strictly increasing in the interval a < t < b. g (/) e j . (a, b) has a similar meaning.

DEFINITION 1: / (Z) is regular in A, satisfies (1.1) and/(z) =£ 0 for z in A un-
less z = 0. /(z) is disk like with respect to the origin in A, or/(z) e 2, if and only
if one of the following conditions is satisfied:

i) There exists a constant p = p(f(z)) > 0 and two functions 6k(r) =

6k(r;f(z)), k = 1,2; 0 < 0 2 ( r ) - 0 i ( r ) < 2*\ s u c h t h a t for p < r < 1

\f(rem)\el{6v{r),e2{r)) and \f(reie)\ e |(02(r), Q^ + ln). (2.1)
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ii) / (z) is regular in A, the closure of A, and there exist real numbers 9l

and 92, 0 < 92-9x < 2n, s u c n that

\f(ew)\ e 1(0,, 92) and |/(e")| e T(02, 0! + 2n). (2.2)

Functions in 3> are not necessarily univalent; 2' will denote the class of uni-
valent members of 3), i.e., £>' = S> n «$". O^r) may be chosen so that 0 f£ 0t(r)
< 2TI and a similar choice can be made for 0t in (ii). Hereafter, unless otherwise
implied,/(z) in 3 will satisfy part (i) of the definition as this is no restriction on
the development.

A subclass of Q>, the circularly symmetric functions, was introduced earlier
by Jenkins [1 ] and has appeared in the recent investigations of Krzyz and Reade
[2]. Tammi [5] has obtained distortion theorems and coefficient bounds for
functions defined in terms of restrictions on the quotient (1.2).

A geometric interpretation of the conditions of Definition 1 may be given.
Let/(z), p, 9,{r) and 92(r) satisfy (i), let |/(reWl(r))| = R^r) and \f(nP*r>)\ =
R2(r) and let Cr, the image of \z\ = r under/(z), enclose a domain Dr. Then Cr

is contained entirely in the annulus R2{r) ^ M ^ Ri(r) and Cr intersects every
circle \w\ = R, R2(r) < R < Ri(r), exactly twice (perhaps in the same point) for
p < r < 1. If for R2(r) < R < R^(r) we let ^ ( r ; R) and 4>2(r; R) be the argu-
ments, chosen to be unique by continuity, of the intersection of |w| = R with
the arcs {f(reie)\G\(r) < d < 62{r)} and {f(rew)\d2(r) < 6 < 01(r) + 2^:}, respec-
tively, then Dr contains the arc Re'*, <P2(r; R) < <P < <Pi(r; R). It is clear that
/(z) is not univalent in A if there exist r and R such that $t(r; R) — <P2(r, R) ^ In
for all choices of arguments. On the other hand / (z) is univalent in A whenever
0 < &i(r; R)-<P2{r; R) < 2n for all admissible r and R and appropriate <t>i(r; R)
and <P2(r; R), and conversely; hence/(z) e S>', or /(z) = z, if and only if every
circle centered at the origin meets f[A] in a single, non-overlapping arc or not at
all. This gives rise to the following observation which we will use: /(z) is univa-
lent for \z\ ^ r if the plane can be cut from f(re'ei(r)) to oo by a curve which does
not meet Cr in any point other than/(re'82(r)).

Returning now to the definition, we see that for p < r < 1, (2.1) can be writ-
ten as

— |/(reie)| < ° f ° r °1^ < ° < °2^ (2 3)
39 > 0 for 92{r) < 9 < 0 1 ( ) 2

or as

) ^ 0 tor 9M < 9 < 92(r),gl/^)^ }

39 > 0 for 92{r) < 9 < 9^) + !%.
Because

, *1M\ = -Im
/(z) /

for z = re'e, (2.2) is equivalent to

Re I"- log/(z)) = Re \± , o g / ( z ) . dA = R e
\39 JK ') \dz BJK ' d9\
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Im K / V ) ) > 0 if 0,(r) < 9 < 92(r),
\ f(rew) I < 0 if 02(r) < 6 < 6>1() + 2

The last form upon normalization relates to functions starlike in one direction.
Letting

f(z) = z+fjakz
k, zeA, (2.6)

k=2

then
zf'(z)
f(z)

-1 = a2z-(2a3-al)z2+ • • •. (2.7)

Consequently a2 # 0, otherwise (2.7) has a multiple zero which is a contradiction
of (2.5). It is, therefore, no restriction to assume that a2 is real and positive. The
above discussion yields the following conclusions.

THEOREM 1: f{z) has the form (2.6) and a2 > 0. f(z) is in 2 if and only if

is starlike in the direction of the real axis.

It should be noticed that if a2 ^ 0, then/(z) is not odd; this is consistent with
the geometrical interpretation given above. Consequently the identity function
/(z) = z is not in &). A modification of Definition 1 to admit simple monotonic
rather than strictly monotonic functions in (2.1) and (2.2) admits the identity
function into Q, in which case (2.7) is identically zero.

Making use of the fact that g(z) regular in A and normalized by (1.1) is con-
vex in one direction if and only if zg'(z) is starlike in one direction [4] we can write
the last theorem in another form.

COROLLARY: f(z) = z+£?=2 akz
k, a2 > 0, is in 2> if and only iff{z) = ze"2g(z)

andg(z) is convex in the direction of the imaginary axis.

This can be obtained directly from Theorem 1 or by observing that for
z = rew, p < r < 1, (2.4) is equivalent to

ReA l o g ( / ( l> )< 0 for 6t(r) < 9 < 92(r),
80 \ z / > 0 for 92{f) < 0 < »1(r)+2«.

Hence,

is convex in one direction.
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3. A univalent subclass of Q>

For a fixed cj>, — n < <j> <[ n, we say that/(z) regular in A, or in A, and nor-
malized by (1.1) is in &A if and only if/(z) is starlike in the direction with incli-
nation (j). That is, the line w = te"*', t real, intersects Cr, the image of \z\ = r under
/(z), for r near or equal to 1 exactly twice. Evidently/(z) e 2%$ whenever e~~i'!'f{zei't')
is starlike in the direction of the real axis, and conversely. Consequently, there
exist functions Tt(r;f(z)) and T2(r;/(z)) such that for a < r < l,orforr = l,and
suitable choice of arguments, <f> < arg {f(rel<t>)} < <p + n whenever

x,{r;f{z)) < 6 < T2(r;/(z))
and

< arg {/
whenever

T2(r;/(z)) < 9

Clearly a depends on /(z), a = a(f(z)), and in the case r = 1 it is assumed that
/(z) is holomorphic in A.

Using these ideas we may restate Theorem 1 in the following useful form.

THEOREM 2: f(z) has series representation (2.6) and a2 # 0. /(z) is in 3> if
and only if

for <p = Arg {a2
 x } .

Choose a = Arg a2, where Are denotes the principal argument, then

is in 2, since membership in 3> is preserved under rotation. Therefore writing

where #(z) is starlike in the direction of the real axis, yields, upon substitution,
the relation

The last function is in £%-a and —a = <t>.

DEFINITION 2 : / ( Z ) and g(z), both in 01s, are similar if and only if

Tk{r;f(z)) = Tk{r;g{z)),k= 1,2

for r = 1 when/(z) and g(z) are regular in A and for a < r < 1,
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a = a(f{z);g{z)),
otherwise.

Let xk{r) = tk(r;/(z)) = tk(r; g(z)), k = 1,2, then a geometric interpre-
tation of similarity is that for r near or equal to 1, /(re"l(r)) and g{re"lir)) both
lie on one ray of the line w = te'4", t real, whereas /(re"2(r)) and g(re"2ir)) both
lie on the complementary ray. ^ 0 is the class of functions starlike in the direction
of the real axis and any two typically-real functions, all of which are in 3$0, are
similar.

THEOREM 3: If

f{z) = z+ £ akz\ a2 # 0, and g{z) = a^ ( ^ - l ]
*=2 l/(z) j

are similar and in £%$, (f> = Arg {aj1}, then f(z) is univalent in A.

To give a proof let rk(r), k = 1, 2, and a be as in Definition 2 and the above
paragraph. Suppose furthermore that /(re'Tl(r)) and g(re"l(r)) fall on the ray
w = fe^, / > 0, for o- < r < 1. Then for z = re1*, a < r < 1 and appropriate
choice of arguments

<p < arg {g(z)} < (j) + n for Tx(r) < 8 < T2(r)
and

<f> + n < arg {^(z)} < <j> + 2n for %2{r) < 6 < xx

or
0 < arg {e~^g(z)} < n when x^r) < 6 < T2(r)

and
n < arg {e~**g(z)} < 2n when x2(r) < 6 <

This is equivalent to

zf'(z)\ > 0, Tt(r) < 9 < T2(r)

/(z) j < 0, T2(r) < 0 < 1,

Consequently, \f(re'^)\ is strictly decreasing for rt(r) < 0 < r2(
r) and'for a fixed

r, p < r < 1, hence f{re"t>) cuts every circle M = R, \f(re"2(r))\ <R< lf(rehl(r))\
exactly once at a point Re*'', <p < n < <j> +n because f(z) eStj,. We see in the
same way that every semicircle Re''', <^+7t<//<0+2n:is intercepted only once.
Therefore /(z) is univalent on \z\ = r and is, for-that reason [3], univalent for
\z\ ^ r. A similar argument covers the remaining cases.
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