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MONST ARS ON GLACIERS 

By 1. F. NYE 

(H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1 TL, England) 

ABSTRACT. Isotropic points are structurally stable features of any complicated field of stress or strain-rate. 
and therefore will almost always be present on the surface of a glacier. A given isotropic point for strain-rate will 
belong to one of six different classes. depending on the pattern (lemon. star, or monstar) of principal directions and 
the contours (ellipses or hyperbolas) of constant principal strain-rate values in its neighbourhood. The central 
isotropic point on a glacier should theoretically have a monstar pattern. but the contours around it may sometimes 
be elliptic and sometimes hyperbolic. Nearby. but not coincident with it, there will be an isotropic point for stress. 
This will also have a monstar pattern but, in contrast to the strain-rate point, the contours around it must be 
hyperbolic. Published examples are consistent with these conclusions. In addition to isotropic points for strain ­

rate a glacier surface will contain isolated points of pure shear; these also can be classified into six different types . 
Stable features of this kind give information about the essential structure of a tensor field and form useful points of 
comparison between observation and numerical simulation. 

RESUME. «MonslaI'S» sur les glaciers. Des points isotropiques sont des caracteres structurellement stables de 
tout champ complique de contraintes ou de deformation , et seront donc presque toujours presents it la surface 
d'un glacier. Un point isotropique don ne pour les vitesses de deformation sera de I'une des six classes differentes, 
selon la forme (en lemon = «citron», en star = «etoile» ou monstar =«citronetoile ») des directions principa les et 
des iso-lignes (ellipses ou hyperbolas) de valeur constante des vitesses principales de deformation dans leur 
voisinage. Le point isotropique central sur un glacier devrait theoriquement avoir un comportement monstar. mais 
les iso-lignes autour de lui peuvent etre soit elliptiques soit hyperboliques. Proche, mais non en co'incidence avec lui. 
sera le point isotropique pour les contraintes. 11 aura aussi un comportement monstar mais contrairement au point 
isotropique pour les vitesses de deformation les iso- lignes autour de lui doivent etre hyperboliques. Les exemples 
publies sont en bon accord avec ces conclusions. En plus des points isotropiques pour les vitesses de deformation 
une surface de glacier contiendra des points isoles de pur cisaillement. ceux-ci peuvent egalement etre classes en 
six types differents. Des caracteristiques stables de cette sorte donnent des informations sur la structure essentielle 
du champ d'un tenseur et forment d'utiles points de comparaison entre les observations et la simulation 
numerique. 

ZUSAMMENFASSUNG . .. Mol1slal's" au! Glelschern. Isotropische Punkte sind strukturell stabil Erscheinungen 

eines jeden komplizierten Spannungs- und Deformationsfeldes; es wird sie deshalb fast immer auf der Oberftache 
eines Gletschers geben. Ein bestimmter isotropischer Punkt fiir die Deformationsrate wird zu einer von sechs 
verschiedenen Klassen gehiiren, je nach dem Muster (lemon="Zitrone", star = .. Stern" oder monstar = 
.. Zitronenstern") der Hauptrichtungen und den Isolinien (Ellipsen oder Hyperbeln) der konstanten 
Hauptdeformationsraten in seiner Nachbarschaft. Der zentrale isotropische Punkt auf einem Gletscher sollte 
theoretisch ein Monstar-Muster haben. aber die Isolinien um ihn herum konnen manchmal elliptisch und 
manchmal hyperboli sch sein. In seiner Nahe. aber nicht mit ihm zusammenfallend. wird ein isotropischer Punkt 
fiir die Spannung liegen . Dieser wird ebenfalls ein Monstar-Muster besitzen, aber seine lsolinien miissen im 
Gegen satz zum ersten hyperbolisch verlaufen. Bekannt gewordene Beispiele stimmen mit diesen Schliissen 
iiberein. Zusatzlich zu isotropischen Punk ten der Deformationsrate wird eine Gletscheroberflache iso1ierte Punkte 
mit rein er Scherung enthalten; auch diese konnen mit sechs verschiedenen Typen klassifiziert werden. Stabile 
Erscheinungen dieser Art geben Auskunft iiber die wesentliche Struktur eines Tensorfeldes und bilden niitzliche 
Vergleichspunkte zwischen der Beobachtung und der numerischen Simulation . 

l. GENERICITY AND STRUCTURAL STAI:!ILlTY 

This paper is concerned with the field of stress and strain-rate on the surface of a glacier. 
Analytical treatments have to idealize the shape of the naturally irregular glacier boundaries to 
make them geometrically simple, and to simplify the real and complicated constitutive law for ice 
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creep; in these respects the glacier problem is no different from any other in geophysics. 
Nonetheless it is possible to make certain precise statements about the stress and strain-rate 
fields , and other features of glaciers, which are independent of idealizations of this kind and rely 
on little more than continuity. Such statements apply to structural features that are generic, in 
the sense that they occur naturally without any special conditions being imposed. 

An almost trivial example is the equilibrium line. If there is accumulation in one part of a 
glacier and ablation in another, there must be, somewhere, by continuity, an equilibrium line 
where the accumulation is zero. It has the important property that a small change in conditions 
cannot annihilate it; it will only be moved slightly. A feature with this property is said to be 
structurally stable. 

Less trivial examples, not so widely recognized , are the isotropic points for stress and strain ­
rate, described in outline in Nye (1981 , Appendix 8 , p. 564- 68), which we classify and discuss in 
this paper. Their structural stability means that they act as mor.e or less permanent markers in a 
complicated (and changing) field. It is important to identify them, because their nature and 
positions represent information about the essential structure of the field , rather than inessential 
numerical detail. Now that it is becoming possible to model the flow of an irregularly shaped 
glacier numerically we need structural information of this kind . For example, we can ask how 
well the isotropic points observed in a real glacier agree in position with those in the numerical 
simulation, and whether they are of the predicted kind. 

This paper pays special attention to a particular isotropic point that is expected to occur in 
virtually all glaciers, however complicated, and it suggests that it will be of the kind called 
monstaT. If the point is not a monstar in a selected glacier one would look for a special reason. 
The analysis of isotropic points also has relevance to patterns of crevasses, in so far as these 
reflect the pattern of principal stress directions. Finally it should be said that, although the paper 
is focused on valley glaciers, the general ideas it expresses about genericity and structural 
stability (terms borrowed from mathematical singularity theory) and about isotropic points are 
equally applicable to ice sheets and ice shelves, to sea-ice regarded as a continuum, to moving 
snow cover, and indeed to any continuous two-dimensional distribution of stress or strain or 
strain-rate. 

2. ISOTROPIC POINTS ON GLACIERS 

At an isotropic point for strain-rate in the glacier surface, two conditions on the tensor 
components must be satisfied : exx = eyy and exy = 0, where Ox, Oy are axes in the surface. Each 
condition defines a line, or set of lines, in the surface, and therefore the two together define a 
point or set of points. If Ox is taken as longitudinal down-glacier, exy = ° is satisfied on . a 
longitudinal line near the centre of the glacier ; on the other hand exx = eyy will usually be satisfied 
on one or more roughly transverse lines; isotropic points will occur at intersections. For example, 
if the valley walls are roughly parallel, one of the transverse lines will probably be near the 
equilibrium line, where exx is changing sign and eyy is small, and in this case an isotropic point 
will exist near the centre of the equilibrium line. 

Mathematically, the isotropic conditions define points which must be expected to occur even 
in the most complicated glacier. In fact , the more complicated it is the more such points there will 
be. 

The isotropic points of a general two-dimensional field of a symmetric second-rank tensor 
(such as strain-rate or stress) have recently been classined (Thorndike and others, 1978) and 
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found to fall into six different categories. The classification depends on three properties possessed 
by a given isotropic point, namely, index, line, and contour, each property having one or other of 
two possible values. In principle this would give 23 categories, but two of them demand 
incompatible conditions so there are in fact six possibilities. Taking strain-rate as an example, the 
index property of a given isotropic point is defined by imagining a small circuit around the point 
and noting how the cross of principal strain-rate directions rotates as one traverses the circuit 
once. It necessarily rotates by an integral multiple of 7r. If it rotates by + 7r the index is defined to 
be +!. and if -7r then - 1. Figure I shows three examples of patterns of trajectories of principal 
strain-rate. Figure 1 b has index - !. while Figure I a and c have index + 1. Other integral 
multiples of 7r will not occur in natural glaciers at an arbitrary instant of time, but only in 
specially contrived theoretical models; they are structurally unstable; if they are observed it 
indicates an unresolved cluster of points with indices ± ~. 

The line property is defined as 1 or 3 according to whether there are 1 or 3 straight strain­
rate trajectories emerging from the point (straight in the lowest order approximation). Thus the 
line property of Figure 1 a is 1 while that of Figure 1 band c is 3. Since it is not possible to have 
simultaneously negative index and 1 line, the index and line properties together define three 
possible patterns, of which those in Figure I are symmetrical examples ; they are called 
repectively lemon, star, and (because intermediate) monstar, the nomenclature being due to 
Berry and Hannay (I 977), who describe and analyse the patterns in relation to the umbilic points 
of a general curved surface. 

The contour property is not related to these patterns of trajectories but to the contours of 
equal magnitude of the two principal strain-rates near the isotropic point. These form two sets 
which are either both ellipses or both hyperbolas. In the first case the isotropic point for strain­
rate is said to be elliptic and in the second case hyperbolic. Each possible pattern, lemon, star, or 
monstar, can be either elliptic or hyperbolic; therefore there are, in all , six categories of isotropic 
point for strain-rate. Likewise, by substituting the word stress for strain-rate in the definitions, 
there are six different categories of isotropic point for stress. 

In an anisotropic medium like a glacier an isotropic point for strain-rate will not be an 
isotropic point for stress, and vice versa. But in the approximation in which the flow law is 
isotropic the points will coincide. Moreover, in that case, since the principal axes for strain-rate 
and stress will be the same at any given point, the pattern of trajectories will be identical for 
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Fig. 1. Patterns oJ trajectories oJ principal strain-rate or stress directions around an isotropic point: (a) lemon, 
(b) star, (c) monstar. 
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strain -rate and stress. Hence the pattern classification of a given isotropic point will be the same 
for both tensors. However, this is not true of the contour classification; a given isotropic point 
could be, for example, elliptic for strain-rate but hyperbolic for stress. 

3. CLASSIFICATION OF THE CENTRAL ISOTROPIC POINT ON A GLACIER 

What kind of isotropic points should we expect on a glacier? The notion of structural 
stability referred to in § I is important here. An isotropic point is structurally stable in the sense 
that a small perturbation in the field (caused by a change in the boundary conditions or in the 
constitutive law or simply by the passage of time) will not destroy it. but will merely move it and 
slightly distort its associated pattern. But the notion goes deeper than this, for the classification 
of a given isotropic point is also stable against small perturbation. This means that we can work 
with the simplest mathematical model without necessarily doing any violence at all to the real 
phenomenon. 

[f a glacier were straight, with no lateral variations (eyy '= 0) an isotropic point would be 
found on the centre-line (exy = 0) at the point of maximum velocity (exx = 0). I n the real case. 
however, where eyy =f'- 0, this central isotropic point will be displaced up or down the glacier, but 
typically it will always exist (unless it were displaced over the glacier boundary. which must be a 
very rare occurrence indeed). The classification of the isotropic point depends on the coefficients 
in the linear approximation to the strain-rate components about the point. With origin 0 at the 
point let us start by considering the approximation 

. (E -ax 
(; = 

-by 
(I) 

where E is the common value of exx and eyy at O. [n general, all three independent components 
will vary with both x and y, but, out of six constants thus implied, we have selected a and b as 
representing the most important variations, their indicated signs and relative magnitudes being 
representative of most glaciers. Thorndike and others (1978, appendix 3) give three 
discriminants, involving the linear coefficients, whose signs decide the three properties involved 
in the classification. In this case they show that the point has index + 1, and the line property is 
3. The trajectories of principal strain-rate therefore form a monstar pattern (Figure 2b). 
However, the discriminant whose sign decides the contour classification is zero. signifying a 
degenerate case (parabolic). This raises an important point of principle which we have touched 
on already. We are concerned with what occurs typically on glaciers, and degenerate isotropic 
points do not occur typically in distributions of strain-rate unless there is some special constraint 
such as symmetry. They are structurally unstable. Our result implies that a small perturbation 
will make the point either elliptic or hyperbolic according to its sign. One possible perturbation is 
to put eyy = E + cx (c small); evaluation of the contour discriminant then shows that if c < 0 the 
point is hyperbolic and if c > 0 elliptic. Physically, c < 0 and c > 0 correspond to flow-lines that 
are respectively concave and convex towards 0 (simple convergence or divergence merely 
affects the sign of E). This is just one of several types of perturbation that would break the 
degeneracy. The monstar pattern is typical and structurally stable in that it is unchanged by 
allowing small extra linear variations (for example, eyy = E + cx, or exx = E - ax + a'y); to avoid it 
would require either large extra linear variations or a violation of the condition 0 < a < b. Thus it 
is not absolutely impossible to have a different pattern,' but if a different one were observed one 
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Fig. 2. (a) Magnillldes oJ the two principal stresses 0) , 02 (0) :;:. oJ plotted asJunclions oJ x, y ; the apex oJ the cone is 
at 0) = 02 = 611£. (b) Pattern Q{ trajectories oJ the algebraically lesser principal strain-rate and slress 
corresponding to equation (I), with b/a = 7; the straighl-Iine trajectories lhrough 0 makes angles with Ox oJO and 
± tan - \ /U - (a/b) }, which in this case are 0 and ±42.3°. (c) Crevasse pauernJor a compressive isotropic point 
(E < 0) as might be Jormed by a narrowing glacier channel; only the immediate neighbourhood oJ the isotropic 
point, where the linear approximalion holds, is shown. (d) The same Jor a tensile isotropic poinl (£ > 0) 
associated with diverging flow; the hyperbola is the zero-level section in (a) . 

would wish to ask why. On the other hand, because the contour classification is borderline we 
must expect both hyperbolic and elliptic monstars in Nature-neither should surprise us. 
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If the ice is assumed isotropic in its flow properties, 0 will be an isotropic point for stress as 
well as for strain-rate. Further, since the principal directions will now be the same for both 
tensors, their trajectory patterns will also be the same. Therefore 0 is a monstar for stress. 
However, its contour classification is different. To show this we start by using a linear-viscous 
flow law. Then the stress tensor a on z = 0 is 

(
3£ - 2ax 

a = 2f.l 
- by 

-bY) 
3E - ax ' 

where f.l is the viscosity. This is obtained from Equation (I) by assuming incompressibility, so 
that ezz = - 2£ + ax, setting the stress deviator proportional to e, and adding a hydrostatic part 
to make the normal traction azz zero. Equilibrium with the body forces is secured by z variations, 
which do not concern us. Evaluation of the appropriate discriminant shows that the contour 
classification is now hyperbolic, and since we are dealing with a stable property this conclusion 
will be unchanged if we make small perturbations either of the other possible linear variations or 
even of the linear-viscous flow law (for example, by adding a non -linear part). 

More interestingly, if we allow the ice to be not too severely anisotropic, the isotropic point 
for stress will separate from that for strain-rate, but will remain hyperbolic monstar. Thus, as a 
general rule, whereas the isotropic point for strain-rate can be either elliptic or hyperbolic 
monstar, the nearby isotropic point for stress will be hyperbolic monstar. 

Figure 2b shows the monstar pattern made by the trajectories corresponding to the more 
compressive of the two principal stresses. When the values of the two principal stresses are 
plotted as functions of x, y the resulting surface is a double cone (Figure 2a). If we assume that 
crevasses form perpendicular to the principal stress directions wherever the stress is tensile, the 
local pattern around 0 will depend on the sign of E. Figures 2c and d each show three regions, 
bounded by the two branches of a hyperbola, corresponding to zero, one, or two principal 
stresses tensile. The boundary is a hyperbola because, from the contour classification, the locus 
of a constant (here zero) principal stress value is a hyperbola, and it corresponds to a section of 
the cone in Figure 2a either above (E < 0) or below (E > 0) the apex. (It must be remembered, of 
course, that the crevasses one observes on a glacier have been carried away from the places 
where they were originally formed and have been rotated by the flow.) 

The measured pattern of strain-rate directions in Figure 3 is an excellent illustration of these 
principles. The pattern is clearly monstar (compare Figure 2b), as expected; not, of course, a 
precisely symmetrical monstar but a monstar nonetheless, because such a pattern, with its three 
straight lines and positive index is structurally stable and evidently able to survive the 
perturbation from the ideal symmetrical example to the irregularites of Nature. The fact that the 
centre of the pattern is missing is just what one would expect, because there will necessarily be a 
region close enough to 0 where the principal directions are indistinguishable in the noise. 
Another example appears in Figure 3b of Hambrey and others (1980). 

4. RELATION TO GENERALIZED UMBILIC POINTS DEFINED BY WHITNEY' S a DIRECTION 

Thorndike and others (1978) consider a measured instantaneous two-dimensional velocity 
field of sea ice, they recognize what they define as generalized umbilic points and then proceed to 
classify them. The classification is very close to what we have described for strain-rate but 
involves a subtle distinction which we now discuss. 
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Fig. 3. Strain-rate trajectories measured on Saskatchewan Glacier, Alberta, Canada by Meier (J960,jig. 34). Full 
and broken lines correspond respectively to the algebraically lesser and greater principal strain-rate. 
(Reproduced by permission of Dr M. F. Meier.) 

A generalized umbilic point is one where the velocity gradient tensor 

takes the form ( p q) 
-q p' 

Here u, v are velocity components and subscripts denote derivatives. The conditions are then 
Ux = Vy and uy = - v x , which are also precisely the conditions txx = tyy and txy = 0 for an 
isotropic point for strain-rate. Thus, an isotropic point for strain-rate is also a generalized umbilic 
point. 

To classify generalized umbilic points Thorndike and others (1978) consider the eigenvectors 
and eigenvalues of the symmetric tensor LT L, the directions of the eigenvectors being denoted by 
a, a.l , following Whitney (1955). The essential point is that the pattern formed by a, a.l is 
different from the one formed by the principal directions of strain-rate e = hL + e). Either 
pattern can be used with equal validity to classify the point (and the discriminant forms given by 
Thorndike and others (1978) apply for any symmetric tensor). In the sea-ice application it was 
convenient to use the a , a .!. pattern because of its close connection with cusps in the velocity 
map, while in the glacier application of this paper it seems more natural to use the pattern of 
principal strain-rate directions. The physical difference is, of course, that the tensor LT L 
incorporates the rotation while the strain-rate tensor does not. Mathematically, e L and 
HL + LT) are simply two different ways of constructing a symmetric tensor from the 
un symmetric L. 

The question remains: when we have found an isotropic point for strain-rate does its 
classification depend on whether we use LT L or !(L + LT)? A detailed (and tedious) analysis 
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shows that the index of the point does not in fact depend on which alternative we use, but both its 
line property and contour property do. Fundamentally this is because the line and contour 
properties can change continuously, while the index cannot. When L is sy mmetric all three 
properties are independent of which tensor we use ; switching on an increasing a nti sy mmetry in L 
cannot change the index but it can, and does, change the line and contour properties . Thus a 
particular point could, for example, be monstar for strain-rate but lemon for its pa ttern of a, a.l 
directions. 

For the stress this complication does not arise; the stress tensor is already sy mmetric and so 
there is no question of which symmetric tensor to use. 

5. POINTS OF PURE SHEAR 

A point in a two-dimensional velocity field where L has the form (A B) is defined by 
B - A 

Thorndike and others (1978) as a generalized anti-umbilic point. This represents pure shear (with 
no r9tation). On a glacier surface the two conditions on the ten sor components thu s implied will 
be satisfied at isolated points, and such points would be expected to occur on the centre-line. Of 
course, the points are not isotropic for strain-rate, the principal directions being well defined. but 
the tensor LT L does have isotropic form , namely 

A map of the trajectories of its principal directions will thus show isotropic points not only at the 
isotropic points for strain-rate but also at the points of pure shear. By using LT L the points of 
pure shear can be classified by line pattern and contour in exactly the same way as the isotropic 
points for strain-rate; there are accordingly six different possible kinds. Their positions and types 
provide further information about the essential structure of the field of strain -ra te ; as structurally 
stable features they could be used, just like the isotropic points, for making comparisons between 
observed and computed fields . 

MS. received 4 March 1982 and in revised/arm 23 June 1982 
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