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Abstract. The goal of this paper is to carry out some explicit calculations of the actions of Hecke
operators on spaces of algebraic modular forms on certain simple groups. In order to do this,
we give the coset decomposition for the supports of these operators. We present the results of
our calculations along with interpretations concerning the lifting of forms. The data we have
obtained is of interest both from the point of view of number theory and of representation theory.
For example, our data, together with a conjecture of Gross, predicts the existence of a Galois
extension of (O with Galois group G(IF's) which is ramified only at the prime 5. We also provide
evidence of the existence of the symmetric cube lifting from PGL, to PGSp,.
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1. Introduction

Let G be a connected reductive group over Q with G(R) compact. We will keep this
assumption on all groups over Q in this paper. We denote by Q = (Q ® Z the ring
of finite adeles of Q.

We will be studying certain spaces of modular forms for G. The weight of the forms
will be an algebraic representation W of G over a number field £ and the level will be
an open compact subgroup K of G(Q). Following [10, 13] we define the space of
modular forms of weight W and level K on G to be the E-vector space

MW, K) = {F: G(Q)/K — W(E) : F(yg) =7F(g), for all y € G(Q)},

When W = Q is the trivial representation this is simply the space of Q-valued
functions on the (finite) double coset space G(Q)\G(Q)/K.

Let K, C G(Q,) be an open compact subgroup and let dg be the Haar measure
giving K, volume 1. The Hecke algebra, H(G(Q,), K,), is the convolution algebra
with respect to dg of compactly supported Q-valued functions on G(Q,) which
are bi-invariant by K,. When there is no confusion, we will denote this algebra
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Hk,. If K, is hyperspecial maximal compact, Hg, is often called the spherical Hecke
algebra.

If the level K is a product of local factors K = [], K, then there is an action of each
Hg, on M(W,K). If T € Hg, and f € M(W, K) we have Tf € M(W, K) given by

Um=/ T(g)f (hg)ds.

G(Q,)

This integral is actually a finite sum, taken over the cosets of K, contained in the
support of 7. Indeed, if the support of T is | J; a;K, then

Tf(h) =} T(@)f (hay). (1)

Although we will not make direct use of it, it is worth pointing out the close con-
nection between these modular forms and automorphic representations. If W is
absolutely irreducible, it follows from [10, Prop 8.5] that the irreducible Hg-
submodules of M(W, K)® C correspond to the irreducible automorphic repre-
sentations m = o ® T With 7, = W ® C and 7% #£ 0. In fact if the irreducible
submodule N corresponds to the automorphic representation m, then N and #X
are isomorphic as Hecke modules. Thus knowing the action of the Hecke algebra
Hk, on the irreducible pieces of M (W, K) ® C allows us to identify the local com-
ponents of the automorphic representations with infinite component W and having
K-fixed vectors.

The goal of this paper is to carry out some explicit calculations of the action of
local Hecke algebras on certain spaces of modular forms. In Section 4 we discuss
some aspects of modular forms that can be read off from our data. In Section 5
we present the results of our calculations along with interpretations of these results
in light of the discussion in Section 4. The data we have obtained are of interest
both from the point of view of number theory and of representation theory. For
example, our data, together with a conjecture of Gross, predicts the existence of
a Galois extension of ) with Galois group G»(IFs) which is ramified only at the
prime 5[11, §2, §5]. We also provide evidence of the existence of the symmetric cube
lifting from PGL, to PGSp, (see Section 4.3).

The first step in making these calculations is purely local. We determine coset
representatives a; of the various cosets of K, in the support of an operator
T € Hg,. We work this out in Section 2, for G split over Q, and K, either a
hyperspecial maximal compact or an Iwahori subgroup. The analysis there closely
follows [17]. We also handle the case where G is a form of PGSp, not split over
Q, and K, is the Iwahori subgroup.

We then give an overview of the global aspects of our algorithm, especially the
issue of finding double coset representatives for G(Q)\G(Q)/K. This, along with
some comments on the reliability of the computer calculations, appears in
Section 3.2.

https://doi.org/10.1023/A:1013715231943 Published online by Cambridge University Press


https://doi.org/10.1023/A:1013715231943

HECKE ALGEBRAS AND AUTOMORPHIC FORMS 23

We performed our calculations for compact forms of G, and PGSp,, but the
methods are fairly general and can be applied in other cases, subject to constraints
on computer speed and memory.

2. Double Cosets in Groups over Local Fields
2.1. PRELIMINARIES

Throughout this section, G will denote a connected semisimple algebraic group that
is split over a non-Archimedean local field F with ring of integers O and prime
ideal p. (We will apply the results of this section to the (O, points of various rational
algebraic groups.) Let  in p denote a uniformizing parameter, let k be the residue
field Of/p, and let R C Op be a set of representatives for k containing 0. Let g denote
the cardinality of k.

We select a hyperspecial maximal compact subgroup K of G(F). The group K gives
rise to a Chevalley group scheme G over Of such that K = G(Of) C G(F) = G(F)
(cf. [23, 3.4.1,3.8.1]) and such that the special fiber G of G is semisimple of the same
type as G.

Let T C G be a split maximal torus scheme, and let 7" be its general fiber. We define
N7 to be the normalizer of T in G. Denote by X*(7) the character module
Hom(T, Gy,) of T and by X.(T) the co-character module Hom(Gy,, T) of 7. Let
® C X*(T) be the set of roots of T, ®" C ® a subset of positive roots, and
A C @7 the corresponding set of simple roots. Also, let ® C X,(T) be the coroots
of T and ai— o the standard bijection between ® and ®".

For each o € @ let U, be the one-dimensional unipotent subgroup scheme of G
corresponding to a. Denote the general fiber of U, by U,. We choose for each o
an isomorphism x,: G,—> U,. When considered as a map F — U, (F), x, restricts
to an isomorphism of O with U,(Of) = U,(F) N K.

Let W be the Weyl group Nr/T = (Nr(F) N K)/T(OF) of G and W the extended
affine Weyl group N7(F)/T(Op). Then W and W act as groups of affine
transformations on the space X,(7T) ®7 R. The stabilizer in W of 0 € X(T) ® R
is W, and there is an isomorphism W = X,(T)x W, where X,(T) is embedded in
W as a group of translations on X,(7) ® R. We denote by e the identity element
of W and by #(4) the element of w corresponding to / in X,(7) We can and will
choose the above isomorphism so that the image of A(n) is #(1). Observe that in this
notation wt(A)w~!' = t(wl). We let (,): X*(T)x Xo(T) — Z be the usual W-
invariant pairing, and we define X, C X,(T) to be the set of all co-characters 4 such
that («, A) > 0 for all o in ®*.

Denote by w, the reflection in W through the vanishing hyperplane in X,(7T) ® R
of the root a. Let ® = ®; U - .- U ®,, be the decomposition of ® into irreducible root
systems. (Each ®; corresponds to the root system of an almost simple normal
subgroup of G.) Also, let A; =AN®;, and put /; =#A;. Then Ly +---+ 1, =1,
the dimension of 7, i.e., the rank of G. Let oy ; be the highest root of ®; with respect
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to the basis of simple roots A;. Then the Coxeter group with set of involutive gen-
erators

S = {wyla € A} U {w%t(oc&i)H <i< m]

is isomorphic to the affine Weyl group Wy of ® ([23, Prop. 1.1]). Via this
isomorphism, we will view W, as a subgroup of W .

Let I be the Iwahori subgroup of K generated by T(Op), the subgroups
x,(OF) = U,(OF) for all « in ®*, and the subgroups x,(p) for all  in ®~. If we denote
by G the semisimple algebraic group over k obtained by taking the special fiber of G
then (as in [23, §3.5]) the reduction mod p map K — G(k) is surjective, and I is
the inverse image in K of the Borel subgroup of G(k) corresponding to ®*. The
triple (G(F), I, Nr(F)) is a generalized Tits system in the sense of [16], a fact which
will be used in 2.3 to study the structure of G(F).

Denote the normalizer of I in G(F) by I and let Q C W be the group
(N7(F)N1)/T(OF). The group Q is finite Abelian and canonically isomorphic to
X.(T)/A,, where A, is the submodule of X,(T) generated by @ (cf. [16, §2]).
Moreover, Q normalizes W, and there is an isomorphism W = WyexQ.

For win W, let [(w) denote the standard combinatorial length of w with respect to
the set S. If w € W then we can write W' = wy - - - wgp for some wy, ..., wyin Sandp
in Q, and we say that the expression w' = wy - - - wyp is reduced if /(w) = d. (Under this
definition, the expression e = ¢ is also to be considered reduced.)

2.2. THE GROUPS W AND W

Let W’ be a subgroup of W which is generated by a subset of involutions S” C S. We
will refer to such a subgroup as a special subgroup of W. Note that the stabilizer
W ={we W |wl)=24} of 1 in W is special. For any special W’, define
[W /W] to be the set

{we Wlww) =Iw)+I(w) forall w e W'}.

The elements of [W /W] are the representatives for W /W’ of minimal length (cf. [5,
§2.5)).

For the coset decomposition of 2.4, we will need a result on the additivity of
lengths of certain elements of the extended affine Weyl group similar to that of
Howlett in [6, §2.7]. This lemma will follow from the geometric interpretation of
W as a group of affine transformations on the space X,(T)® R. The key idea is
the connection between the length of an element ¢ of W and the inner products
of the translation part of ¢ with certain roots as given in [17, §1.9]. We summarize
the relevant facts in the following propositions.
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PROPOSITION 2.1. For all ). in X.(T) and w in W

wy= Y e+ Y K d) =11

aedtNwd™ aedTNwd™
In particular, I(w) = #(O®F N wd™).

PROPOSITION 2.2. Let A € X, (T). Then, there is a unique element ¢, in W such that
[(t(A)o,) = mingew ((A)w, and, in fact, l(t(X)a;w) = [(t(A)a,) + L(w) for all w in W.
Moreover, if we put

D ={oxe @ | (2 4) <0}, D ={oe®" | (1) >0},

then

(o) = D o A+ D (o 2) = 1), (2)

O(Ell)l O{E(Dz

Let 4 be an element of X, and let ¢, be as in Proposition 2. The length additivity
result that we wish to prove is the following: for all w in W and t in [W/W*],
(zt(2)o;w) = I(7) + [(((Z)a ;) + L(w).

We will need the following auxiliary lemma on [W /W] for the proof of the
additivity result.

LEMMA 2.3. Let /. € X, t € [W/W?], and p € @™ Nt'®. Then (B, ) > 0.
Proof. Since A€ Xy, we have that (f, 1) > 0. Thus, we need only rule out
(B, A) = 0. If this is the case, then wp(L) = A so wp € W*. Let J C A be the set of
simple roots o such that («, 1) =0. Then the special subgroup W* equals
(wyloe € J). As shown in [5, §2.5], © € [W/W?*] if and only if t(x) € ®* for all «
in J. Furthermore, since wg € W* p is a sum of roots in J, and therefore
7(B) € ®*. This contradicts f e t7!®". O

We now state and prove the length additivity lemma.
LEMMA 2.4. Suppose /. € Xo, we W, and © € [W/W?], then
[(zt(D)o;w) = () + (1(A)a;) + [(w).

Proof. By Proposition 2.2, we have that /(¢(1)o;w) = I(t(1)g,) + [(w). Therefore, it
suffices to show that

1(tt(2)6) = I(t) + I(t(2)a) 3)

for any ¢ in W.
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By Proposition 2.1 we have

IO+ 1o)y=">_ T+ > B+ D BAH-1] ©)

BedT Nt~ Bed Nodt Bed Na®~

On the other hand, we also have

I(zt(2)o) = 1(t(1(2))r0)
= Y e+ Y Hetd) -1

acd*Nro®d aed*Nto®™

= > @A+ Y 1@ A -1 )
acd*Nrod* aed*Nte®™

= > B+ D 1B AH-1

Ber~ldtNod Ber=1dTNg®™

In order to show that (5) equals (4), we will break up the sets over which the sums in
(5) are taken and rearrange the resulting sums.
First, we note that

(" 'ot N ed*) — (BT NodF)

=1 10T Ned* N® =0~ Nt 'dT Nod*,
(@ Ne®F) — (r7'dF N odh)

=0T Ned Nt 'd =0 Nt ld Nod™

It follows that the first term of (5) is

DO A= Y B+ Y B

1o Ned™ O Ngd™ O Nr-ldTNed

. (6)
- > A
Ot 1o Ned T
while the second term of (5) is
> KA1
1ot Ngd~
= Y M= + D KA1 %
dFNed~ O Nr-ldTNed~
- D B —1
O Nr-ld Ned™
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Adding (6) and (7), we obtain

DB+ Y WA -1

1ot Nedt 1ot Ned™

= Y A+ Y KB A1+

dTNedT dTNed™

+ D MBAL = DD B A+

O Nr-ldTNedt otNr- 1o~ Nedt

D D s TR W (VI

O Nr-ldtNed drNr-ldNed

®)

Therefore, in order to show that (4) equals (5), we must prove that the sum of the last
four terms of (8) is Y ¢+ .- 1-

Replacing f with —f in the third and fifth terms, we find that the sum of the last
four terms of (8) is

DOUBAI=IB A=)+ D UB A+ T = (B A
Ol Ned™ ot 1o~ Nedt
By Lemma 2.3, the set of fin ®" N t~'®~ which satisfy (8, 1) = 0 is empty. Thus for
Bed Nt ld Nod, (B, 1) > 0so that [(B, A)] — [(B, ) — 1| = 1 and |(B, 2) + 1|—
I(B, )] = 1.

This means that the sum of the last four terms of (8) equals
o+ Y= > 1= > 1,
Ol Ne®™ O Nr-1d~Ned™ ot~ dTNrd~

since /(1) = /(t~"). This gives (3) and completes the proof. O
The following corollary follows easily from Lemma 2.4

COROLLARY 2.5.If A € X then the unique element of shortest length in the double
coset WHA)W is K(A)a;.

2.3. DOUBLE COSET DECOMPOSITION FOR TIWAHORI SUBGROUPS

We will now give a summary of the aspects of the structure of G(F) which stem
from the fact that the triple (G(F), I, N7(F)) is a generalized Tits system (as defined
in [16]). We also state a result of Iwahori and Matsumoto ([17, Cor. 2.7]) which
gives a set of representatives for the left cosets of 7 contained in an arbitrary double
coset of 1.

We first state a result of Iwahori and Matsumoto ([17, Prop. 2.34]) concerning
double cosets of subgroups of G(F) containing /. For any such subgroup P, we
denote by Wp the subgroup (N7 (F)N P)/T(OF) of w.
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PROPOSITION 2.6. Let P, P, and P, be subgroups of G(F) containing 1. Then,

O p_ = [ 1.

weWp
(i) IfZp,.p, C W is a set of representatives for Wp]\I;V/ Wp, then

G(F) = ]_[ P oP;.

0€Zp, p,

In particular, if y,y € W then PyyP> = P1y'P, if and only if Wp,yWp, =
Wp]’))/WPZ.

Note that if we take P = G(F) in Proposition 2.6(i), we obtain the affine Bruhat
decomposition G(F) =[], Iwl. Thus the Iwahori-Hecke algebra H(G(F),I) is
spanned by the characteristic functions chary,; (w € I7V) so in order to decompose
the support of a Hecke operator into left cosets of I, it suffices to obtain a
decomposition for each double coset Iwl.

The following proposition summarizes the structure of I\G(F)/I ([17, Prop 2.8,
Theorem 3.3]).

PROPOSITION 2.7. Let w, w' be elements of W. Then

() Forallse S

@) Isiwl = Iswl if I(sw) > I(w),

(b) Isiwl = Iswl U Iwl if I[(sw) < I(w).
(1) If l[(ww') = l(w) + I(W) then

Iwiw'l = Iww'I. 9)
In particular, if sy, ...,54 €S, peQand w=s,---sqp is a reduced expression,
then

IsiI - IsqIpl = Iwl. (10)

In addition to the information resulting from the fact that the triple
(G(F), I, Np(F)) is a generalized Tits system, we will also need the following state-
ment (cf. [17, Cor. 2.7]) concerning representatives for the left cosets of / inside
certain double cosets of / (namely, those corresponding to the elements of S). Recall
that R is a set of representatives in Of for k containing 0.

PROPOSITION 2.8. Suppose oo € A and i € {1,...,m}, where m is the number of
irreducible root systems into which ® decomposes. Then

() Iwd = ]_[veR Xy (VWod,
(ii) IW“UJ Z(a(\)/,i)l = ]_[veR x*“o,;(nv)wdo,iZ(OC(\)/J)I-
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Remark 2.9. While we have restricted our attention thus far to split groups, a result
similar to Corollary 2.8 holds even when G is not split. We will need this result for
forms of PGSp, over Q, of split rank one. In this case, the corresponding Iwahori
double cosets will contain either p or p* (easily enumerated) single cosets.

We now develop notation which will allow us to derive a formula for represen-
tatives of the left cosets of 7 in an arbitrary double coset in /\G(F)/I. This formula
will follow easily from the above results. For each s in S, we fix a lifting 5 of s
to N7(F). We define elements g4(v) € G(F) for all s in Sand vin R by setting

x,(vV)s if s =w, for some oin A,
Xy, (mv)s if s = t(otg )Wy, for some iin {1,...,m}.

&) = {

In this notation, Proposition 2.8 says that for each s € S, Isl = L1,cr &s(W)I. For each
p in Q we also choose some lifting p of p to Np(F).

For each w in W we fix an (I(w) + 1)-tuple e(w) = (Sy.1, - . . » Sw.ion)s £y,) i S x Q
such that w = 5,1 - - - $y.10)0,,- We define g,,: R — G(F) to be the function which
assigns to each (vi,...,vqy) in R the element g, (vi)- - g, ., (View)Py, Using
the notation of the previous paragraph. Then we have the following fact concerning
the coset space Iwl/I.

COROLLARY 2.10. Suppose that we W and lfzal w=s1---54p IS a reduced
expression (i.e., d = I(w)), where s1,...,5¢ €S and p € Q. Then the index
[IwI : 1] is ¢"™. In fact,

wl = ]_[gxl(vl)~~~gsd(vd),51 = ]_[ gv(WI.

v;€ER veRIW)
Proof. By Proposition 2.7(ii), Iwl = Is\I -- - IsuIpl. 1t follows (cf. [7, §3.5]) that
[Iwl : 1) =[Isi] : I]---[Isq] : N[ pI : I] = ¢'™.

To complete the proof it suffices to show that the union of the ¢/ cosets given
above is all of Iwl. This also follows from Propositions 2.7 and 2.8 since

wl = Is18y - - - sqpl = IsyIsol - - - IsqIlpl
= U g OV Isaol - - - Isqlpl

VIER

= U 201gu0) g, (a)pl. O

2.4. DOUBLE COSET DECOMPOSITION FOR K

As stated earlier, the explicit determination of the action of a spherical Hecke
operator on a modular form necessitates the decomposition of the support of
that operator into left cosets of K. The Cartan decomposition states that
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G(F)=1],c v, KA(m)K. Therefore, the local Hecke algebra H(G(F), K) is spanned by
the characteristic functions char(KA(n)K) (1 € X). As a result, we now concentrate
on decomposing a given double coset KA(n)K = K#(41)K into a union of left cosets
of K.

Fix 4 in X,. We begin by considering the decomposition of KA(n)K into cosets
IgkK.

LEMMA 2.11. The double coset KA(n)K = Kt(A)K is the disjoint union of the cosets
Itt(J)K as t ranges over [W/W*].

Proof. Since Wx = (N7(F)N K)/T(Or) = W we have by Proposition 2.6(i) that
K =11,cp IwI. (This is simply the lifting of the Bruhat decomposition for the group
G(k) to K.) It follows that Ki(A)K = . IWIt(Z)K. We will show that this last
expression is equal to |, IWt(A)K.

By Equation (10) in Proposition 2.7, if we write w' in W as a reduced expression
w =s;---5;5 where s1,...,54 € S, we have that

W I = Isy - - sq It = IsyI - - - Is It (A)I.
By Proposition 2.7(i) and induction on d, it follows that
IW It = IsyI - - IsgIt()I D Isy - - - sgt(A)] = IW't(A)]
and hence that
U moryk = | twli)IK > ) wi(DIK = | ] vi()K.
weWw weW wew wew

On the other hand, we know by Proposition 2.7 that for any s in S and y in W,

IsIyl C I U Isyl C U Iwyl.
weW

Thus if w' = sy ---s4 € W is a reduced expression, we have, by induction on d again,

W IG) = Isid - IsqIt()I € ) Dwt(A)I.
weW

Hence, it follows that

U mvriyk = | vl c ) wiDIK = | i()K

weW weW weW weW
so that
U moeyk = ) wiH)K.
weW weW
Thus
Ki()K = | w()K. (11)
weW
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We must now determine which of the terms in the above union are the same. To
this end, we apply Proposition 2.6 to the subgroups I/ and K of G(F). Since
W; = (e) and Wx = W, it follows that for any w, w' in W, Iwt(A)K = IW't(A)K if
and only if wt(1) = w't(A)(mod W), that is, if and only if #(w(1)) = t(w'(4)). Thus
the two double cosets are equal if and only if w = w/(mod W*). Therefore, to obtain
a disjoint union in (11) we take the union over the set of representatives
[W/W?]. We therefore obtain

KK =[] IuK. O (12)

Te[W /W]

It remains now to express each coset /7£(A)K as a union of distinct left cosets of K.

THEOREM 2.12. Let A € X, and let 6, be as in Section 2.2. Then the double coset
Kt(A)K is equal to the disjoint union

]_[ ]_[ grt(/l)@ (V)K,

te[W/W*# yeRI@Wr;)

where R is a set of representatives for Op/p containing 0.
Proof. Let T € [W/W?4. Clearly, Itt(A)K = Itt(\)o;K = Itt(})o,IK and by Corol-
lary 2.10, this is equal to

( 11 gﬂma,:(vﬂ)K: U g 0K (13)

L’ER[(T[()‘)UZ) veRI(rl().)aZ)

Because of Lemma 2.11, the theorem will follow if we show that the cosets in the
union (13) are distinct for distinct v. So suppose that g.s, (VK = guye, (V)K
for some t € [W/W* and v,v' € R/1?7) We will show that v = v'. The main idea
of the argument is to transfer the problem from K-cosets in G(F) to W-cosets in
W and then to bring to bear our results on Coxeter groups from Section 2.2.

First, we note that by Proposition 2.6(i) and Corollary 2.10,

o, (VK = | [ e, 0)IWI

weW , (14)
=11 1] eI
weW yreRIW
and similarly
g, (K =[] [] g, 0Ngu(VI. (15)
weW yreRIwW)

Since these two K-cosets are equal, each /-coset in (14) must also appear in (15). In
particular, g:(i)s,(V)€e(0)] = ey, (V)] and geiiiys, (V) (v")I must be equal for some
win W and v/ in R/, We will show that this equality can only hold if w = e. Then
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we will have that g.s, (V)] = gu)s,(V))I, which immediately implies that v = V' by
Corollary 2.10.

So suppose that g:/(1ys, (V) = ey, (V)gw(v")I, where w € W and v € R'™. By the
definition of g 1s,(v), we have that

g‘rl(/l)a,-'(v)l C I’CI‘(A)O';LI_ (16)
Similarly, for each v/ in R/,

Guiyo,(V)gw(V) C Itt(X)o, Iwl.
We are now able to use Section 2.2 since L€ X, t€[W/ W;~] and we W. By

Theorem 2.4, we conclude that /(tt(A)o,w) = l(zt(X)a;) + [(w). This implies via
equation (20) in Proposition 2.7 that Itt(4)a,Iwl = Itt(A)o,wl. Hence,

grt(/l)o;,(vl)gw(v”)l - IT[()V)O-;L wi. (1 7)

Since the double cosets in (16) and (17) both contain the left coset

gy, I = Geiiye, V) (VI

we conclude that they must be equal. But It#(1)a,I = Itt(A)a,wl implies w = e since
I\NG(F)/I is represented by W (Proposition 2.6). O

The following corollary follows easily from Theorem 2.12 and Lemma 2.4.

COROLLARY 2.13. The number of left (or right) cosets of K in KA(n)K is

gminwew 12w Z ¢ = Z ¢'v Z g™,

e[W /W] yeWH)W weW

2.5. AN EXAMPLE

In later sections, we determine the actions of local Hecke algebras on spaces of
modular forms on the compact form of G, over (Q and on certain compact forms
of PGSp, over Q. To do this we need to know the coset representatives @; appearing
in the sum (1) in the introduction. Below we illustrate the use of Theorem 2.12 to
compute these representatives for the split group G, over an arbitrary non-
Archimedean local field F.

The rank of G, is 2, and a set of simple roots consists of a long root «; and a short
root ay. We let oy be the corresponding highest root. The Weyl group W, which is
dihedral of order 12, is generated by the reflections w; = w,, and w, = w,,, while
Wi is generated by these reflections and wy = wy, #(ay). Since G, is both simply con-
nected and adjoint, Q is trivial and it follows that W = W,. Let &1, > be the fun-
damental co-characters (i.e., those satisfying (o;, ;) = d;).

We have that W% = (w,) and [(W/ W‘bl] is the set {e, wi, wawy, wiwowy,
Wawwawy, wywawiwawy }. Also, #(@;) can be shown to have the reduced expression
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wowiwawiwowy, while a reduced expression for #(@1)a,, is wo. Hence, it follows from
Theorem 2.12 that K@ (n~")K is the union of the

q* -1

I+ +e 4+ 7+ =q- p—

left cosets

gw (1)K (vieR)
G (2K (v, € R?)
S ()K (3 € R)
o VK (g € RY)
G (V5)K  (vs € R)
Sy (V6)K (V6 € RY).

For the short co-weight @,, we have W® = (w;) and [(W/ W&’Z] = {e, wp, wiws,
WaWwWwa, Wiwawiwa, wawiwawiwa}. A reduced expression for #(@p) is wowiwywiwy
wowiwawiwy, and for #(@s)og, is wowawiwowp. Hence, the double coset
Ko (n~ K is the disjoint union of the

6
q° —1
A A
cosets
gn,-owzwlwzwo(vl)K (V] € R)
gn@wowzwlwzwo (VZ)K (Vz € Rz)
gwlwzwowzwlwzwo("3)K (V3 € R3)

Ewawi wawowarwi wawo (V4)K (V4 S R4)
Ewiwaw wywowawy waw (VS)K (VS € RS)

6
ngwm'zwlwzwowzwlwzwo(v6)K (VG €R )

3. The Calculations

We now return to the global setting. We take G to be a connected reductive group
over () and as above we assume that G(R) is compact. We let K = [] K, where each
K, is a parahoric subgroup of G(Q,), with all but finitely many K, hyperspecial

maximal compact. We also let W be an algebraic representation of G over a number
field E.

Our goal is to compute the actions of various Hecke operators on the space

MW, K) = {F: GQ)/K — W(E) : F(yg) = yF(g). for all y € G(Q)}
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of modular forms of weight W and level K on G. We begin with an overview of these
calculations and then indicate how to carry out some of the steps for the particular G
in which we are interested.

3.1. OVERVIEW

A function /' € M(W, K) is determined by its values on a system of representatives of
G(Q)\G(Q)/K. We fix such a system {g,}. Note that for /' € M(W, K) each f(g,) lies
in W1 where I, is the finite subgroup G(Q) N g,Kg, ! of G(Q) stabilizing g,K. Con-
versely, any function f: {g,} — W with f(g,) € W'~ for all « extends uniquely to an
element of M (W, K). We pick bases {v,} of the W= and define 5{; to be the modular
form such that

k v if f=ua,
0(&p) = {O%k othgrwise.
Then the (5/; form a basis of M (W, K). We will do all of our calculations with respect
to this basis.
Now consider the action of a Hecke operator T € H(G(Q,), K,). We wish to com-
pute T 5’;(gv). Using Equation (1) and writing the support of 7 as a disjoint union of
cosets a;K, we see

TSy() =Y T(andy(gva). (18)
/
Note that T 5§(gv) e W, so once we have computed it we can write
Té{i(gv) = Zmzévv,/v
/
so that

TSy =) mis,. (19)
vl

These m*! are the entries in the matrix for T with respect to the basis 3% of M(W, K).
So once we have seen how to carry out each step of this outline, we will be able to
compute matrices for the actions of our Hecke operators.

We discuss our computation of the g, in 3.2, pointing out aspects particular to
some individual examples. Once we have the g,, computing the groups I', and
the fixed spaces W'- is straightforward, and gives us our explicit basis {5];}.

We will only be interested in Hecke operators 7" supported at primes where K, is
Iwahori or G(Q,) is split and K, is hyperspecial and so Corollary 2.10,
Remark 2.9 and Theorem 2.12 allow us to find the @; we need for decomposition
of the support of T.

All that remains then to complete the calculation is to evaluate the 6 at various
points &. To do so, it suffices to write & as a product & = rg,k with r € G(Q),
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k € K, and g, one of our fixed coset representatives. Our method for finding this
product decomposition is essentially brute force. In each case it amounts to
1,1

analyzing the congruence constraints placed on r by insisting that g7 '#~ '/ be integral

and searching through the solution space of these congruences.

3.2. GLOBAL DOUBLE COSETS

We will begin with a general description of the space G(Q)\G(Q) /K which is finite
since K is open and G(Q)\G(Q) is compact [2].

Suppose first that G is the general fiber of a group scheme G over Z and each K|, is
the group G(Z,) of Z, points of G. In this case, the size /1 of G(Q)\G(Q) /K is called
the class number of G. In [9] Gross compiles a table of some values of the class
number when G is simply connected and the K, are all hyperspecial.

If K'= ]_[K[; C K is any deeper level, the following easy proposition relates

GO\G(Q)/K to GIQ\G(Q)/K".

PROPOSITION 3.1. Let G be a connected reductive group over Q arising as the
general fiber of a group scheme G over 7. Suppose that G(R) is compact and that
G(Q)\G(Q)/Q(Z) has representatives g1, . .., g. For each i, let T’} be the finite group
g7'G(Q)g N G(Z).

For eachp, let K, be a parahoric subgroup o f G(Z,) with K, = Q(Zp)forp outside a
finite set S. Then there is a natural bijection between G(Q)\G(Q)/K and

I <F:~\ I1 f,,(Fp)>

i peS
where F, is the flag variety of parabolics of the same type as the reduction of K, in
G(I).

Proposition 3.1 reduces our problem of finding systems of representatives for
G(Q)\G(Q)/K for various K to first doing so once with K the integral points on
a model of G and then simply enumerating flag varieties over finite fields. We will
now discuss each of these issues in two examples.

3.2.1. Double Cosets for the Group G,

There are only two forms of G, over (), one is split and the other is compact at R [22].
We describe the compact form below. If we replace the Cayley octonions with the
split octonions in the construction, we would obtain the split group.

Let O be a maximal order in the Cayley octonions over Q. O has an
anti-involution given by ey = ¢y and &; = —e; for 1 <i < 7. We have the trace given
by Trx = x + X and the norm given by Nx = xx. The trace allows us to define
an inner product (x, y) = Tr xy. Note that the norm, trace and inner product all take
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integral values on O and so can be extended to O ® R for any ring R. Note also that
R embeds in O ® R as Rey.

We define a group G over Z by letting G(R) be the group of R-algebra auto-
morphisms of O ® R. Then G is a model of G, over 7 in the sense of [9]. In particular
forall p, G(Q,) is G2(Q),), the split group of type G> over Q,, and G(Z,) C G(Q,)isa
hyperspecial maximal compact subgroup. Further G(IR) is compact, and so G(Z) is
finite, being a discrete subgroup of G(R). In fact G(Z) is the group G, (), and
has size 12096. Additionally, G has class number one, that is G(Q) = G(Q)G(Z)
[9].

If M = O ® k for k a field of characteristic not 2, we define M, to be the ortho-
gonal complement of ¢y in M, namely the elements of trace 0 in M. Automorphisms
of M preserve My, as well as both the norm and trace [18, §3].

Suppose G is split over k with the characteristic of k still not 2. Then a Borel
subgroup of G(k) is the stabilizer of a flag 0 C ¥} C V5 in the 7-dimensional space
M, with V7 spanned by a vector of norm, and hence square, 0 (a null line) and
V> such that xy = 0 for all x,y € V> (a null plane). Note that any such flag can
be extended uniquely to a complete null flag by setting

Vi ={y: xy =0 for all x € V>}
I/,-=V7L_ifor4< 1< 7,

so that a Borel is the stabilizer of a complete flag.

The other two types of parabolics stabilize partial flags. They are P, the stabilizer
of a null line, and P>, the stabilizer of a null plane. The collection of null flags (resp.
lines, resp. planes) exactly parametrizes the space of Borel subgroups (resp.
parabolics of type P;, resp. parabolics of type P,). If k is the finite field [F,, there
are (p® — 1)/(p — 1) parabolic subgroups of types P; and P, and (p° — 1)(p + 1)/
(» — 1) Borel subgroups in G(k).

3.2.2. Double Cosets for the Groups PGSpf

Let H be a quaternion algebra over Q, and let ui— u be its canonical involution.
Then we define an algebraic group G over Q whose R points are

{g € Ma(H @ R):g8' = v(9)I, v(g) € R"}

for any commutative (Q-algebra R. If H splits over R, then G is isomorphic to GSp,
over R. Thus G is a form of GSp, over Q. We will henceforth denote G” by GSpf .
We then let PGSpf be the quotient of GSpf by its center. If H is ramified at co then
PGSpf (R) is compact. We will assume this is the case from here on.

If we choose a maximal order M in H we can give GSpf and PGSpf the structure
of algebraic groups over Z as we did for G,. If H is split at p, so that PGSpf is split
over Q,, then PGSpf (Z,) is a hyperspecial maximal compact subgroup of
PGSpf(Q,,) = PGSpy(Q,). If H is not split at p, then PGSpf has split rank 1 over
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Q,. K, = PGSpf (Z,) is still maximal compact, but is not hyperspecial (PGSpf Q)
has no hyperspecials).

The global situation is more complicated for PGSp# than for Gy, in that PGSp#
need not have class number 1 (with respect to the integral structure given by a
maximal order M). Following Shimura [21] we consider the action of PGSpf Q)
on the set of M-lattices in H 2. We see that the stabilizer of M? is PGSpf (Z), SO
that PGSpf(Q)/PGSpf(z) is the orbit of M?, called the principal genus of
M -lattices. PGSpf (Q) acts on the principal genus, its orbits are called classes.
So the class number of PGSpf is the number of classes in the principal genus.

In[14, Theorem 2] Hashimoto and Ibukiyama give a formula for this class number
and they tabulate some small values in their §5-3. In §6-1 they give an algorithm for
finding representative of the various classes in the principal genus, which amounts
to finding representatives for

PGSpl (0)\PGSpi (Q)/PGSpY ().

If H is ramified only at 2 and oo or only at 3 and oo, the class number of PGSpf is
1. If H is ramified at 5 and oo the class number is 2. We represent this H by the
algebra Q + Qi + Qj + Qk with i* = —5, /> = —2, and i,j, k satisfying the usual prod-
uct formulas. We take here the maximal order spanned by

24—k 2i+j+k
4 4

L Jj,

and then a choice of representative for the nontrivial double coset is
24k =2i-9f
-2i—9j 24k )

We now fix a quaternion algebra H ramified at co and at some finite set Sy of
primes and choose a maximal order M in H. We let G = PGSpZ with the Z-structure
induced by M.

We must again look at the flag varieties G(I,)/B,. For an unramified prime (i.e.
p € So), G is isomorphic to the split group PGSp, over IF,. The Borel subgroups
are again parametrized by flags consisting of a null line contained in a null plane
(now with respect to the symplectic inner product on F,,4), and the parabolics by
partial flags. For a ramified prime, the Borels are parametrized by the projective
line over I, in a computable way. That is, G(I,) acts transitively on P!, with
stabilizer B,.

3.3. COMPUTING AND RELIABILITY

So far we have presented the algorithms for carrying out our calculations, but have
said nothing about how they are implemented. A few words on that topic are in
order.
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Most of the calculations were carried out by programs we wrote in C++ and
compiled with gcc running under SunOS on a Sun SPAR Cserver-1000 and separately
under egcs running under Linux on an Intel Pentium 2. Some parts (especially
processing the matrices obtained as the actions of the Hecke operators) were done
using Mathematica [19], Gap [20], and Pari [8]. All calculations were done using
exact data types (i.e. integers or rationals, rather than reals). Any p-adic numbers
were only needed modulo a fixed power of p, and so could be represented by an
integer. When dealing with data produced by large programs, one hopes for as many
checks as possible to verify that the program has worked correctly. Fortunately, our
data allows for a great many strong checks. For example, we know that the spherical
Hecke operators all commute as elements of Hg. So when we compute the actions of
these Hecke operators on a space of forms, the matrices we obtain ought to
commute. This is the case in every example we have computed. Since these matrices
can have several hundred rows and columns, this is a rather meaningful check.

We mention two other checks that we will come across later. In Section 4.3 we
discuss some conjectured ‘liftings’ of modular forms from PGL,. We have been
able to identify many of these lifts. Finally in an upcoming paper the second
author and S. Padowitz use some of our data, along with the stable trace formula,
to work out an explicit formula for the dimension of a certain subspace of
MW, K). Our data over-determines the explicit formula, and the fact that the
formula fits all of our data points is a very strong indication of the validity
of our calculations.

4. Interpretations of the Data

4.1. THE STEINBERG SPACE

Let 7 be the Steinberg representation of G(Q,). Then 7 has a one-dimensional space
of fixed vectors for an Iwahori subgroup I. So =/ induces a character of the
Iwahori-Hecke algebra H(G(Q),), I,) called the Steinberg character.

To describe this character concretely we adopt the notation of Section 2 and let
s € S be a standard involutive generator of Wye. Then the Steinberg character sends
the Hecke operator Us = charyy; to —1. Any irreducible representation of H;, which
has a vector on which each U, acts by —1 is in fact 1-dimensional. These represen-
tations are called special characters.
If K=1Is=]],45Ky[l,esl, with K, hyperspecial, we call the subspace of
M(W, K) on which each H;, acts by a special character the Steinberg subspace
and denote it M(W, K)>'. Note that this is an abuse of language as we allow
any special character, not just the Steinberg. This subspace is of particular number
theoretic interest (cf. [10, §12]). Our calculations of the action of the Iwahori-Hecke
algebra on various spaces of forms allows us to identify the Steinberg subspaces. We
have tabulated some dimensions of these Steinberg subspaces in Section 5.
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4.2. SATAKE AND LANGLANDS PARAMETERS
4.2.1. Satake Parameters

Given an eigenform f* for the Hecke algebra H(G(Q,), K,) we get a complex
character 0,: H(G(Q,, K,)) — C*. We will describe a convenient indexing of such
characters, for K, hyperspecial.

Let G be the complex dual group of G, and let T be a maximal torus of G. Then G
and G have the same Weyl group W, which acts on the character group X *(T)
and hence on the group algebra Z[X *(T )]. Then the representation ring of G is
the ring of formal sums of characters of representations of G(C). R(G) =
7Z[X *(f“)]W. The Satake transform gives an isomorphism [12, Prop. 3.6]

H(G(Q,). K,) ® Z[p'?, p~'"] = R(G) @ Z[p"/*. p~'].

So our character 0 induces a character on R(G) ® Z[p'/?, p~'/?], and hence on
R(f;) ® C. Such characters are parametrized by the semi-simple conjugacy classes
in G(C) [12, §6]. In particular, if s is such a conjugacy class we define a character
w; of R(G) ® C which sends y =Y a, -/ to

wy() =Y a;- As0)

where s¢ is any element of s N T. Since % is W-invariant, this sum is independent of
our choice of sy.

Thus we associate to 0y, and hence to f, a semi-simple conjugacy class
sp(f) € G(C). We call this class the Satake parameter of f. To compute s,(f) it
suffices to know the eigenvalues 0¢(Ti(p)) of the generators of H(G(Q,), K,) on
f, and the images of the T;(p) under the Satake transform.

In [12] Gross works out the Satake transform in several cases. For G = G,
G(C) = G,(C) and Gross finds

Tr(ry = STED 1

_ S(T(p) + S(Ta(p) + (1 + 1)
pS

Tr(V14)

where, for ' a representations of G(C), Tr(V) € G(C) is the formal sum of the
weights that appear in V. A conjugacy class s in G,(C) is determined by its traces
on V7 and Vi4. Since A2V7 =2 V14 @ V5 this information is encoded in the charac-
teristic polynomial of s on V5. Using also that A*V7 @ Vi3 = V7, ® V5 and that
G,(C) acts orthogonally on V', we can work out the characteristic polynomial of
s,(f) on V7 given the Hecke eigenvalues o; = 0,(Ti(p)) of f [12, cf. Eq. 6.10].

https://doi.org/10.1023/A:1013715231943 Published online by Cambridge University Press


https://doi.org/10.1023/A:1013715231943

40 JOSHUA LANSKY AND DAVID POLLACK

For G = PGSpy4, G(C) = Sp4(C) and Gross gets

(e = ST0)
pZ
rr(ry = ST+ 1

Once again, this information determines a conjugacy class s in Sp,(C), and is
equivalent to the information contained in the characteristic polynomial of s on V4.

4.2.2. Archimedean Parameters

If G(R) is compact, an irreducible representation © of G(IR) is classically
parametrized by a dominant weight y € X*(T) where T is a maximal torus of G
and X*(T) is the character module over C. Note that X*(T) = X*(f“) where T is
the corresponding maximal torus of G, so we may view y as an element of
X.(T). Let u = y + p, where p is half the sum of the positive weights. Then, viewing
1 € X(T) ® R we have a map C* — T(C) C G(C) given by zi— z#z# (see [3, §9.1,
§10.5] for details).

This map is the Archimedean Langlands parameter of . If /' is a modular form for
G of weight W we denote the Langlands parameter of W by ¢ (f).

4.3. LIFTINGS

If G and G’ are reductive groups over Q and p: G(C) — G'(C), then we can use p to
‘lift’ Satake and Archimedean parameters from G(C) to é’(C). If f is a Hecke
eigenform for G, then we get a collection of Satake parameters {p(s,(f))} and a
Langlands parameter p o ¢, (f) for G'. It is natural to ask if these (or at least
all but finitely many of these) arise as the parameters of a Hecke eigenform f’
for G'. If G’ is quasi-split, then Langlands functoriality conjectures that the answer
will be yes [1, pg. 12]. Such an /7, if it exists, is called a lift of /. If G’ is not quasi-split,
not all maps p are expected to yield lifts, and even when they do not all /" are expected
to lift. In this section we discuss some maps of dual groups, and analyze the
corresponding lifts of modular forms.

First we look at lifts from PGL, to G,. Recall that the dual group of PGL,; is SL;,
while G is its own dual. There are 4 non-trivial conjugacy classes of unipotents in G,
[15, pg. 132] and so there are 4 conjugacy classes of non-trivial maps SL,(C) —
G>(C). The images of these are the long root, short root, principal and subregular
SL,’s. Of these all but the principal lie in a proper parabolic. This implies
(c.f. [4, §8.2]) that of these maps, only the principal homomorphism provides a lift
from modular forms on PGL, to modular forms on the anisotropic form of G,.
(In particular, under the other maps the real components of the corresponding auto-
morphic representations do not transfer to representations on the compact form of
G>(R).) However, the long and short root embeddings can be chosen to have

https://doi.org/10.1023/A:1013715231943 Published online by Cambridge University Press


https://doi.org/10.1023/A:1013715231943

HECKE ALGEBRAS AND AUTOMORPHIC FORMS 41

commuting images and so piece together to give a map from SL,(C) x SL,(C) to
G>(C). The connected centralizer of the subregular SL, is unipotent so we can
not make a similar construction.

We first discuss the map p: SL,(C) x SL,(C) — G»(C) given by the short root
embedding in the first coordinate, and the long root in the second. Suppose that
¢, and y, are Satake parameters for PGL»(Q,) (i.e. conjugacy classes in
SL,(C)) given by Satake parameters with characteristic polynomials x> — a,x + 1
and x? — byx + 1. Then (¢,, ¥,) lifts to the Satake parameter for G, whose charac-
teristic polynomial in the 7-dimensional representation is

(x — (> = (@ — 2)x + D(x* = apbpx” + (@ + by — 2)x” — apbpx + 1).

From this we can obtain the traces of the Satake parameter on the 7 and
14-dimensional representations and then use the Satake isomorphism to compute
the eigenvalues 4, and 1, of the Hecke operators 7' (p) and T>(p) on the correspond-
ing representation of the Hecke algebra. We find

A =paphy +ay—1) -1,
Ay =p @by +a) — 2aby + b —2) — p*(apb, + ) — 1) — p*.

We now look at the Archimedean parameters. Suppose ¢ and y are the
Archimedean Langlands parameters of the real components of automorphic forms
corresponding to classical eigenforms of weights k and j. If kK = or 3k — 2 = j then
(¢, ) does not lift to an admissible parameter for the compact form of G,. Otherwise
it does and the lifted parameter corresponds to the representation of highest weight
in the Weyl orbit of:

j—2 k-4

TwﬁkT@,z it <k,

(j—5)w1+%+w2, itk <j<3k—2
_514

(G — 6)oy +k++w2, i3k —2 <.

We will consider lifting systems of parameters ¢ and i that arise from classical
eigenforms or from the trivial representation of an anisotropic form H of PGL,.
In the former case, if f is a normalized eigenform of weight k with Fourier expansion
> ayq" then s,(f) has characteristic polynomial x> — p%ap + 1. In the later case, at
primes p where the group H is split the Satake parameter has characteristic poly-
nomial x> — (p + 1)x + 1 while the representation at the real place has the same par-
ameter as a weight two cusp form.

For example, there is a unique cusp form f on PGL, of weight 4 and level I'¢(5),
given by

f=am@nG2) =q— 44 +2¢° +8¢* —5¢° —8¢° + 6¢" + - --
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There is also a unique cusp form g on PGL, of weight 6 and level I'¢(5), given by

g=q+2¢" —4¢ —28¢" +25¢° — 8¢° +192¢" + - --

Welet ¢, and ¢, be the corresponding parameters, and let ¢, be the parameter of the
trivial representation of an anisotropic form of PGL, (say the one ramified at 5 and
).

Lifting (¢, ¢.) to G2 we expect to find a form of trivial weight for which the short
and long Hecke operators at p = 2 have eigenvalues —17 and 144, while the Hecke
operators at p = 3 have eigenvalues 0 and 364. Indeed, we have seen there is such
a form of level K°. If we lift (¢, ¢,) we are then looking for a form on G; of trivial
weight with Hecke eigenvalues 33 and 94 for p = 2 and 100 and 164 for p = 3. Once
again, we have seen such a form of level K. Finally if we lift (¢, @) we are looking
for a form with weight the 7-dimensional representation with Hecke eigenvalues 3
and —16 for p = 2 and —80/3 and —4004/9 for p = 3. There is in fact such a form,
of level K> (see Table V).

Now consider the map SL,(C) — G,(C) corresponding to the principal unipotent.
Again let ¢, be a Satake parameter for PGL,(Q,) having characteristic polynomial
X2 — apx + 1. Then ¢, lifts to the Satake parameter for G2(Q,) corresponding to
the character of Hecke algebra for which the T;(p) have eigenvalues

1 =p*(a® - 5a* + 64> — 1),
Jo =p> (@ —9a® + 18a° — 354* + 164> — 2) — p*(a® — 5a* + 64> — 1) — p*.

The Archimedean Langlands parameter of the real component of an automorphic
representation corresponding to a classical eigenform of weight & now lifts to the
parameter of the representation of G,(R) with highest weight (k — 2)p, where p
as usual is half the sum of the positive roots.

For example, if f is the unique cusp form of weight 2 and level I'y(11) given by

f=amn112)? =q-2¢" — ¢ +2¢* + ¢ +2¢° —2¢" + - -

then we are looking for a form on G, with weight C and Hecke eigenvalues —9 and 56
for p = 2. Indeed, we do find such a form.

We now look at lifts to PGSp,. Here there are three conjugacy classes of
unipotents, corresponding to the long root, short root, and principal SL;’s. Once
again we do not get lifts from the root SL,’s directly, but we can choose two com-
muting long root SL,’s and get a map SL,(C) x SLy(C) — Sp,(C). The reductive
part of the connected centralizer of the short root SL; is a torus, and so does
not enable us to construct a map of dual groups whose image does not lie in the
a proper parabolic.

First consider the map SL,(C) x SL,(C) — Sp4(C) arising from two commuting
long root SL,’s. Again let ¢, and Y, be Satake parameters for PGL2(Q,) with
characteristic polynomial x? —a,x+1 and x?> —b,x+ 1. Then (¢,s b)) lifts to
the Satake parameter whose characteristic polynomial in the 4-dimensional
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representation is
x* —(a, + by)x* + (apb, +2)x> — (a, + by)x + 1.

We then find that the eigenvalues /; and A, of T(p) and T>(p) on the corresponding
representation of the Hecke algebra are

A =pa,+by),  Jp=piab,+1)—1.

If ¢ and  are the Langlands parameters for the real component of an auto-
morphic representation corresponding to classical cusp forms of weights k& and j
then (¢, ) lifts to a parameter of a representation of compact PGSp,(R) if and
only if k #j. If so, we may assume without loss of generality that k > j. In that
case the lifted parameter corresponds to the representation of highest weight
((k—j—2)/2)w + (j — 2)w;, where @) and w; are the long and short fundamental
weights.

Now we consider lifts via the principal homomorphism, SL,(C) — Sp,(C). Again
let ¢, be the Satake parameter for PGLy(Q,) having characteristic polynomial
x? —a,x + 1. Then we find that ¢, lifts to the parameter whose characteristic poly-
nomial in the 4-dimensional representation is

x— (af, - 2ap)x3 + (a; — 3a12, +1)x? — (51137 —2a,)x + 1.
We find that the corresponding Hecke eigenvalues are
h=pa)=2a,),  Ja=piay-3a@+1)—1

The Langlands parameter corresponding to a classical cusp form of weight k& now
lifts to the parameter of the representation of PGSp, of highest weight (k — 2)p
where p is again half the sum of the positive roots. We should point out that
the principal homomorphism here is the symmetric cube map SL, — Sp,.

5. Data

In this chapter we present some of the data from our calculations. More data, includ-
ing the matrices giving the action of the Hecke operators, can be found at the second
author’s web page at www.math.ohio-state.edu/~pollack.

In Tables I-IIT we tabulate the dimensions of the various spaces of modular forms
we have calculated. The entry in the row corresponding to S and the column
corresponding to W is

dim(M(W, K%)), dim(M(W, KS)).

Recall that kS = [1,¢s Kp [1,cs I, with each K, hyperspecial and each 1, an Iwahori
subgroup.

The next three tables (Tables IV-VI) give the decompositions of M(W, K?%) into
irreducible representations of H(G(Q), K¥) for certain W and S. We only include
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Tuble I The dimensions of M(W, KS) and M(W, K5)5 for G,

Wi W Wha Wy Wea
2 1,0 0, 0 0,0 2,0 11
{3} 3,0 0,0 1,0 7,2
{5} 7,1 13,7 26, 11 63, 31
{7} 29, 13 82, 54 194, 120
{11y 187, 134
{13} 523, 385
2.3} 43,1
2.7 2532, 252
(3.5) 2956

Table II. The dimensions of M(W, K®) and
MW, KS)St for PGSp,™

W Ws
2} 1,0 0,0
2.3} 3,0 31
2,5 11, 2
2.7 28,5
@2 11) 99, 34

Table III. The dimensions of M(W, KS)
and M(W, K5)S' for PGSp4™s

74}
(2.5} 13,2
{3,5} 36, 9

those cases where M(W, K®) has relatively low dimension, but in each case we
include we do give the complete decomposition into irreducibles. We now give a
guide to reading these tables.

Each row in the table corresponds to an irreducible Hecke-submodule N of a space
of forms M(W, K®). The first two columns specify the level K and the weight W.

Let Hi = ®pesH;, be the tensor product of the Iwahori-Hecke algebras and
Hus = ®p¢sHx, be the restricted tensor product of the spherical Hecke algebras.
Then N is a module for H; ® Hys and as such a tensor product N; ® Nys of
two irreducible representations. Note that N; is absolutely irreducible, while
Nys decomposes over Q as a sum of characters.

The third column (labeled Hj) in the table gives the dimension of N;. If N; is a
special representation of H;, for each p € S then the third column contains the entry
‘St rather than 1.

The next columns in the table regard the spherical Hecke operators. If Nyg is
one-dimensional then the column labeled Ti(p) contains the (unique) eigenvalue
of Ti(p) on Nys. Otherwise, some of the 7T;(p) have eigenvalues that aren’t rational
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Table IV, Irreducible Hecke submodules for PGSp"‘IS

Level Weight H; 71(3) T5(3) T(7) T>(7) Lifted?
K23 0 1 40 120 400 2800 ok
4 24 ) 16 (Sa(To(10)), 7)
4 4 -8 4 96
4 14 16 62 96 (Sa(To(3)), 1)
St 1 3 10 86
St 7 3 26 58

Table V. Irreducible Hecke submodules for G,

Level Weight Hi T1(2) T>(2) T1(3) T>(3) Ti(5) Lifted?
K? Q 1 . . 1092 88452 19530 *
Wa, 2 . - 1%0 # % (z, 10)
Wea St . . —28 % %
K Q 1 126 2016 . . 19530 *
2 9 -90 . . 810 (z,6)
Wia 1 —18 180 - . — % 6,7)
W27 2 %l 74171 . . . (’L’, 10)
3 0 —126 . . . (z, 10)
St Nys is 2-dimensional
K’ Q 1 126 2016 1092 88452 . **
St -3 —38 28 —196 .
2 33 94 100 164 . (z,6)
3 —17 144 0 364 . 4,7
W7 2 -2 u -10 -1 .
3 3 —16 -8 — 4004 . 4.,6)
1 6 —104 52 —988 . (z,8)
St Nys is 7-dimensional
Wia 1 -2 24 — 3,@ % . (6,71)
3 _33 _ 133 65 __ 1850 .
4 8 3 9
3 21 11 — '% — 5;—2 . 4.8)
Nys is 2-dimensional 4.8)
St Nys is 2-dimensional
St Nys is 9-dimensional
K-7 Q 1 126 2016 1092 88452 19530 **
3 —14 126 —48 1212 610 4,7)
3 -3 —134 60 —816 438 (z,6)
6 -3 —6 —4 —240 —138
2 Nys is 2-dimensional (z, 6)
St Nys is 2-dimensional
St Nys is 10-dimensional
K (@) The full space of forms here is 187-dimensional. We will only comment here that there is

a form in the Steinberg space here that seems to be lifted from S>(I'o(11)) via the
principal SL,. We have only checked that the Satake parameter at 2 is what the lift
predicts.
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Table VI Irreducible Hecke submodules for PGSpf2
Level Weight H; T1(3) T»(3) Ti(5) T»(5) Ti(7) T»(7) Ti(11) Ty(11) Lifted?
K2 Q 1 40 120 156 780 400 2800 1464 16104  **

K23 0 1 . . 156 780 400 2800 1464 16104  **
2 . . 36 60 40 —80 144 264 (S4(To(6)), 7)
ws St - ‘ =S K g0 24 =ldis
2 - : S S B8 SME (S6(To(3)). 1)
K23 0O 1 40 120 . . 400 2800 1464 16104  **
2 4 -24 . . 52 16 144 264 (S4(T(10)), 7)
2 —4 -8 . . -4 —96 —16 —120
4 14 16 . . 62 96 164 504 (S4(To(5)), )
St 1 3 . . 10 —86 —18 —42
St 7 3 . . —26 58 6 —186
K2 0 1 40 120 156 780 - . 1464 16104  **
2 0 20 -4 —40 - . —-16 —136
2 20 40 16 —-60 - . 104 —216  (S4(To(14)), 7)
2 10 0 18 —48 . . 180 696 (S4(To(14)), 7)
4 10 0 46 20 - . 124 24 (S4(To(7)), )
4 -8 12 16 24 . . -8 120
4 -8 12 —12 24 . . 48 120
St 0 4 -16 8 . . —64 104
St 0 0 16 20 . . 24 —136
St -8 6 -6 12 - . —30 84
St 4 -12 0 24 . . 0 120 S»(To(14)), princ.
St 0 -26 —10 20 . . 50 20
2 Npys is 2-dimensional

and we simply record the dimension of Nys. In some cases the characteristic
polynomials of the 7;(p) on Nyg can be found on the second author’s web page.

Finally, the last column regards apparent lifting of forms. Note that in no cases
have we proven that a form is lifted from a smaller group. Rather we have located
forms that appear to be lifts, in that the Satake parameters we have computed agree
with ones predicted by a lift. In the lifting column of the PGSp, tables there are
three types of entries. An ordered pair (Si(I'g(2V)), 7) indicates that the forms in
the corresponding irreducible Hecke submodule appear to be lifted, via the
SL; x SL, embedding discussed in Section 4.3, from a classical cusp form of weight
k and level N together with the parameter, 7, of the trivial representation of a
compact form of PGL;. Next, we mark the forms corresponding to the trivial auto-
morphic representation with “**’, These forms are lifts in two ways. Namely they
arise from the pair (Ejy, t) via the SL; x SL, lift and from t via the principal lift,
where FEj is the classical Eisenstein series of weight 4. Finally one entry indicates
that the forms are lifted via the principal SL,.

In the G, tables (Table V) we use similar notation. Recall that the SL, x SL,
embedding has the short root in the first coordinate and the long root in the second.
We record only the weight of the cusp forms being lifted; in each case the level

https://doi.org/10.1023/A:1013715231943 Published online by Cambridge University Press


https://doi.org/10.1023/A:1013715231943

HECKE ALGEBRAS AND AUTOMORPHIC FORMS 47

is the prime appearing in the level of the forms on G,. Again we mark the forms
corresponding to the trivial representation with “**’. Here these forms are lifts
in three ways: from (Ey4, 7) and (z, E¢) under the SL, x SL, lift and from t under
the principal lift.
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