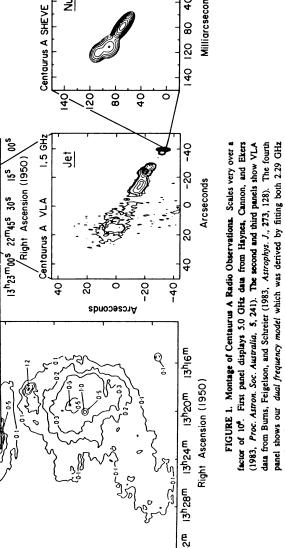
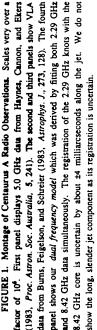
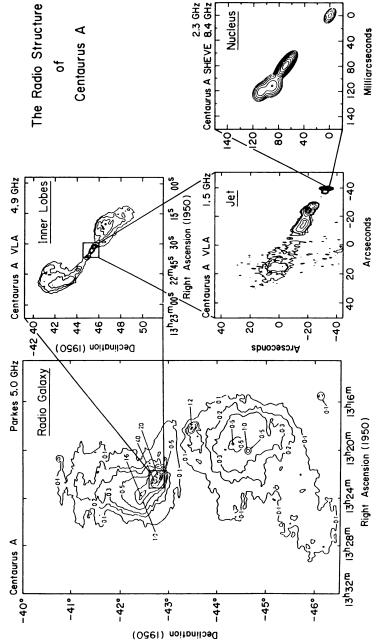
THE HIGH RESOLUTION STRUCTURE OF THE CENTAURUS A NUCLEUS AT 2.29 GHZ AND 8.42 GHZ

D.L. Meier¹, D.L. Jauncey², B.A. Preston¹, A.K. Tzioumis³ A.E. Wehrle⁴, R.A. Batchelor², J. Falkner⁵, P.A. Hamilton⁶, B.R. Harvey⁶, R.F. Haynes², B. Johnston⁶, A.P. Louie¹, P. McCulloch⁶, G. Moorey², D.D. Morabito¹, G.D. Nicolson⁹, A.E. Niell¹, J.A. Roberts², J.G. Robertson¹, G.W.R₁₂Royle⁶, L.J. Skjerve¹, M.A. Slade¹, O.B. Slee², A. Watkinson², and A. E. Wright²


¹Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91109 ³Division of Radiophysics, CSIRO, Epping, Australia School of Physics, University of Sydney, N.S.W., 2006, Australia Department of Astronomy, University of California, Los Angeles, California, 90024 ⁵Department of Astronomy, University of Southern California, Los Angeles, 90007 ⁶University of Tasmania, Hobart, Tasmania 7001, Australia ⁷School of Surveying, University of N.S.W. Kensington, N.S.W. 2033, Australia ⁸Ford Aerospace and Communication Corporation, Goldstone, California ⁹CSIR, National Institute for Telecommunications Research, Johannesburg, South Africa Haystack Observatory, NEROC, Westford, MA 01886 ¹¹Anglo-Australian Observatory, Epping Laboratory, Epping, NSW 2121, Australia ¹² School of Electrical Engineering, University of Sydney, N.S.W., 2006, Australia


ABSTRACT: VLBI observations of the nucleus of Centaurus A were made in April, 1982 at two frequencies with an array of five Australian radio antennas as part of the Southern Hemisphere VLBI Experiment (SHEVE). Observations were undertaken at 2.29 GHz with all five antennas, while only two were operational at 8.42 GHz. The 2.29 GHz data yielded significant information on the structure of the nuclear jet. At 8.42 GHz a compact unresolved core was detected as well.


We find that the source consists of the compact self-absorbed core and a 100 milliarcsecond jet containing a set of three knots with a very long, narrow component elongated along the same position angle as the knots. The position angle of the jet is in excellent agreement with that of the radio and X-ray structure on arcsecond and arcminute scales. The jet has brightened at 2.29 GHz by a factor of nearly three since the early 1970s, 30% of which occurred in the 1980-82 period. The present data do not distinguish between superluminal and subluminal motion in the core.

137

M. J. Reid and J. M. Moran (eds.), The Impact of VLBI on Astrophysics and Geophysics, 137-138. © 1988 by the IAU.

