J. Austral. Math. Soc. (Series A) 47 (1989), 90-94

POSITIVE SEMIGROUPS OF OPERATORS ON BANACH SPACES

K. F. NG

(Received 21 October 1987)

Communicated by R. O. Vyborny

Abstract

We prove a version of the Feller-Miyadera-Phillips theorem characterizing the infinitesimal generators of positive C_0 -semigroups on ordered Banach spaces with normal cones. This is done in terms of N(A) as well as the canonical half-norms of Arendt Chernoff and Kato defined by $N(a) = \inf\{||b|| | b \ge a\}$, where $N(A) = \sup\{N(Aa)|N(a) \le 1\}$ for operator A. A corresponding result on C_0^* -semigroups is also given.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 47 D 05, 47 H 07, 47 B 44, 46 A 40.

Let $(B, B_+, || ||)$ be an ordered Banach space with proper closed convex cone B_+ . The dual B^* is ordered by $B_+^* = \{f \in B^* | f(b) \ge 0 \text{ for all } b \in B_+\}$. As in [1], [3], [6] and [7], the canonical half-norm N by $N(a) = \inf\{||b|| | a \le b\}$ for $a \in B$. For a linear operator A from B into itself, we define $N(A) = \sup\{N(Ax)|N(x) \le 1\}$. We extend some recent results of Robinson [8], [9] by proving the following analog of the Feller-Miyadera-Phillips theorem (see [2] and [4]).

THEOREM 1. Suppose B_+ is normal. Let H be a closed linear operator with domain D(H), a dense subspace of B. Then, for constants M, ω , the following statements are equivalent.

(i) H generates a C_0 -semigroup $\{S_t\}$ (so $S_t = e^{-tH}$) with $S_t \ge 0$ (that is $S_t(B_+) \subseteq B_+$) and $N(S_t) \le Me^{\omega t}$, $t \ge 0$.

^{© 1989} Australian Mathematical Society 0263-6115/89 \$A2.00 + 0.00

(ii) For all small $\alpha > 0$, $(I + \alpha H)^{-1}$ exists and is a positive linear operator on B such that

 $N((I + \alpha H)^{-n}x) \le M(1 - \alpha \omega)^{-n}N(x)$

for all $x \in B$, $n \ge 1$.

(iii) The range $R(I + \alpha H) = B$ and

$$N((I + \alpha H)^n a) \ge (1 - \alpha \omega)^n N(a)/M$$

for all $a \in D(H^n)$, $n \ge 1$, and for all small $\alpha > 0$.

The equivalence of (ii) and (iii) follows easily from the closed graph theorem and the fact that N(a) = 0 if and only if $a \le 0$. For (iii) \Rightarrow (i), we use a suggestion in [1, Remark 4.2]: let $||a||_N = N(a) + N(-a)$. Then $|| ||_N$ is a norm on *B* equivalent to the given norm || ||, because B_+ is assumed to be normal. The *N*-dissipative condition in (iii) implies the $|| ||_N$ -dissipative condition:

$$\|(1+\alpha H)^n a\|_N \geq (1-\alpha \omega)^n \|a\|_N/M.$$

By the Feller-Miyadera-Phillips Theorem, H is the infinitesimal generator of a C_0 -semigroup $\{S_t\}$, and $S_t x = \lim_{n\to\infty} (I + (t/n)H)^{-n}x$ for all $x \in B$. Since each $(I + (t/n)H)^{-n} \ge 0$ by (ii), it follows that $S_t \ge 0$. Also, by continuity of N, it follows from the N-dissipativity in (ii) that

$$N(S_t x) \leq \lim_{n \to \infty} \left[M \left(1 - \frac{t}{n} \omega \right)^{-n} N(x) \right] = M e^{t \omega} N(x)$$

for all $x \in B$. This shows that $N(S_t) \leq Me^{t\omega}$. Conversely, if (i) holds then, by the standard theory, $(I + \alpha H)^{-1}$ exists and is a continuous linear operator on B such that

$$(I + \alpha H)^{-n} x = \int_0^\infty (S_{\alpha t} x) \frac{t^{n-1}}{(n-1)!} e^{-t} dt.$$

Since $S_{\alpha t} \ge 0$ it follows that $(1 + \alpha H)^{-n} \ge 0$. Also, since N is convex and positively homogeneous, one has, by the following lemma and (i), that

$$N((1 + \alpha H)^{-n}x) \leq \int_0^\infty N(S_{\alpha t}x) \frac{t^{n-1}}{(n-1)!} e^{-t} dt$$

$$\leq \int_0^\infty N(S_{\alpha t}) N(x) \frac{t^{n-1}}{(n-1)!} e^{-t} dt$$

$$\leq \int_0^\infty M e^{\alpha \omega t} N(x) \frac{t^{n-1}}{(n-1)!} e^{-t} dt$$

$$= M N(x) (1 - \alpha \omega)^{-n},$$

proving (i) \Rightarrow (ii)

LEMMA 1. Let A be a linear operator on B and $\gamma \in \mathbf{R}$, $\gamma > 0$. The following statements are equivalent:

(i) $N(A) \le \gamma$; (ii) $N(Ax) \le \gamma N(x)$ for all $x \in B$.

We omit the proof of this easy lemma.

REMARK. If $N(A) < +\infty$ then $A \ge 0$.

LEMMA 2. Suppose || || is monotone on B and on the dual B^* , and let A be a positive linear operator on B. Then

(1)
$$N(A) = \sup\{N(Aa)|a \ge 0, N(a) \le 1\} = ||A||_+$$

where $||A||_+$ is the Robinson norm of A and is defined in [9] by

 $||A||_{+} = \sup\{||Aa|||a \ge 0, ||a|| \le 1\}.$

PROOF. Since || || is monotone on B, N(a) = ||a|| for $a \in B_+$. Since || || is monotone on B^* , $N(a) = \inf\{||b|| | b \ge a, 0\}$ for all $a \in B$ (see [7, Theorem 2.4], and also [5, Proposition 6]). Hence the second equality in (1) is clear. Moreover, for $a \in B$ with $N(a) \le 1$,

$$N(Aa) = \inf\{\|c\| | c \ge Aa, 0\}$$

$$\le \inf\{\|Ab\| | b \ge a, 0\} \le \inf\{\|A\|_{+} \|b\| | b \ge a, 0\}$$

$$= \|A\|_{+} N(a) \le \|A\|_{+}$$

which shows that $N(A) \leq ||A||_+$. That $N(A) \geq ||A||_+$ holds trivially in view of the second equality in (1). This completes our proof.

NOTE. In view of this lemma, Theorem 1, in the special case when || || is monotone on *B* and *B*^{*}, is exactly the same as the theorem of Robinson [9, Theorem 1.1] which in turn generalizes [8, Theorem 3.5], and results in [1], [3] (extensions in line of Theorem 1 were also anticipated in [2, page 264] with less specific bounds). Likewise, our Theorem 2 below was given by Robinson [9], [8] for the special case stated. The following duality result will be important for our discussion of C_0^* -version of Theorem 1.

LEMMA 3. Suppose $(B, B_+, || ||)$ is the dual of an ordered Banach space $(B_*, B_{*+}, || ||)$ with closed convex cone B_{*+} . Let $A \in \mathcal{L}(B)$ be the dual of an operator $A_* \in \mathcal{L}(B_*)$. Then (i) $A \ge 0$ if and only if $A_* \ge 0$, (ii) $N(A_*) = ||A||_+$, if $A \ge 0$.

PROOF. As (i) is well known and easy to verify, we only prove (ii). General elements of B_* and B will usually be denoted by x and f respectively. By

[7, Theorem 2.1],

$$N(A_*x) = \sup\{f(A_*x)|f \ge 0, ||f|| \le 1\}$$

= sup{(Af)(x)|f \ge 0, ||f|| \le 1}
 $\le \sup\{g(x)|g \in B, g \ge 0, ||g|| \le ||A||_+\}$
= ||A||_+N(x),

which shows that $N(A_*) \le ||A||_+$. Here we have used the fact that if g = Af with $f \ge 0$ and $||f|| \le 1$ then $g \ge 0$ and $||g|| \le ||A||_+ ||f|| \le ||A||_+$. On the other hand, for $f \ge 0$, $||f|| \le 1$, one has

$$||Af|| = \sup\{(Af)(x)| ||x|| \le 1\}$$

= sup{f(A_*x)| ||x|| \le 1}
\$\le sup{N(A_*x)| ||x|| \le 1}
\$\le sup{N(A_*)N(x)| ||x|| \le 1}
\$< N(A_*),

which shows that $||A||_+ \leq N(A_*)$. Here [7, Theorem 2.1] has been used again.

THEOREM 2. Let $(B, B_+, || ||)$ and $(B_*, B_{*+}, || ||)$ be as in Lemma 3. Suppose $B = B_+ - B_+$. Let H be a w*-closed linear operator with domain D(H) a w*-dense subspace of B. The following conditions are equivalent.

(i) H generates a C_0^* -semigroup $\{S_t\}$ with $S_t \ge 0$ and $||S_t||_+ \le Me^{\omega t}$, $t \ge 0$. (ii) For all small $\alpha > 0$, $(I + \alpha H)^{-1}$ exists such that

(2)
$$||(I + \alpha H)^{-n} f|| \le M(1 - \alpha \omega)^{-n} ||f||$$

for all $f \in B_+$, $n \ge 1$.

PROOF. We note first that since $B = B_+ - B_+$, the cone B_{*+} is normal in B_* . Since (2) is equivalent to

(2')
$$||(I + \alpha H)^{-n}||_{+} \leq M(1 - \alpha \omega)^{-n}$$

the proof of (i) \Rightarrow (ii) is the same as that given in [8, Theorem 3.4] and [9, Theorem 1.2]. Conversely, if (ii) holds then, by Lemma 3, $(I + \alpha H)_*^{-n} = (I + \alpha H_*)^{-n}$ is a positive continuous linear operator on B_* such that

(3)
$$N((I + \alpha H_*)^{-n}) \leq M(1 - \alpha \omega)^{-n}$$

for all *n* and all small $\alpha > 0$, where H_* is norm-densely defined, normedclosed adjoint of *H* on B_* . By Theorem 1 applied to H_* and B_* , we conclude that H_* generates a C_0 -semigroup $\{S_t^*\}$ on B_* with $S_t^* \ge 0$ and $N(S_t^*) \le Me^{\omega t}$, $t \ge 0$. Then *H* generates the dual semigroup $\{S_t\}$ of $\{S_t^*\}$. Furthermore, by Lemma 3, $S_t \ge 0$ and $||S_t||_+ = N(S_t^*) \le Me^{\omega t}$ for all $t \ge 0$. REMARK. In the special case M = 1 and $\omega = 0$, Theorem 1 corresponds to the Hille-Yosida theorem, that is, S is N-contractive (in the sense that $N(S_t) \leq 1$ for all t). The dissipative condition in (iii) then reduces to the single condition $N((I + \alpha H)a) \geq N(a)$ because the higher order conditions follow by iteration. Similarly, for M = 1 and $\omega = 0$, Theorem 2 simply states that H generates a C_0^* -semigroup of positive $|| ||_+$ -contractions if and only if $(I + \alpha H)^{-1}$ is a positive w^* -continuous $|| ||_+$ -contraction for all small $\alpha > 0$.

References

- W. Arendt, P. R. Chernoff, and T. Kato, 'A generalization of dissipativity and positive semigroups', J. Operator Theory 8 (1982), 167-180.
- [2] C. J. K. Batty and D. W. Robinson, 'Positive one-parameter semigroups on ordered Banach spaces', Acta Appl. Math. 1 (1984), 221-296.
- [3] O. Bratteli, T. Digernes and D. W. Robinson, 'Positive semigroups on ordered Banach spaces', J. Operator Theory 9 (1983), 371-400.
- [4] E. B. Davies, One-parameter semigroups, (Academic Press, London, 1980).
- [5] K. F. Ng, 'The duality of partially ordered Banach spaces', Proc. London Math. Soc. 19 (1969), 269-288.
- [6] D. W. Robinson and S. Yamamuro, 'The Jordan decomposition and half-norms', Pacific J. Math. 110 (1984), 345-353.
- [7] D. W. Robinson and S. Yamamuro, 'The canonical half-norm, dual half-norms and monotonic norms', *Tôhoku Math. J.* 35 (1983), 375-386.
- [8] D. W. Robinson, 'Continuous semigroups on ordered Banach Spaces', J. Funct. Anal. 51 (1983), 268-284.
- [9] D. W. Robinson, 'On positive semigroups', Publ. RIMS Kyoto University 20 (1984), 213-224.

Department of Mathematics Chinese University of Hong Kong Hong Kong