Cardiac injury due to Streptococcus pneumoniae invasion during severe pneumococcal pneumonia in a novel nonhuman primate model

Luis F. Reyes1,2,* Cecilia A. Hinojosa1,2, Nilam J. Soni1,3, Julio Noda1,2, Vicki T. Winter4, Melissa A. de la Garza5, Jacqueline J. Coalson5, Luis Giavoni5, Antonio Anzueto1,2, Carlos J. Orihuela2 and Marcos I. Restrepo1,6

1Division of Pulmonary Diseases & Critical Care Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; 2Division of Pulmonary Diseases & Critical Care Medicine, South Texas Veterans Health Care System, San Antonio, TX, USA; 3Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA; 4Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; 5Texas Biomedical Research Institute, San Antonio, TX, USA; 6Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA

OBJECTIVES/SPECIFIC AIMS: The aims of this study are (1) to develop and characterize a novel nonhuman primate model of pneumococcal pneumonia that mimics human disease; and (2) determine whether Streptococcus pneumoniae can: (a) translocate to the heart, (b) cause adverse cardiac events, (c) induce cardiomyocyte death, and (d) lead to scar formation during severe pneumonia in baboons. METHODS/STUDY POPULATION: Six adult baboons (Papio cynocephalus) were surgically tethered to a monitoring system to continuously assess their heart rate, temperature, and electrocardiogram (ECG). A baseline transcutaneous echocardiogram and 12-lead ECG were obtained. Serum troponin I (cTnI), cardiac troponin T (cTnT), brain natriuretic peptide, and heart-type fatty acid binding protein (HFABP) levels were obtained before infection and at the end of the experiment to determine cardiovascular damage during pneumococcal pneumonia. Animals were challenged with 108 colony-forming units of S. pneumoniae in the right middle lobe using flexible bronchoscopy. Three baboons were rescued with ampicillin therapy (80 mg/kg/d) after the development of pneumonia. Cardiovascular damage was confirmed by examination of tissue sections using immunohistochemistry as well as electron and fluorescence microscopy. Western-blot and tissue staining were used to determine the presence of necroptosis (RIP3 and pMLKL) and apoptosis (Caspase-3) in the cardiac tissue. Cytokine and chemokine levels in the heart tissue were determined using Luminex technology. RESULTS/ANTICIPATED RESULTS: Four males (57%) and three (43%) females were challenged. The median age of all baboons was 11 (IQR, 10-19) years old, which corresponds to a middle-aged human. Infected baboons consistently developed severe pneumonia. All animals developed systemic inflammatory response syndrome with tachycardia, tachypnea, fever, and leukocytosis. Infection was characterized by initial leukocytosis followed by severe leukopenia on day 3 postinoculation. Non-specific ischemic alterations by ECG (ST segment and T-wave flattening) and the premortem echocardiogram were observed. The median (IQR) levels of troponin I and HFABP at the end of the experiment were 3550 ng/mL (1717–5383) and 916.9 ng/mL (520.8–1323), respectively. Severe cardiomyopathy was observed using TEM and H&E stains in animals with severe pneumonia. Necroptosis was detected in cardiomyocytes of infected animals by levels of pMLKL and RIP3 in cardiac tissue. Signs of cardiac remodeling indicated by disorganized collagen deposition was present in rescued animals but not in the other animals. DISCUSSION/SIGNIFICANCE OF IMPACT: We confirmed that baboons experience cardiac injury during severe pneumococcal pneumonia that is characterized by myocardial ischemia, activation of necroptosis, and tissue remodeling in animals rescued by antimicrobial therapy. Cardiac damage by invading pneumococci may explain why adverse cardiac events that occur during and after pneumococcal pneumonia in adult human patients.

2298

Central autonomic network dysfunction implicated in alcohol-related intimate partner violence

Brandi C. Fink

Clinical and Translational Science Center, University of New Mexico

OBJECTIVES/SPECIFIC AIMS: Most incidents of partner violence occur when one or both partners have been drinking, however, the mechanism through which this association exists is unknown. The neural circuits that support regulation of emotion and social behavior, as well as autonomic influences on the heart, are localized in the brain and represent an integrated bidirectional regulatory system. These physiological regulatory processes are mediated by a neural substrate known as the central autonomic network which includes the peripheral autonomic nervous system. The central autonomic network modulates biobehavioral resources in emotion by flexibly responding to physiological arousal in response to both situational demands as well as a fundamental state. This defense-motivated response is also part of the autonomic nervous system. How alcohol influences central autonomic control remains poorly understood. A deeper understanding of how alcohol use can impact central autonomic control may help inform prevention efforts.

METHODS/STUDY POPULATION: In total, 17 distressed violent (DV) partners (11 females, 6 males) were matched to a sample of distressed nonviolent (DNV) partners (7 females, 6 males) were matched on age, sex, and relationship satisfaction and participated in a placebo-controlled alcohol administration study with an emotion-regulation task during which electroencephalography, HRV, and galvanic skin response (GSR) measures were collected. In the alcohol condition, participants were administered a mixture of 100 proof vodka and cranberry juice calculated to raise their blood alcohol concentration to 0.08%. In the placebo condition, participants consumed a volume of juice equivalent to that consumed in the alcohol condition, but without alcohol. Alcohol and placebo conditions were counter-balanced across participants as were the presentation of blocks of evocative and neutral partner stimuli and emotion-regulation condition (watch vs. do not react). RESULTS/ANTICIPATED RESULTS: Results show that DV partners present greater cortical arousal than DNV partners on measures event-related spectral perturbations, which are mean log event-located deviations from baseline mean power at each frequency of the electroencephalography power spectrum, with intoxicated and viewing evocative partner stimulus in the “do not react” emotion regulation condition. Results also show a statistically significant 2 (alcohol vs. placebo) × 2 (watch vs. do not react) × 2 (DV partners vs. DNV partners) interaction of the respiratory sinus arrhythmia measure of HRV when viewing evocative partner behavior (F = 7.102, p = 0.019, partial η2 = 0.353). Findings indicate that DV partners have lower HRV than DNV partners under stress conditions but particularly when acutely intoxicated and trying not to react to their partners’ evocative behavior. Similarly, results also show a statistically significantly 2 (alcohol vs. placebo) × 2 (watch vs. do not react) × 2 (DV partners vs. DNV partners) interaction on GSR (F = 71.452, p = 0.000, partial η2 = 0.749). GSR findings indicate that DV partners also have lower GSR when acutely intoxicated and trying not to react to their partners’ evocative behavior. DISCUSSION/SIGNIFICANCE OF IMPACT: These results suggest that increases in intimate partner violence under acute alcohol intoxication may be the result of dysfunction of the central autonomic network, especially when DV partners are trying to suppress a behavioral response to their partners’ evocative behavior in conflict. The neurophysiological patterns evidenced by DV partners is consistent with a state of vigilance to threat, and reduced ability inhibit prepotent, but inappropriate responses. They also suggest that HRV may be an important target for intervention with partner with history of intimate partner violence. One method may be heart rate variability biofeedback which has been shown to increase parasympathetic nervous system function, autonomic stability, and emotion regulation.

2204

Characterizing specialized pro-resolving lipid mediators and synthesis pathways in veterans with peripheral arterial disease


University California, San Francisco, CA, USA

OBJECTIVES/SPECIFIC AIMS: Specialized pro-resolving lipid mediators (SPM) actively counter proinflammatory cascades. A deficit of SPMs is one possible mechanism through which inflammation leads to the development of atherosclerotic disease. The purpose of this study is to characterize the profiles