ON THE THEORY OF DIFFERENTIAL FORMS
ON ALGEBRAIC VARIETIES

YUSAKU KAWAHARA

Let K be a function field of one variable over a perfect field 2 and let v
be a valuation of K over k. Then v(dx) = v(®D;) — v(x)», where D, is the differ-
ent-divisor (Verzweigungsdivisor) of K/k(x), and (x). is the denominator-
divisor (Nennerdivisor) of x. In §1 we consider a generalization of this theorem
in the function fields of many variables under some conditions. In §2 and §3
we consider the differential forms of the first kind on algebraic varieties, or the
differential forms which are finite at every simple point of normal varieties and
subadjoint hypersurfaces which are developed by Clebsch and Picard in the
classical case. In §4 we give a proof of the following theorem.” Let V' be a
normal projective variety defined over a field % of characteristic 0, and let
1, ..., ws be linearly independent simple closed differential forms which are
finite at every simple point of V”. Then the induced forms on a generic hyper-
plane section are also linearly independent.

I express my hearty thanks to Mr. Y. Nakai for his useful remarks.

§1. Let K be a field, generated over a field 2 by a set of quantities and

let K be of dimension »# over k. If K is separably algebraic over k(xi, . . ., xn)
where %1, . . ., X» is a set of algebraically independent quantities in K over k&,
we say that xi, ..., ¥, are separating generators of K over k. Every differ-

ential form belonging to.the extension K over % is expressed in one and only

one way as a polynomial in dx, . . ., dx, with coefficients in K.

Lemma 1. Let K be a separably generated n-dimensional extension of k.

Then n differentials dxi, . .., d¥n of %1, . . ., n in K are linearly independent
over K if and only if %1, ..., Xn ave separating generators of K over k.

Proof. If dx, ..., dx, are linearly independent over K, we get for all z
in K

dz = >\ ai(z)dx;, ai(z) € K.
i=1
Received January 23, 1956.
) When V is without singularity, this theorem is well known, see J. Igusa [4].
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Therefore % derivations D; of K defined by D,(z) =ai(z), form a base of the
module of all the derivations of K over k. It follows immediately that every
derivation of K over % does not annul all the elements of .(x;, . .., x,). There-

fore by F-I, Th. 1,” K/k(x1, . . ., %s) is separably algebraic.
LemmMma 2. Let %1, . . ., %x be separating generators, and

dzi ... dzs= 3 Giy...is %y o . . d%ig, ai,...i; € K.
<...<ig

Then ai,..i;x0 if and only if (21, ..., 25, X1, « o« iy o o« Kig o o ., Xn) are

separating generators of K over k.

Proof. This follows immediately from Lemma 1.

Let K be a regular n-dimensional extension of . In K we consider an
(n — 1)-dimensional valuation ». When %, ..., %, are separating generators
of K over k we associate a number v(Dy,.. ,,) with v in a similar way as in
the case of dimension 1. Namely, let o be the set of all the elements z of
k(x:, ..., 2,) such that »(z) 20, and let © be the set of all the elements in
K which are integral over o. Then the different-ideal of o with respect to o is
a principal ideal (¢) in 5. We define v(®y,...»,) by

(Dy,y...x,) = 0(@).

More generally, if K is separably algebraic over a subfield K,, then we can
define v(Dgjx,) similarly. v(Dy,..r,) may be =0 for infinitely many v, but if
we treat only the valuations 2w in K with respect to the subvarieties W”™! of
a normal model V" of K, then vw(Dy,...5,) 20 for a finite number of vw. The
following lemma is well known.

LemMma 3> Let K be a regular 1-dimensional extension over k, and let v
be a valuation of K. Then if x and z are the elements in K such that K/k(x)

and K/k(z) are separably algebraic, we get
dz
v(%) =0(D) — (D) +20(X) 0 — 20(2) w.

where v(%)w =0 if v(x) 20, v(%)o= —ov(x) if v(x) <O0.

Lemma 4. Let K be a regular n-dimensional extension over k and let

20 A. Weil [11] Chapter I, Th. 1, noted by F-I, Th. 1.
3 J. Weissinger [12].
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X1, . .., Xn be separating generators of K and

dz=Pidxi+ ... + P.dx,.

Let v be an (n—1)-dimensional valuation such that v(x;) 20 (i=1,...,n—1)
and let %; (i=1,...,n—1) be the residue class mod v which contains x;.
Then, if %1, . . ., ¥n—1 are algebraically independent in the residue class field of

v over k and P, =0, we have

v(Py) = U(@xl...x,,_lz) - v(@xl ..x,,,_,x,,) —20(2)e +20(%)w.

Proof. Let k(xy, ..., xn-1)* be the algebraic closure of (%1, ..., %n-1)
in K. Since ¥, ..., ¥»-1 are algebraically independent, we can consider v as
a valuation of K/k(xy, . .., xx-1)*; K is of dimension 1 over k(xi, . . ., #n-1)™
If we express the differential belonging to the extension K of k(xi, . .., %u-1)"

with d’, then d'z = P,d'x». Therefore, from Lemma 3,
v(Py) = 0(D)) —v(DE,) —20(2)e +20(%)w,

where @} and D}, are the different-divisors with respect to K/k(xi, . . ., %u-1)¥(2)
and K/E(x, ..., %) (xa) respectively. But since »(®;) = (D, tpmrz),
v(Dk,) = v(Ds,...x,), we have

v(Py) = U(@xl...x“_lz) - U(Qxl...x“) —20(2)e + 20(%n) .

Tureorem 1. Let K be a regular n-dimensional extension over k, and let

X1, « . ., Xn be separating generators of K and
dul PR duandxl « o dxn

Let v be an (n—1)-dimensional valuation of K. Suppose that n—1 elements
among i, . .., un form mod v a transcendental base of the residue class field
K of v over k, and n—1 elements among %i, . . . , %n form a transcendental
base mod v of K. Then if Rx0,

v(R) = v(@ul...u“) - U(@xl...xn) F2{v(x%)w+ . . . +0(xn)=}
—2{v(u)o+ . .. +0(Un)wt.

More generally let dz . ..dzs= 2\ Ri.idx, ...ds, (s=n). Suppose

1

further that n—1 elements among (21, . . ., Zs, Xy o o vy Biyy o o vy Kigy o o v 5 %n)

form mod v a transcendental base of K over k. Then if R, %0,
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v(Ril...i,) = U(@zl...zsxl...ﬁix...%s...x") - v(@xl...x")
F2{v(x D)o+ . . . +0(XDw) —2{0(2) 0+ . . . +V(25)w).

Proof. We use induction on n. The latter part follows immediately from
the first part; for, dz; ... dzsd%s+1 . . . d%n=Ry...sd% . . . A%sd%s+1 . . . dxn (if
ii=1,..., i=5s).

We assume without loss of generality that K/k(¥i, . . ., %¥x-1) and K/k(u,

., #n-1) are algebraic. We put
du; . . . dun—1=A1dxz .« e dxn+A2dX1dx:q PR dxn—(— PR +Andx1 v e d%n-1.

I) The case when at least one of A, ..., Ax-1 is not zero; we assume
A;%0. Let k(x)* be the algebraic closure of £(x;) in K and consider K over
k(x;)*. Then by the induction sssumption we can prove in the same way as

Lemma 4,

v(AD) =0(Duy. o) = V(Do) +2{0( %)+ -« . +0(%n) o
"2<v(u1)w+ « o o +v(un~—1)oo}-

Next as K/k(ui, . . ., un-1, %) is separably algebraic, we can put
Aun = a1dus + asdus+ . . . + an-1dun-1+ andx;.
By Lemma 4 we get
v(an) = (Duy...upesun) = Vg tiyoyz) +20(%) 0 — 20 20 ).
As R=Aian

v(R) =v(A) +vlan) = v(@u,...u,,) - U(@xl...xu)
+2{(x)o+ . . . F0( X)) —2{v(u)0+ . . . +0(Un)w}.

II) When Ai=...=A4,-1=0, then A, >0, as R%x0. Put
du = ai1dx;+ . .. +andxn.

There exists an element w of K which satisfies the following conditions 1)
K/k(xy, ..., %n-1, w) is separably algebraic, 2) w and n —2 elements among
%1, « . ., %n-1 form mod v a transcendental base of K over k2 For, at first
and 2 —2 elements among %1, . . . , ¥»—; form a transcendental base of . We
assume that 7, ¥, . . ., %n—1 is a transcendental base of K. As K is (n—1)-

dimensional over %, there exists an element f(xy,". .., 2x) 20 1in 2[xy, ..., %n]

https://doi.org/10.1017/50027763000001914 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001914

DIFFERENTIAL FORMS ON ALGEBRAIC VARIETIES 17

such that »(f) > 0, moreover we'can assume that of/ox, % — an. We put w = u

_ o of o o

+f T}}en, 1) dw-dm-{—d/ = <6¥1+ ‘,(E)di\h-}" e ..+ (dn+ éxn)an, an+ O%n

*0; therefore K is separably algebraic over k(xi, %2, . . ., Xu-1, w). 2) As
v(f) >0, w=1u,; therefore w, ¥, . . ., %n-1 is a transcendental base of K.

As duy . ..dun-1=0dx: ... don1dw+ ...+Axd% ... dxn-1, by con-

sidering K over k(w)*, we get in the same way as Lemma 4

v(An) = 0(Duy..ttegw) = V(D vn) +2{0(%2) 0 + o+ o +V(Xp-t)o)
—z{v(ul)m‘(“ PR +7)(un—1)oo}~

Since A,=0, by Lemma 2, K is separably algebraic over &(ui, ..., tn-1, w),

and we can put
dun = Bldul'*' .« e+ Bn—ld%n—1+ Bﬂdw'
By Lemma 4

U(Bn) = v(@m...n,,) - P(Qul...un-,w) + 20(w)w —20(tn) ».
dw=7rdsi+ . .. +ra-18%n-1+ 1nd%n,
v(rn) = v(c-‘Dwxl...xn_l) - U(Qxl...x,,) +20(x%n)w = 20(W) .

As R=AanTn
v(R) = v(Ax) +v(Br) + V(1n)

= V(Qul..‘u,,) - v(gxl...x,,)
+2{v(x1)m—l- PP +v(xn)oo)—2(v(u1)oo+ PR +7)(un)oo}.

LemMma 5. Let V" be a variety defined over a field k with a generic point

P over k. Let W"™" be a simple subvariety of V" algebraic over k with a generic

point Q over k. Let (t, ..., tn) be a set of uniformizing parameters at Q in
E(P) and ti be the specialization of t; over P - Q with respect to k. Then k(x')
is separably algebraic over k(tl, . .., tu).

Proof. From the definition of uniformizing parameters and F-VIII, Prop.
10, @ is a proper specialization of multiplicity 1 over (#) - (#') with respect to
k. Therefore k(x', t') = k(x') is separable over k(¢') by F-III, Th. 4.

LemMa 6. Let V" be a variety defined over a perfect field k with generic
point P over k. Let v be a valuation of k(P) such that its valuation ring coin-

cides with the specialization ring, in R(P), of a simple subvariety W" ' which
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is algebraic over k. Then we can choose a set of uniformizing parameters
(t, . . ., ta) in k(P) along W such that v(t) = minimum of the set consisting
of v(a), a € E(P), via) > 0.

Proof. There is a point A = (x") algebraic over % such that A is a simple
point both on V” and on W”™'. Let p be the prime ideal in the specialization 7
ring R of (x") in k(P) which is determined by @. Then since (x'') is simple
on W the ring R/p is a regular local ring. If (&, ..., tx) is a set of elements
in R such that they form mod p a regular system of parameters of R/p, then
there is an element #; in R which is a generator of p and (#, ..., t,) is a
regular system of parameters of R by Chevalley [1], Prop. 9. Since % is
perfect, (#, ..., ts) is a set of uniformizing parameters of V at A in &(x).
Therefore (#;, ..., t) is a set of uniformizing parameters of V at @ in &(P)

and »(#;) = minimum.

TureoreM 2. Let K be a regular n-dimensional extension over a perfect field

k, let v be an (n—1)-dimensional valuation of K and let V" be a model of K

such that the center of v is a simple subvariety W"™' and (ti, ..., ta) a set
of uniformizing pavameters of W.' Let zi, . .., zn be elements in K such that
the residue-class field of v is algebraic over k(Zi, . . ., Zn), where Z; is the resi-

due class which contains z; (when v(z) <0 we consider here z;=0). Then if

dz; .. .dzp=wdl; ... dtn and w x0,
v(w) =v(Dsy. 2,) = 2{v(2) 0w+ . . . +0(20)a ).

Proof. For the set of uniformizing parameters (#, ..., t») which was
chosen in Lemma 6, v(®y,..,) =0 since »(#) = minimum and the residue class
field of v is separable over k(%y, ..., t,). As v(w) is independent of the choice

of the uniformizing parameters, we get the theorem.

CoroLLARY. Let k(x) be a separably algebraic extension of k(y) and let v*
be a valuation in k(x) which induces on k(v) an (n—1)-dimensional valuation
v, n being the dimension of k(y) over k. Let (tf, ..., t%) be a set of uniformi-
zing parameters of v* in k(x) andlet (ti, . . . tn) be a set of uniformizing para-

meters of v in k(y) in the sense described in the above theorem, and

1) See H. W. E. Jung [5].
5 Since k is perfect, such a variety always exists.

https://doi.org/10.1017/50027763000001914 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001914

DIFFERENTIAL FORMS ON ALGEBRAIC VARIETIES 19

dty ... dlpn=wdtt ... dty in k(x)
Then v*(w) = 0" (Dkcaykey))-

Proof. By Theorem 2 v*(w)=2"(Ds,..1,), but v (Dr,..t) = " (Drcayer)),
because the v-contribution of the different of k(y) with respect to k(ti, . . ., tx)
is zero as in the proof of Theorem 2.

§2. Let V" be a projective variety in the projective # + 1 space L""'. Let
k be a field of definition of V", and let V*” be a derived normal variety of V
with respect to %, such that V* has no singular subvariety of dimension » —1.°
Then V™ is also derived normal variety of V with respect to any field #'
containing 2. Let M be a generic point of V over %, and let M™ be the corre-
sponding generic point of V* over & Let W*”™' be an (7 — 1)-dimensional
subvariety of V* and let W be the corresponding variety in V. Let ow be the
specialization ring of W in k(M), and oy the integral closure of oy in A(M)
=k(M™*). Let €y be the conductor of oy, with respect to 0w, and put cp«
="rgi@g"( vw+(n) ), where vy« means the valuation of k(M*) with respect to W*.
We define the subadjoint divisor C of V by C = ¢p«W™*” Here cw+ % 0 if and
only if W is a singular subvariety of V.

Let Wy, Vo and V% be representatives of W, V and V* respectively and let
M, = (x) and M{ = (y) be the corresponding generic points of V, and Vi over
k respectively. Let z;, ..., zm be a base of the ring k[ y] with respect to 2[x].
Then (z;, . .., z2n) is also a base of by with respect to op. From this we see

that if € is the conductor of k[y] with respect to kR[x] then €p =€ +0p. For
L g, hilx) € KD, ()

% 0; therefore u< € 0y since uIlhi(x) €. Conversely we get obviously
t=1

if uely, uzicow (i=1,...,m), uzi=

& C Gy, hence €y =G + 0y. Therefore cu =ur£(1§rply {owu)} = 51;1&1 {vw(®)}. Fur-
ther since V* is derived normal variety of V with respect to %/, if (z1, . .., 2Zm)
is a base of 2[y] with resp. to k[x] it is also a base of Z'[y] with resp. to
k'[x], therefore the conductor €' of k'[y] with respect to #'[x] is equal to
G+ k'[x]. Therefore we can see that C depends on the variety V¥ but it does

not depend on the choice of the reference field 2 and the generic point over it.
6 In the following we always assume that the derived variety of V by normalization
with reference to k is normal and call derived normal variety.
) See D. Gorenstein [2].
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Moreover C is clearly determined uniquely up to biregular birational corre-
spondences between derived normal varieties.

Let @(X,, ..., Xu+1) be a homogeneous form in [ X, ..., Xuil. Let
W*"™' be an (n —1)-dimensional subvariety in V* and W the corresponding
subvariety in V. We take one of the representatives, say W,, of W. Let M,
=(1, %1, . . ., %xs1) be a generic point of V, over £ and M™ be the correspond-
ing generic point of V* over 2 Let @, be the function on V™ defined by
Oo(M*) =0(1, %1, . . ., %ns1) over k. Then it is easily seen that vy+(@) is inde-
pendent of the choice of the representatives of W and the field % and the generic
point M™ of V* over 2. We denote it by vu+(®, V). Obviously vs+(®, V) =0
but a finite number of W*; we denote the divisor %vw((l), V)« W* by (@, V).
If 0@, V) 2 v4p+(C) for all W* then we call that &(X,, . .., Xn+1) is a sub-
adjoint form of V or call the hypersurface @ =0 a subadjoint hypersurface. Let
o(Xi, ..., Xue1) be a polynomial in 2[X;, ..., Xu+1] and let ¢ be the func-
tion on V* defined by ¢(M™) =¢(x(, . . ., ns). If vpg) 2 0pe(C) for all W*
such that W* has the representative in V', then we say that ¢ is a subadjoint

polynomial of V,. If the degree s of ¢ is =m, and WX, ..., Xu+r1)
g X R
ISTINE TR
Xni1) =0 defines a subadjoint hypersurface of degree m of V, or briefly ¢(X,

) is a subadjoint form of V we say that ¢(X, ...,

..., Xn+1) is a subadjoint hypersurface of degree m of V. The notion of sub-
adjointness is independent of % and also of V™.

Let © be a differential form on V of degree 7 defined by (M)
= 2>V ai..id%, . .. dxi over k, where Sai,.. i dxi, - . . dxi, is a differential
fo;;r:”l‘):lgnging to the extension 2(M) of & In this case for simplicity we also
use the notation w = }] @iy.0, A%y . .. iy Further by the birational corre-
spondence between I;*a;?i V, we can define the transformed differential form

for v on V* using the same notation o.

Let w be a differential form defined over 2 on V* and let (¢, ... tx)
be a set of uniformizing parameters of a subvariety W*"™' in R(M). If
w =23ai,..i,dt, . . . dii,, then we put min.vy(ai,.. ;) =vs(w); this is inde-
pendent of the choice of the uniformizing parameters and also of the defining

field &°

8) See Y. Nakai [7].
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LemMa 7. Let V" be an affine variety in S™* defined over k by F(X, . . .,

Xu+1) =0, with a gemeric point M= (%1, . .., Xn+1) over k. We assume that
?(xl, < ooy Xner) dxy
n+1<x1; .« e ey xn+1)

.« . dxn, and let W*"™' be a subvariety of the variety V* derived from V by

normalization with reference to k. Then vw(®) = vu(p) — vw+(C).

Xn+1 1S Separably algebraic over k(xy, . . ., %,). Let v =

Proof. (1) First we assume that the degree of F(Xi, ..., Xni1) on Xns1
is m, m being the degree of F(Xi, ..., Xu+1). Let W" ™! be the corresponding
variety to W* in V and let (') be a generic point of W over &' (2 k). Since

F(xl, ..., %n, %he1) =0, xh+1 is algebraic over A'(xi, ..., x4), and therefore
dimg (%1, . .., %) =n—1. Suppose xi, ..., ¥n-1 be algebraically independent
over ¥. Then for any element z=0 in k(%1 ..., ¥u-1) = k1, vw+(2) =0, and

therefore we can consider vw+ as a valuation of k(%n, %n+1) Over k.. Let o be
the integral closure of %Zi[x,] in K=k(xi, ..., %n, Xn+1). Then o is also the
integral closure of %[%x, %»+1]. Let ¢ be the conductor of o with respect to
k[ %n, %n+1] and let b be the different of o with respect to 2 [x.]. Then we get

FrulXs, o o) %ny Xne1) * 0=cb?”

Further, clearly we get vw«(C) = vp(€y) = vyw+(c), and moreover we get vu+(d)
=vw(Dy,...x,). As we can assume without loss of generality that % is perfect,
we get

v dx1 . . . d%n) = Ve (Day..xy)-
Therefore

vr(@) = v () + v Dyy. ) — U (Fhsr( %1, « o oy Xnt1))
= vpe(9) + vw(Dy,...x,) — Lows(C) + vws(Dsy...)]
= Uws(¢) — vw(C)

n+l
(2) For the general case we make a linear transformation x;= >)ai;%j,
Jj=1

where a;; are in % and |aij| % 0.

n+l n /

_ F;
dx; = 2 aijdx; = > (aij - “"TL‘ai,ni-l) dax;j
=1 j=1 Foi1
/ .
d??l PR dfnz ai; — h‘,]—ai, 7z+1'. . dxl PRI dxn
Fousy li,7=1,...,n
n+1 ) !
X = z;dijx]' (z=1,...,n+1), (aij) = (a@ij) "
7=

9 E. Hecke [3].
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Let F(X;, . . ., Xn+1) be the irreducible polynomial in 2[ X3, . . . , X»+1] such that

n+1 n+1

F(f o .. fm-x) =0. Then F(Xl, « e ey }_(”“I)ZF(.ZI“UE" . a0y Z}an+1,jz),
= =
%,,ﬂ—-Fl “1,7;+1+F£ *az,p+1t . .- +F;;+10(n+1,n+1,
’.
F‘J’éﬁ-{-l i — F’ Fpay Fintt i,j=1,.
F;1+I - |aulz F=1,..., 741 a
Therefore
1
S d% .. . dxy = la,] = dx; ... d%,
Fn-bl \’n-H
&%y, ..., xn+1) dx d ¢(x1 - xn+1)|aij|_1 — —
= 5 S — DI Xn = dx "'dx
Fri(®, - s fns) 0 " B E) "

Since we can assume that % is an infinite field, we can select a;; such that F is

of order m on Xn+1. Therefore we have
vwe(w) = vW*(q)) — ow(C).

TueoreM 3. Let V" be an affine variety in S™' defined over k by F(Xi,
» Xn+1) =0 with a generic point M= (x,, . .., Xns1) over k. We assume

Xn+1 IS separably algebraic over k(xy, ..., xx). Then a differential form

0= 4 -dxi . .. dx, is finite at every simple point of the derived
Foei(®e, . oo Zntt)

normal variety V* if and only if A=¢(x1, . .., Xn+1), where $(X1, . . ., Xnt1)

is a subadjoint polynomial for V.

Proof. If A=¢(x1, ..., xn+1), (X, . .., Xns1) is a subadjoint polynomial
for V, then vwe(¢(%1, . . ., %nr1)) = vw+(C) for every subvariety W*"™' of V*
By the preceding lemma vw«(w) = vw¢) —ow«(C) 20. Let P be any simple
point of V* and let (#, ..., ts) be a set of uniformizing parameters at P in
kR(M) and w=Bdt ... dtn. Since (#;, ..., tn) is also a set of uniformizing
parameters along every W*" ' which contains P. Therefore vy+«(B) 20 for
every W* which contains P. It follows by F-VII, Th. 1 that B must belong to
the specialization ring of P; this shows that o is finite at every simple point.

Conversely if o is finite at every simple point, then ww«(¢) = vw:(C) for
every W*"™' of V*. Let oy be the specialization ring of a subvariety W”"™
of Vin k(M), and let w be the integral closure of ow in R(M). Let W™
(i=1,...,s) be all the subvarieties of V* which correspond to W. Then an

element z in k(M) is finite at W (which means z is finite at a generic point
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of W over a field of definition K (2 &) of W), if and only if z is finite at every
W¥ (i=1,...,s). Therefore by is the intersection of the specialization rings
of W/s. It follows that oy is a principal ideal ring. Hence we have an
element ¢ in @y such that vws(C) =u1’2i@l'lly{vwi*(u)}=ﬂwi*(6), therefore we con-
clude that ¢/c € tw, ¢ € Gy

If ZEW"QCVOW, then z belongs to k[xy, ..., %s+1l. To prove this, we
may assume that F(Xi, ..., Xu+1) is of degree m and it contains a term of
Xw+1s under this assumption (%, ..., %,) is a set of independent elements
over k. Since z EW" DCVOW, it belongs to the specialization ring, in 2(x, ...,
%n-1)(%n, %n+1), of any specialization (%, xh+;) of (¥n, ¥n+1) with reference
to k(x1, ..., %s-1), therefore we can see that z belongs to k(xi, ..., %u-1)

[%u, %n+11; hence

z= Vg(‘xly .« . -__{_xn+l_)_

h(%i, . .., %n_i1)
where h(X1, o e ey Xn—1) (= k[X1, « e ey Xn—-]] and g(Xx, o ey Xn+1) = kEXI,
..., Xss1l, moreover since F(Xi, ..., Xn+1) is of degree m on Xu+i, we
may assume that g(Xj, ..., Xu+1) is of degree <m on X,:+;. Similarly z

belongs to k(%1 . . ., %n-2, %) ¥n-1, Xn+1], and

g%, ., Xney)

Z2 =
hl(xl, e ey Xn_o, xn)

where hl(X1, “eey Xn—z, Xn)Ek[Xl, o e ey Xn—g, Xn], g1(X1, o e oy Xni—l)Ek[Xl,

ceo, Xnd and @(Xy, . . ., Xus1) is of degree <m on Xnsi. Therefore
gl(Xl, o o ey Xn+1) . h(Xl, . ey Xn-l)
—g(X1, oo ey Xn+1) * h(X1, .« . ey Xn—?., Xn)

is divisible by F(Xi, . .., Xu+1), but since its degree on Xu+; is < m

gl(le e e ey Xn+1)h(le e ey Xn—l)
=g(Xy, v .., Xnv) i( Xy, o oL, Xnooy X
Now if H(X;, ..., Xu-1) is a power of an irreducible polynomial, which has
a term containing X,-;, and devides A(Xy, ..., Xu-1), then H(X:, . .., Xnu-1)
must devide g(Xi, . .., Xn+1). Therefore we get
2= &%y o ooy Fned)
h’(xl, e o0y xn_z)
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Since z also belongs to k(%1 . . ., %n-3, %n-1, %n)[%n-2, %s], We get

g’(XI, e e ey Xﬂ+1)h2(X1y . e ay Xn—Sy Xﬂ-l; Xﬂ)
=h'(X1, ooy Xn-z)gz(X1, « ey Xn+1)

and similarly as above we can see

g"(xl, v e ey xn+1) A

R = =
R'(%1, . .., Xn-s)

Continuing this we get z&€ kL%, . . . %n+id.

Let € be the conductor of the ring © which consists of the elements which
are integral over %[, ..., %,+1], with respect to k[xi ..., %s+1]. Since
¢ & Cw, ¢0 Cow for every W™, therefore ¢o S kL1, ..., ¥s+1] which shows
that ¢ €€; in particular ¢ € k[, . . ., 2x+1]. Therefore ¢ is a subadjoint
polynomial of V.

TaEOREM 4. Let V" be a projective variety in the projective n+1 space
L™ and o a differential form on V of degree n. Suppose V have a repre-
sentative Vo, defined over k by F(Xi, ..., Xunw1) =0 with a generic point M,

=(1, %, . .., Xni1) over k. Suppose Xn+1 be separably algebraic over k(%1 . . .,

Xn+1) and let o = - - N S woeed%y o . d%n. Then, w is finite at every
Fhoilxy, o o o) Xni1)

simple point of the derived normal variety V¥ of V if and only if A= ¢(x,

e e, Xne1), where ¢(X1, . . ., Xni1) =0 is a subadjoint hypersurface of degree

m— (n+2) of Vin L™, m being the degree of F(Xi, . .., Xut1).

A . .
Proof. Let o= oG . o %med) dx: . .. dx, be finite at every simple

point of V*. Then » must be finite at every simple point of V. Therefore
by the preceding theorem A = ¢(x), where ¢(X) is a subadjoint polynomial for
Vo. Let Vi (ixn+1), say i=1, be another representative of V. M;= (%,

_ . . . _ 1
1, %2, . . ., X¥n+1) is a generic point of V; over k, where ¥ = o Xy = FAERRE
1 1

Fan= ZE0 Let F(Xiy .o oy Xor) =F (X, .., Xou) /KT where X = 7%.;

X, = %%, ey Xppr = X)’}:l - Then F(Xi, ..., Xn+1) =0 is equation for V;
over %

axi . .. dxn= —x{°d%; * X1 'd%y . . . X1 'd%n
= =% "N dx% d%, . . . d%n
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o(x)

B S R
—-(n+2)
- {b(ﬁ],, ey Xnr)ET dx. . . . d¥n
FrwlXa, . ., Bner)
Therefore ¢(x)x7"""® is equal to a polynomial of %, ..., ¥ne. Let
~ X1 P X2 ~ Xn ~ 1 =0 53 >
F= ey By= =T L, = s = - > and let F(Xy, ..., Xur1)
1 Fnit 2 Tn 1 n i1 Xn+1 o 1 n+1
be equation for Vy:;. In the case where one of F I(x) , Fa(x), say
1 . ——— .
Fi{x), is not zero, we have Fio (x) axy . ..dxn= 7 (x)dxnﬂdxz .. dxn.
Therefore we get in the same way as above,
¢(x)5221+1‘"”)

- '7d’xvn+1df2 e . d%n

% (%)

m (n+2)
(= ¢(’;)x ()% - .. dE, if further F;L«,,ﬂ(’oz)#O)
Xn+1

Ly F;(x):: P =F,;(x) =0, then dxn+1=0.

F;ﬂ(x) Fxn-l(x)/%zl;l

A% = d(%n+1%1) = Xne1d% = Fni1d%

Therefore

~m (7n+2)
—= " d% . . . dXn = LG E LI

.. = d% . . .d%ns.
= Flha(w) Fho(z) e

Hence ¢(x)%77"*® is equal to a polynomial of %;, ..., %ns1. It follows that

A=¢(x1, ..., Xn+1), where ¢(Xy, . .., Xus1) is a polynomial of degree h = m

—(n+2); and 0(Xo, . . ., Xnr)) = (‘X1 Hasl) xp-*9 is subadjoint

X’ X
form of V. Conversely if A =¢(x), where ¢(X) =0 is a subadjoint hypersurface
A . '
of degree m— (n+2), then clearly w= 7~ v dx: ... dx, is finite at every
Fpei(x)

simple point of V*.

CoroLLary 1. Let V" be a subvariety of L™, such that the derived normal

variety V* of V is a variety without singular point. Then a differential form

A

W= }“Tn;:(;b :"*.*’ ;;1*) ax; . .. dx,
on V is a differential form of the first kind if and only if A=¢(%1, . . ., Zn+1),
where ¢(Xi, ..., Xnv1) =0 is a subadjoint hvpersurface of degree m — (n+2)

of V.
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CoroLLARY 2. Let V* C L™ If every singular subvariety W"™* of V"
has a representative in V7, then o is finite at every simple point of V™ if and
only if A=¢(%, ..., Xn+1), where ¢( X1, . . ., Xn+1) iS a subadjoint polynomial
of degree = m— (n+2).

Proof. Let w—fp—(—x}—’—“ _— ’3"’-’?1de1 ...dx,, where ¢(Xi, ..., Xn+1) is
Fn+1(x)

a subadjoint polynomial of degree = m — (%2+2). Then o is finite at every
W*”™* which has a representative in V. Let W*" ! be any subvariety of V7
which has no representative in V. Then W”™!, the variety in V which corre-
sponds to W*"7!, is not a singular subvariety, and W™ has a representative in
some V" (i %0), say i=1.

m—(n+2)

Xty o - o, Fnt1) X - =
W= ,?(,,.i,,,., 7;!"4’1 e ——— A%y ... dxn

n+1(x)

Since the degree of ¢ is =m— (n+2), ¢(x1, . . ., xpsp) % PP ERX, - ..,
¥n+1]. Therefore wvw+(¢p(x)%7* "*®) 2 0. Moreover since W is nonsingular,
ow+«(C) =0. Therefore vy(w) = va(g(x)FT™ ") — vy+(C) 2 0, which proves the
corollary.

§3.

Lemma 8. Let V" be an affine variety in S*™* defined over k by F(X;, .
Xn+1) =0 with a generic point M= (%1, . . . , Xn+1) OvVEr k We assume that %n+:
is separably algebraic over k(xi, ..., xn). Let w= an [”<E " Ai,. i dxi, dx;,

. d%;,] be a differential form on V of degree r defined over k. Then if v is
finite at every simple point of the derived normal variety V* of V, Ai,..i. are

subadjoint polynomials for V.

Proof. This follows immediately from Theorem 3 when the degree of w is

n. We assume r <#%n. o= —[Ai. +d% ...dx,+ ...]. Since d¥+1, - - .,

1
Fhi
dxn are finite at every simple point of V¥, v+ d%+1 ... dxn= Pi Ar.rdx

. dxrd%r+1 . . . dx, is finite at every simple point of V*  Therefore by
Theorem 3, A:.., is subadjoint polynomial for V. Similarly A;,..;

adjoint polynomials for V.

are sub-

r

10) See S. Koizumi [6].
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Notatlons and assumptlons being same as in Theorem 4, let o

F " — >V A, idxi, . . . dxi. be a differential form of degree » (<x) on V
n
defined-over %, and let » be finite at every simple point of the derived normal

variety V* of V.

1
o=@ 3 Aiqdvi ... ds

Fn+1 i<, <ip

1 1
=, " Z Al,, dndxidx, ... dxi + 5

FfHI 1<iz<

Aj.. j.d%j, . . . dxj,

+
Fﬂ!—l I<ji<jes<...<opr
-1

e e (7 =1) = 73— —
ja Asi,.. i X0 %0V dxdR, . . . dX,
ntl l<ipg<...<ip

1 —— o— —— — — —_— —
— E Aj,. i (X(dE — %, %00 dR) . .. (%1 dEj, — %5, % dR,)

+
Fn+1 1<ji<...<jp

(1) g e =
= . Ay iy %1 TV A% A%, . . . AR,
2

1
—_— —_——7 —_ —
+ > [Aj,..j.x0 dxj, ... dx;,
nt+l 1<ji<...<jp
r
2

+ f; (—x,%x7dx;, . ..d% ... d%,]

h=

Fm-1
1 ——7 3= =
= = 20 A ETdR, . .. X,
Fm(xh PN Kp1) 1<it<...<sr
! )
- e B
— e =L 20 Aviy i BT X AR R, . . . dX,
ﬁ,,—ﬁ(xl, e ey Xna1) iy <...<ip

+ > EA]l G X =%, %) d%g, . . . dRy . . . dR,]
1<g1<...<jr h=1
Therefore, by the preceding lemma Aj,. ;%" "7 (1< ji< ... <j) is equal
to a subadjoint polynomial for V;. Moreover

V-7 gt 1-
Asiy i VTR 4 2 2 A BT (=B B

is equal to a subadjoint polynomial for V;. Therefore Au,.; %1 "7 +

Sk Ay x0T (=1) %, and Aj,..;. %" %;, are equal to a subadjoint poly-
nomials; hence Aj,.; %" """ is equal to a subadjoint polynomial. Therefore
for every &< ... <4, Aj,..;. %" """ is equal to a subadjoint polynomial. Simi-
larly Aii,..i. xh’"“” is equal to a subadjoint polynomial for V, (1 = h £ n).
As for Vp:+1, by the similar argument as in the proof of Theorem 4, we
—(m-1-7)

can see that Ai,.. .. %ni1 is equal to a subadjoint polynomial for Viii.
Therefore it follows that Ai,..i.= Ai,..i.{(%1, « - ., %n+1), where Ai.. i (X, ...,
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Xni1) is of degree £=m—1—7, and Ai,..i(Xi, ..., Xur) =0 is a subadjoint
hypersurface for V"

From the above argument, we see that

—Mm—1-7 ——1 e = =
Aliz...i,ﬁ;n TE 12 Ahzo 1,5%961 T¥il=A FARI A O TN Xnt1)
h=1, iy,

where A} ;(Xi, ..., Xu+1) =0 are subadjoint hypersurfaces for Vi, therefore
)11)

() 2 % Aniyipy = Al i (X1, o, X
Rdy, ey tp=y

where A;,..i(Xi, ..., Xu+1) are subadjoint hypersurfaces for V, Ai,..: are

assumed skew symmetric on 7, . . . 7.

!
If x, is separably algebraic over k(x», ..., xn+1), then dxi= — %%—dxg
1
~ e .. F;’:l Ad%n+i1.
0= A"——-'L axi, . . . dxi, = > A““ b axidxi, . . . dsi,
<. <ip F"+1 1<ip<...<ip=n n+1
+ > A“ I dxie . . . dx,
l<ji<...<jr=n F71+1
= I [1 E — Aii,..i, A%nr1d%i, « . . d%i,
<l <...<ipZ=En
hio PP Zr) Fh
Y A e
+ 1<ji<.. <Jr—n{ <.71.72 e Jr U an
+ Ajiin }dx.h .. .dyj .
n+1
Therefore, for 1 </ < ... <jr £ n,
Fi F/
Aj.gr '7”1 -+ E( _‘1) Aij,.. Theeidn 'TM' AU;- j1~(x1’ cee Xnet),
Fn+1 h= Fn+1

where Af;F. ;(Xy, ..., Xus1) =0 are subadjoint hypersurfaces of degree m—1—7
for V. This holds even if x; is not separably algebraic over k(xz, ..., Zur1).

Considering other representatives of V we get

»
. h ~ F
(%) E( -1) Aiy. .. iy = Ai:fk..j,-(xl, e ey xnﬂ)u)
h=0 Fn+1

where AX*:;.(Xi, ..., Xu+1) =0 are subadjoint hypersurfaces for V.

1) This formulation is due to Y. Nakai, see [8].
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TueoreM 5. Let V" be a projective variety in L™, Suppose that V" has

a representative V, defined over k by F(Xi, ..., Xu+1) =0 with a generic point
(1, %1, « « -, Zn+1) over B, and %n+1 s separably algebraic over k(x, . . . ,%n). Let
1

o [ A4i,.....d%, . .. dx;,] be a differential form of degree r (<n) on V

defined over k, which is finite at every simple point of the derived normal variety
V¥ of V. Then Ai..i.=Ai.i{(%1, ..., %ns1) where Ai. i( X, . ..y Xn+1) =0
are subadjoint hypersurfaces of degree m—1—v for V, m being the degree of
F(Xi, ..., Xus1). Furthermore (x) and (¥+*) also hold.

="

LemMa 9. Let V" in S be a generic projection of @ normal variety V". Let
1

F(Xy, ..., Xur1) =0 be equation for V and let o= ;r;EAil...irdxil .. dxi,
n

be a differential form on V", such that Ai,.... are subadjoint polynomials for V

for every iy, . . ., iy) and (x%) holds. Then w is finite at every simple point of V.

Proof. Let k be a field of definition of V" in S™ Since V" is a generic

projection of V*
%i = toi + Elujiyj (i=1,...,n+1)
=

where wuji, j=0,...,m; i=1, ..., n+1are (n+1)(m+1) independent vari-
ables over 2 and (¥, ..., ym) is a generic point of V" over klu)=k{u).
(%1, . . ., %ns1) is a generic point of V" over k(u).

Since (y1, 93, . . ., ¥m) is of dimension »n over k(u), we see that (x, . . .,
%n-1) are independent over k(#). We consider the linear variety H™ ™™V de-
fined by

— %t un+unYi+ .. . F i Ym=0,

...................

= Xn-1+ thon-1+ thn1 Y1+ « - o + Umn-1¥Ym=0.

Then since V" is normal defined over % and H is independent over &, H« V" is
irreducible and is also normal’” Further H+ V" is defined over k((#'), xi,
., %¥n-1), of dimension 1 and (y;, ..., ym) is a generic point of H * V" over

R, %1, . . ., Xn-1), where (o) = (oo, « -« » Umty « « « 5 Uon=1, « « - 5 Umn—1)-
Let W' be a non-singular subvariety of V which is algebraic over k(z).

By W we can introduce the valuation vw of E(#)(y1, ..., ¥m), of dimension

12) A. Seidenberg [9].
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n—1 over k(u). We may assume without loss of generality that vy is the valu-
ation over k(#)(xi1, ..., %s-1), of dimension 0. For, vy is the valuation over
the field K which is adjointed certain n —1 elements, say %, ..., Xn+1, among

X1, « - ., %Xn+1, over k(u;. Then by (**) we get
1
o=p SVBj,..jrd%i, . . . d%jr,

where Bj,..j» are subadjoint polynomials, and therefore we can make the same
argument as in the case K =%(#) (%1, . . ., %n+1). Let 7 be an extension of vy
to the field %(u)(%, ..., %n-1)(y1, ..., ym) and let ¢ be an element in
B(u) (%, ..., %n-1)(31, « ., ym) such that #(¢)=1 and let yi=a;i+Bit+ ...,

a;, B belong to k(u) (%, ..., %»_1). Since any points of V + H are simple and
(a1, . . ., am) is a point of V « H, we see that 3; % 0 for at least one i and
we can assume that € klay, . .., am) (¥, . .., ym). Now the restriction of
7 to R, %, ..., %)@, ..., am) (¥, - .., vm) is a valuation of dimen-
sion 0 over k((#'), %1, ..., %n_1)(a1, . . ., @m). Therefore all B belong to
E((d), %1, . .., %n_1)(ar, . . ., am). As Ve H is defined over k((«), %1, . . .,
%n-1) of dimension 1, the dimension of (ai, ..., am) over k((«'), %, ...,
%n-1) is at most 1, hence the dimension of (B, ..., Bm) over E((d'), %, . . .,
%n-1) is also at most 1. Moreover since (x;, ..., %,-1) are independent over
R(w), (Uony « « - Wmn, Wont1, - - - , Umn+1) are independent over k((z'), x1, . . .,

xn-1), therefore for at least one ¢ ({=n or n+1), say ¢=0, (%on, - - « , Umn) 1S

a set of independent elements over k((«'), %1, ..., xn-1)(as, . . ., am). Since

Xn=Uon+ UtnY1+ « ..+ Unn Ym

m

= (%ujnaj>+ (E}w;«ﬁ» t+ ...

and since B; belong to k((#'), %, ..., ¥a-1)(@1, ..., am), it follows that
SuinB; % 0, which shows that there is an element A in k(#)(xi, . . ., %s_1) such
7=0 R

that #(x, - A) =1. Therefore the different of k(u)(%, . .., %u-1)(y1, .

ym) with respect to k(u)(%i, ..., ¥»-1)(xs) is not divisible by . Since

. .y

R(u) (%, . .., n-0)ly1, « o ., ym] and k() (%1, . . ., %p-0[y1, . . ., ¥m] are inte-
grally closed, we see that the different of &(u)(xi, ..., Xu-1)(¥t « . o, Ym)
=k(u)(x, .. ., ¥ns1) With respect to k(u)(x, . . ., %n-1)(xn) is not divisible

by wy. Therefore, by the same argument as in the proof of Lemma 7, since
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Furi*0=0, we get vy(Fu+1) = ow(C), where C is the subadjoint divisor for V.
Since Ai,...;. are subadjoint polynomials, » is finite at W. If W is not algebraic
over k(u), then obviously w is finite at W. Therefore o is finite at every non-

singular W of V, and hence o is finite at every simple point of V.

TueoreMm 6. Let V", in projective n+ 1 space, be a generic projection of

a normal projective variety V". Let (1, %1, . .., Xn+1) be a generic point of Vo
1

and let F(Xy, ..., Xni1) =0 be equation for Vi. Let o= ’ﬁer‘l DV A, i dxi,
n

.. .dx;, be a differential form on V. Then, if Ai..i.=Ai (%1, « .., Xns1)

are subadjoint polynomials of degree m — 1 —r and moreover (*) and (%) hold,

w 1S finite at every simple point of V and conversely.

Proof. Let W* be a subvariety of V" and let W be the corresponding sub-
variety of V. Then, if W has a representative in Vi, o is finite at W™ by the

preceding lemma. As for V; since (*) hold, we see by the proof of Theorem 5,

that
1 « ) _
0= =—>\B;,..i.d%;, ... dxi,
s
where B;, ... are equal to polynomials on %, . .., ¥u+1. Therefore o is finite

at every non-singular W"™' of Vi, similarly at every non-singular W"™' of V..
As Vis a generic projection of V, all singular W"™ of V have representatives
in V,, hence w is finite at every simple point of V. The converse follows im-
mediately from Theorem 5, since V is biregularly birationally equivalent to a

variety derived from V by normalization.

CorOLLARY. In the above theorem, if V is a variety without singularity,
then w is of the first kind.

CorROLLARY.  Assumptions being as in the above theorem, let o
n A AN
= >)(— 1)"+1‘I‘;;‘/‘h ~dx; ...dxy ...dx, be a differential form on V", where

h=¢ n+1

AIF{ +oee . + An F:l
Fhi
nomials of degree m — n and moreover

Ay, ool Ay and Ani= ave equal to subadjoint poly-

Ar=%10 =¢1, Ao =20+ ¢, . . ., Ant1= %010+ Pnt1,

13) SeeY. Nakai [8].
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where ¢1, ¢z, . . ., dni1 polynomials of degree < m—n. Then o is finite at

every simple point of V, and conversely.

§4. In this section we always assume that the characteristic of the field

k is 0 and give a proof of the following

Tueorem 7. Let V™ (v 2 2) be a projective normal variety defined over a
field k of characteristic 0 and let wi, ..., ws be linearly independent simple
closed differential forms which are finite at every simple point of V. Then the
induced forms !, ..., ot on a generic hyperplane section (over k) W’'™' are

also linearly independent.

Let V" be in the projective space L” and let W”™' be the intersection of

V" and the hyperplane #Xo+ X1+ ...+ #,X,=0, where u, ..., un are
n+1 independent elements over k. Itis well known that W™ is also a normal
variety defined over Fk(u,, #i, . .., un). First we show that it is enough that
we treat the case where all the wi, . .., ws are defined over 2. If wi, ..., ws

are defined over a certain larger field K, we can express w; in the following

form
i = 2\ ajwij i=1,...,s,
J

where «; are constants defined over K and wi; are simple closed differential
forms which are finite at every simple point of V, defined over 2 Choosing
among the w;; a maximal set of linearly independent ones ws (h=1, ..., 1),

and expressing all w;; in terms of these, we get for w; an expression of the form

t
o= 2\ finon (i=1, ..., s), where Bin are constants.
h=1
As w; (i=1,...,s) and wz (R=1, ..., t) are linearly independent respec-

tively, we see that the rank of the matrix (Bix) iss. Let wh be the induced
forms of @, on W. Then ow}= }:_,:Bih oy ; therefore if @) are linearly independent,
w; are also linearly independent, which shows that we can assume that w; are
all defined over Z.

Next we show that we may assume r=2. Let »>2 and let of, ..., w!

be not linearly independent. As o; is defined over %, o} is defined over k(uo,

1) See S. Koizumi [6].
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u1, - . ., un), therefore there must be a linear equation
Slaiwi=0
with a; (not all zero) constants defined over k(u,, . .., #.); namely there is

a differential form £ =>la;w; on V which is finite at every simple point of V
and induces 0 on W. Now let (v, ..., v») be a set of independent variables
over k(uo, . .., u,) and consider the intersection Vi, of V and the hyperplane
0wXo+ v Xi+ ... +v,X,=0 and the intersection W, of W and the (generic)
hyperplane vy Xo+ v X1+ . . . + v, X, =0.

V?'
7N
s X,

r-1/ N -1
w \\ / (1)
N/

7—2
(1)

Then W, is a simple subvariety of V and as £ induces 0 on W, £ induces on
Wi, also 0. Since £ is defined over %(uo, . . ., un) and Vi, is a generic hyper-
plane section over k(#, ..., un) of V, the form £, induced by £ on Vy, is
not 0, and is finite at every simple point of Vi, and closed. But as £ induces
on Wy 0, 24) must induces 0 on W, which is a generic hyperplane section
of V. Therefore by induction we can assume 7 = 2.

Next we consider the generic projection. We choose 4(n+ 1) elements v;”,

v, v, v, (1=0, ..., n) independent over % and 4 elements w,, wi, ws, w;
independent over ((2{"), ..., (#{3)) which satisfy the equations

(1) (2)

(0 (3
W + wivi + w0 + wyvs” = i

1=0,1,..., n

Let (%, %1, . . ., ¥») be homogeneous coordinates of a generic point of V? over
(o), ..., (w)) and put Fo=0"y%+ 0"y + .. 0 Yy . .., T=05" 20
+ ...4+0vYy, and consider the projective variety V? in L® with the generic
point over 2((v”), ..., (w;)), whose homogeneous coordinates are (¥, ¥i, 2,

93). This variety is birationally equivalent to V? and by this birational corre-
spondence the generic hyperplane section W', the intersection of V and the hy-
perplane #yXo+ . .. +unXn=0, correspond to the generic hyperplane section
W', the intersection of V2 and the hyperplane woXo+ w1 X1+ w2 Xz + ws X3 =0,
and furthermore W' and W' are birationally equivalent. Therefore if 2 induces
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0 on W, 2 also induces 0 on W. Considering the non-homogeneous coordinates
1, x, ¥, z) = (fo/yo, 371/yo, 352/5;0, };3/3)—0)
we get

wo+ wix + w2y + wsz=0.

Now, since V? is of dimension 2 in L’ its equation in non-homogeneous

coordinates is
F(x, y,2)=0

whose order we assume to be #. Let us consider a differential form
o = Rdx + Sdy

which is finite at every simple point of V. Then we get

! !
‘;479 R: B C__AFx‘*‘BgEy

S= _— ey =
F; F

where A, B, C are subadjoint polynomials in (x, », 2) of degree = m —2 and

we have a relation
(1) AF%+ BF,+ CF, = DF

where D is a polynomial of degree = m — 3.

LemMa. (Castelnuovo)™ Let f(X, Y, Z) =0 be an irreducible plane curve

of degree m without singular points except nodes. Let
Afy+BF;+Cfy =0

where A, B, C are forms in X, Y, Z of degree I. Then if 1 <m — 1. they must

be identically zero.

Proof. Let k be a field containing the coefficients of f, A, B and C and
let #o, u#1, u» be a set of independent elements over k. Let D be the curve de-
fined by wuof%+ uify + usfz =0. Then by the classical Bertini’'s theorem, D has
no multiple points except the points which satisfy fy=fy=/,=0. But since
the latter points are nodes of /=0, they must be the simple points of D.
Therefore D has no multiple points and therefore D is an irreducible curve of

degree m — 1.

15) F, Severi [10].
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Let P, ..., P; be all nodes of f=0 and denote the cycle Pi+ ... + Py
=H. Let ¢ be an adjoint curve of degree m—3 for f=0 (a curve passing
fhrough Pi,...,Ps) and let K=D+&— H be cycle on L?, where D - ¢ is the
intersection of D and £&. D+ £ and K are positive divisors on D. Since D is
withought singularity all curves of degree #: —3 cut out on D a complete linear

series containing D ¢ £ which is non-special. The number of linearly independent

curves of degree m—3 in L’ is L = L)Z.(Ln:}l, and that of linearly inde-
pendent curves of degree m —3 passing P, ..., Ps, which is the genus of
f=0,1is (m—1 )2(1" =2) —d, namely the dimension of the latter linear series

is equal to that of the former series minus the degree of H. Since the former
is non-special we get, by the Riemann-Roch theorem, or Brill-Noether’s Reduc-
tion theorem, that the latter series, and hence K is non-special.

Now Suppose for a moment that there exists an adjoint curve 7 of degree
m—1 for f=0, and a curve ¢ of degree m — 2, such that ¢ + D> G =7+ D — H.
Let ¢+ D=G+S. Then S is positive and its degree is (m—1)(m—2)
—(m-1D(m—-1)+d= @1:—1)—2@1_& —genus of /> (’"—"2}2&@:—31 . There-
fore there is a curve ¢ of degree m — 4 passing the points of S, namely ¢ D
>S. Let ¢* D=S+ T and let R be the intersection of a line and D. Then

H+K~(m-3)R, G+ H~(m—-1DR G+S~(m—-2)R, S+ T~ (m—-4)R.

Therefore K and T are linearly equivalent, but this is a contradiction, because
T is special since there is a curve of degree m —4 ( =an adjoint curve of
(m—~1)—3 for D) passing the points of T, on the other hand K is non-special.

Therefore there is no curve ¢ of degree m —2 such that ¢ + D> G=+D
— H, where 7 is an adjoint curve of degree m — 1 for f=0.

Now suppose
Afx+Bfy+Cfz =0,
where A, B and C are forms of degree [ < m — 1, not all zero, say A=0. Then
Aluof s+ uify+ uaf) + (B —ui A) fy+ (ueC — us A) [ = 0.

The point of the intersection of D and fy =0 which is not in H i.e. the point
which does not satisfy f), =0, must be contained in the curve #C —u#: A of

degree = m —2; this is a contradiction.
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Let F(Y,, Y1, Y3, Y3) =0 be the homogeneous equation of V, and let I be
the maximum of the degrees of A, B and C. Then the degreeof Dis =1-1,

and we get from (1)
AFy,+ BFy,+ CFy, = DF

where A, B and C are of degree [ and D is of degree I—1. Since YoFy,
+711_;";?x+72?;7,+?317§3:m17, we get

(mA - Y.D) Fs,+ (mB — Y, D) Fy,+ (mC — Y3 D) F¥, = Yo DF¥,

As V is a generic projection of normal variety, the intersection of ¥V and Y,=0
is an algebraic plane curve without singular points except nodes. From the
above lemma we see that mA and Y;D become equal if we put Yo=0 etc.,
therefore the homogeneous term of degree ! of mA is equal to that of XD, etc.,

hence we get
A=x0+ A1, B=y0+ By, C=20+Ci, D=mf+ D

where 6 is a homogeneous polynomial of degree /—1 and A, Bi, Ci are of
degree =1—1 and D, is of degree =1!-2. Now we see that if o is further
closed, then A, B, C are polynomials of degree exactly m —2. For, suppose its

degree I <m—2. From (1),

i i .
aw = éL”’_EyI;ZCJ dxdy

Ay =0+ %05+ Az, By=0+y0y+ Bly, C:=0+20%+ Cl,

A%+ By+ Cy— D= (3—m) 0+ %05+ 305 + 20 + (Alx + Bly + Ciz — Dy)
= (I+2~m)0+term of degree =1—2
* 0.

From above we get the following

Lemma 10. Let o= Rdx + Sdy be a closed differential form on V, which is

finite at every simple point of V. Then we get S= rFép R= — —Fgr where A,
z 2

B are polynomials in (x, v, 2) of degree exactly m — 2.

Now we proceed to prove the theorem. = Slaiw; may be expressible in

the following form
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2= rhon

het

(with some index set I) where ws are the closed differential forms, finite at
every simple point of V, defined over k((2{*), ..., (#i*)) on V* and 15 are
constant functions defined over k((¢{"), ..., (#{¥), (w;)). Further we may

assume without loss of generality that 7, are monomials in wy, wi, we, ws and

G140 for all KEL  Let on=Ruds+Spdy and let Sp= Bf, Ry= = 2.
. 4 2
Then 2 = Rdx + Sdy = — —}?—,dx‘k f'%dy, where R=>7aRn, S= 2)r1Sr and

A=2rnAn, B=>r1Br. Let (2,4, 2') be a (non-homogeneous) generic point
of W'( =the intersection of V* and the generic hyperplane woX,+ w;X:+ weXe
+ w2 X3=0) over (o), ..., (¢/*), (w)). The induced differential form &’

of 2 on W' is by definition
2'=R'dx'+ S'dy = 2)raRydx' + 2)ruShdy',
where R, S!, R, and S}, are the specialization of R, S, R and S, over the spe-

cialization (x, y, z) - (&, ¥, 2) with respect to k((z{"), ..., (o), (w;)) re-

spectively. Since

Fy

F} )
dz= — »Fde— F'z dy,

we have

e = — ('I;z)Idx' —~( 1;? ) av,

Fi\ Fyy' . Fa F} .
where (»ﬁ—) and (~é—) are the specializations of L and T respectively

4
over (x, y, z) - (x', ¥, 2') with respect to 2((¢!”), . . ., (v, (w;)). Moreover

as wo-wix' + wey +wsz' =0
widx’ + wady' + widz' = 0.

Therefore
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If we suppose £' =0, as ' is a variable on W* over k((¢”), ..., (vf), (w;)),
we get
F(, N
I lv;2 B
F

. F}, F, . .
Therefore if we put D= S(w1 - ws 7}) - R(Zl)2 — ws ?J,L), since the function
'z 2,

,7,,,127? is zero on W', the function D must be zero on W'; and E=w A
w1 — W3 —IT,Z*

4wy B+ w:C must be zero on W, where A =>1nAn, B=>111Bn, C=>171Ch
Chp= — —AnFi+ BaFy

i

As W'is aF;eneric hyperplane section of V, the corresponding prime ideal
to W is generated by F and (wo+w: X+ w:Y + w:Z),"” where we can assume
without loss of generality that F is of order m on Z. Since E is 0 on W, E
belongs to this ideal, namely if we replace wo to — (w X+ w>Y+w,Z) in E,

then E becomes a polynomial E which is divisible by . From 7, we choose
A A1 A=1
wywsws, wo lwiwsws, . . ., wowi T whws, wiwsws,

where » is the least number such that ... w; appears in 7x and x is the least
number such that ... wsiw} appears in 74. Let the coefficients of wh ™ wiwh w}
in A be denoted by a;. Then not all @;=0. The coefficient of wl™'w§w} in
E is

al =X\ +a( -+ . L da-( = X) +a.

This polynomial is not zero since @; are zero or polynomials of degree m —2
and not all @;=0. Moreover the degree of this polynomial on Z is not greater
than m — 2, therefore this polynomial is not divisible by F, which is a contra-

diction.

16 See A. Seidenberg [9].
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Remark. An example showsa that we can not omit the condition of charac-
teristic 0 in Theorem 7, but if the characteristic is greater than the square of
the degree of V, then the theorem holds.
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