
ON THE THEORY OF DIFFERENTIAL FORMS

ON ALGEBRAIC VARIETIES

YUSAKU KAWAHARA

Let K be a function field of one variable over a perfect field k and let υ

be a valuation of K over k. Then v{dx) = #(®*) - t;(#)«>, where ®* is the differ-

ent-divisor (Verzweigungsdivisor) of K/k(x), and (#)«> is the denominator-

divisor (Nennerdivisor) of %. In §1 we consider a generalization of this theorem

in the function fields of many variables under some conditions. In §2 and §3

we consider the differential forms of the first kind on algebraic varieties, or the

differential forms which are finite at every simple point of normal varieties and

subadjoint hypersurfaces which are developed by Clebsch and Picard in the

classical case. In § 4 we give a proof of the following theorem.1* Let Vr be a

normal projective variety defined over a field k of characteristic 0, and let

ωi, . . . , ωs be linearly independent simple closed differential forms which are

finite at every simple point of Vr. Then the induced forms on a generic hyper-

plane section are also linearly independent.

I express my hearty thanks to Mr. Y. Nakai for his useful remarks.

§ 1. Let K be a field, generated over a field k by a set of quantities and

let K be of dimension n over k. If K is separably algebraic over k(xu - - . , Xn)

where xlt . . . , xn is a set of algebraically independent quantities in K over k,

we say that xίt . . . , xn are separating generators of K over k. Every differ-

ential form belonging to the extension K over k is expressed in one and only

one way as a polynomial in dXi, . . . , dxn with coefficients in K.

LEMMA 1. Let K be a separably generated n-dimensional extension of k.

Then n differentials dxu . . . , dxn of xu - - , Xn in K are linearly independent

over K if and only if xί9 . . . , xn are separating generators of K over k.

Proof. If dxi, . . , , dxn are linearly independent over K, we get for all z

in K
n

dz = ^ai(z)dxi, aiiz) G K.

Received January 23, 1956.
χ) When V is without singularity, this theorem is well known, see J. Igusa [4].
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14 YUSAKU KAWAHARA

Therefore n derivations A of K defined by Dt(z) =ai(z), form a base of the

module of all the derivations of K over k. It follows immediately that every

derivation of K over k does not annul all the elements of k(xi} . . . , xn). There-

fore by F-I, Th. 1,2) K/k(xi, . . . , xn) is separably algebraic.

LEMMA 2. Let xίf . . . , xn be separating generators, and

dzx . . . <fe= Σ ai^.jsdXij. . . . dXis, a^.j, e K.
i\<....<is

Then ai^.js # 0 if and only if Ui, . . . , zs, Xi, . . . Xίt . . . Xis . . . , xn) are

separating generators of K over k.

Proof. This follows immediately from Lemma 1.

Let K be a regular ^-dimensional extension of k. In K we consider an

(n -1)-dimensional valuation υ. When xu . . . , Xn are separating generators

of K over k we associate a number #(©*!...#„) with # in a similar way as in

the case of dimension 1. Namely, let o be the set of all the elements z of

k(xu - > Xn) such that viz) ^ 0 , and let o be the set of all the elements in

K which are integral over o. Then the different-ideal of o with respect to o is

a principal ideal (ψ) in "o. We define v(T)Xl...Xrι) by

More generally, if K is separably algebraic over a subfield /f0, then we can

define v(^)κ/κ0) similarly. v{%Xl...Xn) may be ^vθ for infinitely many v, but if

we treat only the valuations vw in K with respect to the sub varieties W71'1 of

a normal model Vn of K> then vw(<£>Xl...X}ι) Φθ for a finite number of vw The

following lemma is well known.

LEMMA 3.3^ Let K be α regular 1-dimensional extension over k> and let v

be a valuation of K. Then if x and z are the elements in K such that K/Hx)

and Klk(z) are separably algebraic, we get

where v(x)^ =0 if v{x) ^ 0, v{x)*> = - v(x) if v(x) < 0.

LEMMA 4. Let K be a regular n-dimensional extension over k and let

2) A. Weil [11] Chapter I, Th. 1, noted by F-I, Th.,1.
3> J. Weissinger [12].
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DIFFERENTIAL FORMS ON ALGEBRAIC VARIETIES 15

Xi, . . . , xn be separating generators of K and

Let v be an (n - 1)-dimensional valuation such that v{xd ^ 0 (i = 1, . . . , n - 1)

and let x% (i= 1, . . . , n - 1 ) be the residue class mod v which contains Xi.

Then, if Xi, . . . , xn-\ are algebraically independent in the residue class field of

v over k and Pn =¥ 0, we have

v(Pn) = v(^Xl...Xn.lZ) - v(<£)Xl ..xu-lXu) -2v{z)«

Proof. Let k(xίf . . . , xn-i)* be the algebraic closure of k(xu . . , Xn-ι)

in K. Since xu . . . , xn-i are algebraically independent, we can consider v as

a valuation of K/k(xίf . . . , AΓM-I)*; /? is of dimension 1 over k(xi, . . . , ΛΓ^-I)*.

If we express the differential belonging to the extension K of k(xu . . . , ΛΓ«-I)

with ί/', then d'z = Pnd'xn. Therefore, from Lemma 3,

v(Pn) =

*

where ®2 and ©ίM are the different-divisors with respect to K/kixu

and K/k(Xί, . . . , ΛΓΛ-I)*(Λ;«) respectively. But since

«;(©ίn) = v(©Λl...*n), we have

v(Pn) -

THEOREM 1. L^ί K be a regular n-dimensional extension over k, and let

Xu . . , Xn be separating generators of K and

dui . . . dun = Rdxi . . . dxn.

Let v be an (n-D-dimensional valuation of K. Suppose that n-Ί elements

among ui, . . . , un form mod v a transcendental base of the residue class field

K of v over k, and n — 1 elements among Xi, . . . , Xn form a transcendental

base mod v of K. Then if

More generally let dz\ . . . dzs- Σ Riv..ibdxix . . . dxis (s ^ n). Suppose

further that n-1 elements among (zu . . . , zs, Xi, . . . , xιv . . . , Xist . . . , ΛΓ»)

form mod v a transcendental base of K over k. Then if Ri^.j^O,
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16 YUSAKU KAWAHARA

Proof. We use induction on n. The latter part follows immediately from

the first part; for, dzi . . . dzsdxs+i . . dxn-R\...sdX\ . . . dxsdxs+i . . . dxn (if

iι = 1, . . . , fo = 5).

We assume without loss of generality that K/k(xi, . . . , ff«-i) and K/k(ΰ1}

. . . , «τz-i) are algebraic. We put

Jwi . . . dun-ι- A\dx ι . . . dxn + A2dXidxΆ . .'. tf#»-f . . . 4- Andxi . . . Λ - i .

I) The case when at least one of Aly . . . , Λ«-ι is not zero; we assume

Ai^O. Let k(xι)* be the algebraic closure of (̂ΛΓI) in K and consider K over

^(ΛTI)*. Then by the induction sssumption we can prove in the same way as

Lemma 4,

ίx2)«>+ . . . +v(xn)}*>

Next as K/k(uu - . . , ««-i, 1̂) is separably algebraic, we can put

dun = ocidui + ociduiΛ - . +^~i&-i-f-α«ώi.

By Lemma 4 we get

v(α:») = v(Ί)Uι...un-1un) - v(*£>u1...un-.1x1)

As /? = Aiα:w

= v(Aι)

II) When Λi = . . . = A»-i = 0, then An ^ 0, as R # 0. Put

. . . -f α?ιdXn-

There exists an element w oί K which satisfies the following conditions 1)

K/k(xι, . . . , Xn-u w) is separably algebraic, 2) ^ and n — 2 elements among

Xu . . . , Xn-i form mod υ a transcendental base of K over ^. For, at first ΰi

and n — 2 elements among xu - . , ^«-i form a transcendental base of iί. We

assume that Tιu X2, . , ^w-i is a transcendental base of K. As ϋΓ is (w-D-

dimensional over k, there exists an element f(xi, *• . , ŵ) # 0 in /<? HΛΠ, . . . , Xnl
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DIFFERENTIAL FORMS ON ALGEBRAIC VARIETIES 17

such that vif) > 0, moreover we*can assume that df/dxn =*? — ocn- We put w — u\

+/. Then, 1) dw^dui-h df = (*i + -J^) dxi + . . . + (a» + | ^ - ) <fcrΛ, α:» + -J|*-

^ 0 ; therefore if is separably algebraic over #(#i, x2, . . . , AΓM-I, W). 2) As

#(/) > 0, w~ «!,* therefore w;, #2, . . . , #«-i is a transcendental base of if.

As ί/̂ i . . . dun-ι = 0 * JΛ;2 . . . dXn-\dwΛ . . . + ^ « & . . . dxn-u by con-

sidering K over Aί(tc )*, we get in the same way as Lemma 4

Since ^L«^FO, by Lemma 2, if is separably algebraic over k(uu . . . , un-u

and we can put

l + βndtV.

By Lemma 4

v(γn) = ̂ (^^...^-i) - flO*!...*,,)

As i? = Awj9wr«

V(R) ^ v(An) + V{βn) +V(γn)

LEMMA 5. L^ί F w ^^ α variety defined over a field k with a generic point

P over k. Let Wn~1 be a simple subvariety of Vn algebraic over k with a generic

point Q over k. Let (ίi, . . . , tn) be a set of uniformizing parameters at Q in

k(P) and ti be the specialization of U over P -> Q with respect to k. Then k(xf)

is separably algebraic over k(tί, . . . > t'n).

Proof. From the definition of uniformizing parameters and F-VIII, Prop.

10, Q is a proper specialization of multiplicity 1 over (t) -> (tf) with respect to

*. Therefore k(x'y t')=k(x') is separable over kit1) by F-III, Th. 4.

LEMMA 6. Let Vn be a variety defined over a perfect field k with generic

point P over k. Let v be a valuation of k{P) such that its valuation ring coin-

cides with the specialization ring, in k(P), of a simple subvariety W71"1 which
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18 YUSAKU KAWAHΛRA

is algebraic over k. Then we can choose a set of uniformizing parameters

(tu . . . , tn) in k(P) along W such that viU) -minimum of the set consisting

of via), a £ k{P), via) > 0.

Proof. There is a point A = ixn) algebraic over k such that A is a simple

point both on Vn and on W71'1. Let p be the prime ideal in the specialization

ring R of ix") in k(P) which is determined by Q. Then since ixn) is simple

on W the ring Rip is a regular local ring. If it2, . . . , tn) is a set of elements

in R such that they form mod p a regular system of parameters of R/p, then

there is an element t\ in R which is a generator of p and (ίi, . . . , tn) is a

regular system of parameters of R by Chevalley [1], Prop. 9. Since k is

perfect, (tu . . . , £ » ) is a set of uniformizing parameters of V at A in kix).

Therefore (tu - , tn) is a set of uniformizing parameters of F at Q in kiP)

and viti) = minimum.

THEOREM 2.4) Let K be a regular n-dimensional extension over a perfect field

k, let v be an (n — D-dimensional valuation of K and let Vn be a model of K

such that the center of v is a simple subvariety Wn~ι and (ti, . . . , tn) a set

of uniformizing parameters of W.5) Let Zu . . . , zn be elements in K such that

the residue-class field of v is algebraic over kizi, . . . , In), where zi is the resi-

due class which contains z% iwhen vizd < 0 we consider here zi = 0). Then if

dzi . . . dzn = wdti . . . dtn and w ^ 0,

Proof. For the set of uniformizing parameters iti, . . . , tn) which was

chosen in Lemma 6, v((£)tι...tn) =0 since viti) = minimum and the residue class

field of υ is separable over kiΊu . . - , ? „ ) . As viw) is independent of the choice

of the uniformizing parameters, we get the theorem.

COROLLARY. Let kix) be a separably algebraic extension of kiy) and let v*

be a valuation in kix) which induces on kiy) an in — 1)-dimensional valuation

v, n being the dimension of kiy) over k. Let (ί*, . . . , t%) be a set of uniformi-

zing parameters of v* in k(x) and let (tu . . . tn) be a set of uniformizing para-

meters of v in kiy) in the sense described in the above theorem, and

4 ) See H. W. E. Jung [5].
5 ) Since k is perfect, such a variety always exists.
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DIFFERENTIAL FORMS ON ALGEBRAIC VARIETIES 19

dh . . . dtn^wdtt . . . dtn in k(x)

Then v*(w) - v

Proof. By Theorem 2 v*(w) = ^(S^...^), but

because the t>-contribution of the different of k(y) with respect to k(tu . . . , ί«)

is zero as in the proof of Theorem 2.

§ 2. Let F w be a projective variety in the projective n -f 1 space Lw+1. Let

^ be a field of definition of Vn, and let V*n be a derived normal variety of V

with respect to k, such that F* has no singular subvariety of dimension w - 1 . 6 )

Then F* is also derived normal variety of F with respect to any field k'

containing k. Let M be a generic point of F over #, and let M* be the corre-

sponding generic point of F* over k. Let w*""1 be an (n -1)-dimensional

subvariety of F* and let VP" be the corresponding variety in F. Let o^ be the

specialization ring of W in k(M), and iv the integral closure of ow in k(M)

= k(M*). Let ^ΪΓ be the conductor of oiV with respect to o»F, and put cw*

— mm{vrr*(u)}, where vtv* means the valuation of k(M*) with respect to W*.

We define the subadjoint divisor C of V by C = Σ<v*TF*.7) Here ίv* ̂  0 if and

only if W is a singular subvariety of F.

Let PFo, Fo and F* be representatives of W, V and F* respectively and let

MQ= (X) and M<f = (y) be the corresponding generic points of Fo and F* over

k respectively. Let zι, . . . , zm be a base of the ring &[jy] with respect to &M.

Then (2i, . . . , Zm) is also a base of OJΓ with respect to ow. From this we see

that if & is the conductor of k[_y] with respect to kLxl then SJΓ = (S o .̂ For

if MG^IΓ, uzi&Oty U = l
rH\X)

tn

=^0; therefore W G S OΪΓ since uΊΊhi(x) e ^. Conversely we get obviously

S C δfΓ, hence IS^ = K o .̂ Therefore c^* = min {viV*(u)} = min {Z;,F*(^)}. Fur-

ther since F* is derived normal variety of V with respect to k\ if (zu . . . , 2m)

is a base of &[jy] with resp. to k\_x~\ it is also a base of k'ίyl with resp. to

ί ' W , therefore the conductor S' of ^'[^] with respect to kfίx2 is equal to

S ^'[Λ;]. Therefore we can see that C depends on the variety F*, but it does

not depend on the choice of the reference field k and the generic point over it.
61 In the following we always assume that the derived variety of V by normalization

with reference to k is normal and call derived normal variety.
7> See D. Gorenstein [2].
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20 YUSAKU KAWAHARA

Moreover C is clearly determined uniquely up to biregular birational corre-

spondences between derived normal varieties.

Let Φ(Xo, . - . , Xnn) be a homogeneous form in kΐ.X0, . . . , Xn+i]. Let

YyT^n-i ^ e a n (w-i),dimensional subvariety in F* and W the corresponding

subvariety in V. We take one of the representatives, say Wo, of W. Let Mo

= (1, #i, . . . , Xn+i) be a generic point of Fo over k and M* be the correspond-

ing generic point of F* over &. Let 0O be the function on F* defined by

0o(Λf*) = 0(1, ffi, . . . , ΛΓ̂ +1 ) over k. Then it is easily seen that zv*($o) is inde-

pendent of the choice of the representatives of W and the field h and the generic

point M* of F* over k. We denote it by υw*(Φ, V). Obviously zv*(Φ, V) = 0

but a finite number of W*; we denote the divisor 'ΣvwΛΦ, V) PF* by (Φ, F).

If ev*(0, F) ̂  ^*(C) for all W*9 then we call that Φ{X^ . . . , X,+i) is a sub-

adjoint form of F or call the hypersurface d> = 0 a subadjoint hypersurface. Let

φ(Xu > Xί+i) be a polynomial in #LXi, . . - , Xn-i] and let ψ be the func-

tion on F* defined by φ(M*) =φ(xι, . . . , AΓ»+I). If ιv*(ψ) ^ ^*(C) for all W*

such that FF:' has the representative in Fo*, then we say that φ is a subadjoint

polynomial of Fo. If the degree s of φ is ^ m, and 01-XΌ, . . . , Xn+i)

= ZΓ ψ f-̂ -, . . . , - % ^ ) is a subadjoint form of F we say that φ(Xu . . . ,

jY"n41) =0 defines a subadjoint hypersurface of degree w of F, or briefly φ(Xχy

. . . , Xz+i) is a subadjoint hypersurface of degree m of F. The notion of sub-

ad jointness is independent of k and also of V*.

Let ω be a differential form on F of degree r defined by ω(M)

= Σ a ll...irdxix . . . <fcr over k, where Σ«ii...ίr^Ί ^V i s a differential

form belonging to the extension k(M) of /2. In this case for simplicity we also

use the notation ω= Σ cn1...irdxi1 . . . dxir. Further by the birational corre-

spondence between F* and F, we can define the transformed differential form

for ω on F*, using the same notation ω.

Let ω be a differential form defined over k on F* and let (ίi, . . . tn)

be a set of uniformizing parameters of a subvariety FT*71"1 in ft(Λf). If

(o =Έjaiι..jrdti1 . . . dUr, then we put min. Vw*(ai1...ir) - Vίv*(ω) this is inde-

pendent of the choice of the uniformizing parameters and also of the defining

field k.8)

v See Y. Nakai [7].
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LEMMA 7. Let Vn be an affine variety in Sn+1 defined over k by F(Xly . . . ,

Xn+i) =0, with a generic point Λf = (xu . - > Xn+i) over k. We assume that

= — f Xu
Xn+i is separably algebraic over h{xu . . . , xn). Let ω = f dxι

Fn+l\Xl, ' . , Xn+l)

. . . cfcw, αwd /#£ p^*^" 1 £# a stώvariety of the variety F * derived from V by

normalization with reference to k. Then Vιv*(ω) -Vw*(φ) —Vw*(C).

Proof. (1) First we assume that the degree of F{Xu . . . , Xn+ι) on Xn+i

is m, m being the degree of F(XU . . , Xι+i). Let W71'1 be the corresponding

variety to W* in V and let (xf) be a generic point of W over k* (=? k). Since

JP(ΛΓI, . . . , x'n, x'n+i) =0, ΛΓ»+I is algebraic over h\x[, - - , ΛΓJ,), and therefore

dim&/ (Λ;!, . . . , x'n) = n-l. Suppose xl, . . . , ΛΓJZ-I be algebraically independent

over kf. Then for any element 2=^0 in kixi, . . . , #/ι-i)=#i, e;»r*(2)=0, and

therefore we can consider vw* as a valuation of kι(xn, Xn+i) over ku Let o be

the integral closure of kiίxnl in K=k(xi, . . , Xn, Xnvi). Then o is also the

integral closure of faLxn, #»nH. Let c be the conductor of o with respect to

kiίxn, Xn+il and let b be the different of o with respect to kiLxnl. Then we get

Fn+l(Xu . . . , # » , Xn+l) # 0 = cb. 9 )

Further, clearly we get vw*(C) =^vw*^iw) =tv*(c), and moreover we get vw*Cb)

= Vfv*(Ί)χί...χn). As we can assume without loss of generality that k is perfect,

we get

VwΛdXi . . . dXn) =V^*(Φ*1...*Λ).

Therefore

= Vw*(φ) -Vw*{C)

(2) For the general case we make a linear transformation Xi =

where # y are in ̂  and I <z,y I =̂F 0.

£/ = 2Lj&ijGXj ~ ' »I fly ~^7 fl/jW+i 1 flΛΓy

^r°>i, n + \\ dXi . . . dXn

t n+l |/,y=l,...,«

9> E. Hecke [3].
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Let F(XU . . . , Xn+i) be the irreducible polynomial in kίXu

F(Xu . . . , *n+i) = 0 . Then

dji —
lί

Therefore

. . , Xn+il such that

. . . , Σ α « + i . , -Ϋ, ),
1

\Clij\i, j = i,..., n

. . . dxn = -=7

Since we can assume that k is an infinite field, we can select an such that F is

of order m on J£Λ+i. Therefore we have

vw*(ω) = Vwλψ) - ^ * ( C ) .

THEOREM 3. Z^ί Vn be an affine variety in Sn+1 defined over k by F(Xu

. . . , Xn+i) = 0 with a generic point M= (xu . , Xn+i) over k. We assume

Xn+i is separably algebraic over k(xi, . - . , xn). Then a differential form

ω — —j—~ - dxi . . . dxn is finite at every simple point of the derived
Fn + i\Xi> . . - > Xn+l)

normal variety F * // and only if A = φ(xi, . . - , xn+i), where φ(Xu » X/+i)

/s « subadjoint polynomial for V.

Proof If A = 0 θ i , . . . , Λ;«+I), 0(J¥Ί, . . . , Xn+i) is a subadjoint polynomial

for V, then viF*(ψ(5fi, . . . , xn^i)) ^ VwΛC) for every subvariety W*n~x of V*.

By the preceding lemma Vir*(ω) = Vwλφ) - vw*(C) ^ 0. Let P be any simple

point of F * and let Ui, . . . , £ « ) be a set of uniformizing parameters at P in

β(M) and ω = Bdh . . . dtn Since (ίi, . . . , tn) is also a set of uniformizing

parameters along every W**1'1 which contains P. Therefore Vw*(B) ^ 0 for

every W* which contains P. It follows by F-VΠ, Th. 1 that B must belong to

the specialization ring of P ; this shows that ω is finite at every simple point.

Conversely if ω is finite at every simple point, then υw*(φ) ^Vtv*(C) for

every W*71'1 of F*. Let o^ be the specialization ring of a subvariety W91'1

of V in ft(M), and let ow be the integral closure of iv in *(M). Let Wfn"x

(i- 1, . . . , s) be all the subvarieties of F * which correspond to FT. Then an

element z in &(M) is finite at W (which means z is finite at a generic point
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of W over a field of definition K ( B k) of W), if and only if z is finite at every

Wf (ί = l, . . . , s). Therefore o^ is the intersection of the specialization rings

of W*-s. It follows that ~ow is a principal ideal ring. Hence we have an

element c in ®w such that υwAC) = min {«v<*(«)} = vwAc), therefore we cori-
ng ($,w

elude that ψ/c Go^, 0 £ 6^.

If 2G Π Ow, then 2 belongs to kίxu . . . , #»+i3. To prove this, we
wn-icv

may assume that F(XU . . , X1+1) is of degree m and it contains a term of

X%+i under this assumption (xu . . . , xn) is a set of independent elements

over k. Since 2 £ Π Ow, it belongs to the specialization ring, in k{xu - >

Xn-i)(xn, Xn+i), of any specialization {χn> xh+i) of (ΛΓΛ, ̂ »+I) with reference

to k(xi, - . > ΛΓ«-I), therefore we can see that 2 belongs to k(xί} . . . , #«-i)

[>w, # Λ +J; hence

where h(Xu . . , ^~i) e kίXu ... 9 Xn-J and ^(^i, . . . , Xn+i) e

. . . , X2+1], moreover since F(Zi, . . . , Xn+i) is of degree m on Xn+i, we

may assume that g(Xi, . . - , X«+i) is of degree < m on X1+1. Similarly 2

belongs to A(#i, . . . , xn-%, xn)ίxn-u Xn+il, and

__ ^ ( A Γ I , . . . , Xn+ι)

hi{Xi, . . . , Xn-2, Xn)

where fe(Ii, . . . , X*-2, Z j e A C X , . . . , X,-2, Xnl, gi(Xu . . . , Xn-i)e

. . . , -Xi,+i] and gi(Xi, . . . , Z»+i) is of degree < w o n Xn+i. Therefore

gl(Xu . . . , Λ + i ) MX, . . . , Xn-l)

-g(Xu - . . , X +i) MX, . . . , X.-2, X.)

is divisible by F(Xi, . . . , Xn+i), but since its degree on Xn+i is < m

u . . . , Xn+i)h(Xu . . . , Xz-i)

Now if H{Xu - . , Xz-i) is a power of an irreducible polynomial, which has

a term containing Xn-u and devides h(Xι, . . . , Xί-i), then //"(JYΊ, . . . , Xn-\)

must devide ^(Zi, . . . , Xn+i). Therefore we get

h'(X
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Since z also belongs to k(xi, . . , Xn-z, Xn-u Xn)Lxn-2y Xnl, we get

g (Xl, . . . , Aw+i)fe\Ai, . . . , JYn-3, Λn-i, Xn)

and similarly as above we can see

g"(Xi, » - >
h"(X

Continuing this we get z

Let (£ be the conductor of the ring "o which consists of the elements which

are integral over kίxu . . . , xn+Δ, with respect to kίxu • > Xn+ili- Since

ψ e f c , φϋCΰw for every PFΛ~\ therefore # ϋ & [ > i , . . . , #n+i] which shows

that ψ e ( £ ; in particular ψ G kLxi, - - . , AΓW+I]. Therefore 0 is a subadjoint

polynomial of V.

THEOREM 4. Z,£ί F n be a projectiυe variety in the projective n + l space

Ln+1, and ω a differential form on V of degree n. Suppose V have a repre-

sentative VQ defined over k by F(Xu - . , Xn+i) = 0 with a generic point Mo

= (1, Xu . . - , Xn+ι) over k. Suppose xn+i be separably algebraic over k{xi, . . . ,
A

Xn+iϊ and let ω- ~~7—j ~dX] . . . dxn Then, ω is finite at every
Fn+ΔXl, . . .. , Xn+l)

simple point of the derived normal variety V* of V if and only if A~<ρ(xi,

- . . , Xn+i), where φ(Xι, - > Xn+i) = 0 is a subadjoint hypersurface of degree

m-{n + 2) of V in Ln+\ m being the degree of F(XU - - . , Xn+i)-
j±

Proof Let ω = ~wι—γ~~~ — r dx\ . . . dxn be finite at every simple
Γ nΛ-iyXiy . > Xn + l)

point of V*. Then ω must be finite at every simple point of Fo* Therefore

by the preceding theorem A = φ(x), where ψ(X) is a subadjoint polynomial for

VQ. Let Vi (i=$n + l), say 2 = 1, be another representative of V. Mi=(xi,

1, Xoy . . . , ^w+i) is a generic point of VΊ over k, where 3̂Ί = —? 3̂2 = —

xn+1 = ^ « ± l . L e t F ( A i , . . . . X « « ) = F ( Z i , Xu¥1)/X? where ^ = ~>
Xι Ai

5^2= ^ - , . , X M + i = ^ψ- T h e n F ( Z 1 ( . . . . Z n + 1 ) = 0 is equat ion for Vi
Λi Λi

over ^.

Λ̂ΓI . . . dxn = - xΐ2dxi 3^Γ^3^ . . . xΐxdxn
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Φ,(χ) , ,

__ ψiXn_, , Xn^)xrin+2) ,- d-

" — π'~ ΎΨ v 1 ι ' ' ' n

Γ χn+1\Λ.i, . . . , %n+l)

Therefore φ(x)xψ~in+2) is equal to a polynomial of %u . . . , xn+i. Let

— , . . . , Xn = - ^ - , # w + 1 = — ^ — , and let F(XU . . • , Xifi)

be equation for F»+i. In the case, where one of F[{x)y . . . , Fή(x)y say

FI(ΛΓ), is not zero, we have ~^J~T~\ dxi . . . dxn = - w, xΛ^+ifc . . . dxn.
Γn + l\X) Γ ι\X)

Therefore we get in the same way as above,

Xn+i -,- ,~ , _

dxdx α ^

= ^ ±KψCn^Λ_d^ d^ i f f u r t h e r

Lf F[(X) = . . . = Fή(x) = 0, then dxn+i = 0.

dXi = rf(ΛfΛ+i3fi) = Xn+id%i = finlidXi

Therefore

Hence ψ(Λr)^-Γi(?ί+2) is equal to a polynomial of 3ft, . . . , ^w+i. It follows that

A—φ{xu - > ̂ «+i), where φ(Xi, . . . , Xi+i) is a polynomial of degree h ^m

- (w + 2) and Φ(XΌ, . . • , Xi+i) = ψ(4L> - , ^ ί 1 ) Zf" ( w + 2 ) is subadjoint

form of V. Conversely if A = φ(x), where ψ(X) = 0 is a subadjoint hypersurface
A

of degree m— (w + 2), then clearly ω= Ίr?c~ΠXdxi . . . d#w is finite at every

simple point of F*.

COROLLARY 1. Z^ί Vn be a subυariety of Ln+1, such that the derived normal

variety F* of V is a variety without singular point. Then a differential form

A
ω- -jp ,— - r dXi . . . dxn

r n+l\Xί> > Xn + l)

on V is a differential form of the first kind if and only if A — φ(xi} . . . , Xn+i),

where φ(Xi, - . > Xn+i) =0 is a subadjoint hypersurface of degree m— (n + 2)

of V,
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COROLLARY 2. Let Vn C Ln+\ If every singular subvariety W71'1 of Vn

has a representative in V", then ω is finite at every simple point of F * if and

only if A = φ(xι, . . . > xn+ί), where ψ{Xi, . . . , Xn+\) is a subadjoint polynomial

of degree <= m— (nΛ-2),

Proof. Let ω^^^^j^^dxi . . . dxn, where <p(X1; . . . , Xn+ι) is
Fn+iKX)

a subadjoint polynomial of degree === m- (n + 2). Then ω is finite at every

W*71'1 which has a representative in Fo*. Let W*71'1 be any subvariety of F*,

which has no representative in Fo*. Then W71"1, the variety in F which corre-

sponds to ψ*71'1, is not a singular subvariety, and W* has a representative in

some F * ( / # 0 ) , say 2 = 1.

^ ( j

Since the degree of φ is <=rn-{n + 2), <β(xίf . . . , xn+i)x? {n+2) i

Xn+il. Therefore Vw*(φ{x)xψ~{n+2)) ^ 0. Moreover since W is nonsingular,

vw*(C) = 0. Therefore % 4 ω ) - tvΛ0U)*T~< n + 2 )) - Vw*{C) ̂  0, which proves the

corollary.

§3.

LEMMA 8. Let Vn be an afflne variety in Sn+1 defined over k by F(Xi, . . . .

Xn+i) = 0 with a generic point M= (xu . . . , xn+i) over k. We assume that xn+i

is separably algebraic over kixi, . . . , xn). Let ω- ~Wι C Σ Aix...irdXixdXi2

" n + l i ι < . . . < ί r

. . dxirl be a differential form on V of degree r defined over k. Then if ω is

finite at every simple point of the derived normal variety V* of V, Aix...ir o/re

subadjoint polynomials for V.

Proof This follows immediately from Theorem 3 when the degree of ω is

n. We assume r <n. ω - -τp—LAi,..rdxi . . . dxrΛ . . . ] . Since dxr+u >
r n + l

dxn are finite at every simple point of F* 1 0 ) , ω dxr+i . . . dxn- ~rP Ai...rdxi
Γ n + l

. . . dxrdxr+i . . . dxn is finite at every simple point of F*. Therefore by

Theorem 3, Ai...r is subadjoint polynomial for F. Similarly Ailm..ir are sub-

adjoint polynomials for F.

$ee S. Koizumi [6].
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Notations and assumptions being same as in Theorem 4, let o)

- —-,— ̂ ΣAi1 .,irdxi1 . . . d%ir be a differential form of degree r ( < n) on V
r n+i

defined-over k> and let ω be finite at every simple point of the derived normal

variety 7 * of F.

ω = ~, Σ Aix...irdxh - - d%ir
Γ n + 1 ii<...<iv

=-~iP~~ Σ Au2..jrdXidXi2 . . . dxir+ -π,— Σ Ajί...jrdxjι . . . dxjr

= Tί7— Σ Ai/2.. irxϊ2xϊ{r"1)dxidxit . . . d#/r

-Γ W-M 1«2 < ..<ir

+ ^>"~ Σ Ajι...jr(xIιdXjι-Xjxxϊ2dxι) . . . (xlλdXir-XirXZ*dxy)

= ~jff— Σ Aiii...irxlir+1)dxidxit . . . d£/r

Σ lAj1ja..jrxϊrdXj1 . . . Jx v

Aj1..jrxί

rdxj1 . . . dxjr
<3r

Therefore, by the preceding lemma Aj1..jrxίrn'1)"r (1 < jι< . . . <yV) is equal

to a subadjoint polynomial for VΊ. Moreover

is equal to a subadjoint polynomial for Vλ. Therefore Au2..jrx?~1~r +

Σ ± Aj1..jrxT~1~r( - l)xjh and Ajx...jrx?~1~rXjΊe are equal to a subadjoint poly-

nomials; hence Au2...ivx?~x~r is equal to a subadjoint polynomial. Therefore

for every h < . . . < zV, ^ly1...ιr^Γ~1~r is equal to a subadjomt polynomial. Simi-

larly Ai1ii...irXhm+1+r is equal to a subadjoint polynomial for Vh 11 ^ h ^ w).

As for F«-n, by the similar argument as in the proof of Theorem 4, we

can see that Aiι...irXnΐΐ~'1~r) is equal to a subadjoint polynomial for Vn+i.

Therefore it follows that AI 1...ί r = Aix..,ir(xu . . , Xn+i), where Aix..jr(Xu . ?
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Xn-ti) is of degree ^ m - l - r , and Aix...ir(Xu , Xί+i) = 0 is a subadjoint

hypersurface for Vn.

From the above argument, we see that

Aut...it.x?-1-rxϊ1+ Σ Ahio...irXhxT'1'rxϊ1 = Ά%...ir{x1, . . . , 3ffΛ+i)

where Λ,t.., r ( ί i , - . . , -X"»+i) =0 are subadjoint hypersurfaces for Vu therefore

(*) Σ XhAhi1...ir-ι =Λv..'V-i(tfi> > ^Λ-M) U ) ,
M=ίl,...,ίr-1

where A^.A^XU . . , Xi+i) are subadjoint hypersurfaces for V, Aix..jr are

assumed skew symmetric on ii, . . . ir.

If Xί is separably algebraic over k(x2, - - . , AΓ«+I), then <ϋari = — Λ d x z
Γ 1

F

= Σ -^J-^ίfc.x Λΐ,. = ΣΣ
1 « 2 < . .<

Σ

pfί Σ — Au2...irdXn+idXi2 . . . dxir

i N ^ J -v * . / •»»* - ιr \ Λ . . F A

+ 4/ι -Jr~W~~( dXj, . . . ̂ i r ] .
t n + l

Therefore, for Kjι< . . . <jr ^ n,

# 1 - + Σ(~D"AlΛ..Λ...i,#/L

n+l Λ=-I P n + l

where Λi* *..yr(-Xi, . . . , Zw+i) = 0 are subadjoint hypersurfaces of degree m—l-r

for V. This holds even if Xi is not separably algebraic over k(x2, >

Considering other representatives of V we get

(**) Σ ( - DAAv..&.... r - ^ = At*.yr(Λfi, . • . , xn+ι)11}

where A,*.*ίv(-Xi, . . . , -X"«+i) = 0 are subadjoint hypersurfaces for V.

11) This formulation is due to Y. Nakai, see [8],
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THEOREM 5. Let Vn be a projective variety in Ln+1. Suppose that Vn has

a representative VQ defined over k by F(Xi, . . . , Xn+i) = 0 with a generic point

(1, Xι, . . . , Xn+i) over k, and xn+i is separably algebraic over k(xi, . . . ,# r t). Let

ω = τ r ; — [ Σ A / . .L&! . . . dXiΛ be a differential form of degree r (<n) on V
Γ n + 1

defined over k, which is finite at every simple point of the derived normal variety

F * of V. Then Aiί..jr = Aiι...ir(xi, . . - , xn*i) where Aix..jr(Xu . . . , X»+1) = 0

are subadjoint hypersurfaces of degree m — l-r for F, m being the degree of

F(Xu - - i Xn+i). Furthermore (*) and (**) also hold.

LEMMA 9. Let Vn in Sn+1 be a generic projection of a normal variety Vn. Let

F(Xi, . . . > Xn+i) = 0 be equation for V and let ω = ~^r~S-Ai1.../rd#i1 . . . d%ir

Γ n + 1

be a differential form on Vn, such that 4 . . . / r are subadjoint polynomials for V

for every (zΊ, . . . , ir) and (**) holds. Then ω is finite at every simple point of V.

Proof. Let k be a field of definition of Vn in Sm. Since Vn is a generic

projection of Vn,

where uji, j = 0, . . . , ml i = l, . . . , n-h 1 are {n-{-l){m-\ 1) independent vari-

ables over £ and (JΊ, . . . , ym) is a generic point of Vn over k(u) = k(uji).

(xi, . . . , #»+i) is a generic point of F w over A(M).

Since (jvi, jy2, . . . , ym) is of dimension w over k(u), we see that (xu . - ,

ΛΓn-i) are independent over ^(«). We consider the linear variety ffm~{n~l) de-

fined by

~ Xi + ̂ oi + MnFi + . . . + Um\ Ym = 0,

~ Xn-l + Uon-l + Um-iYl + . . . 4" Umn-ίYm = 0.

Then since Vw is normal defined over A and i ϊ is independent over k, H F w is

irreducible and is also normal.32' Further H Vn is defined over k((uf), Xi,

. . . , Xn-i), of dimension 1 and (vi, . . . , ̂ m ) is a generic point of H Vn over

k(ut Xu . , ΛΓw-i), where (wθ = (MOI, . , wwi, . . . , wo»-i, . . , «m»-i).

Let TF^"1 be a non-singular subvariety of F which is algebraic over k{u).

By W we can introduce the valuation vw of Jfe(w)(jyi, . . . , ym), of dimension

12> A. Seidenberg [9].
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n - 1 over k(u). We may assume without loss of generality that υw is the valu-

ation over k(u)(xi, . . . , Xn-i), of dimension 0. For, vw is the valuation over

the field K which is ad jointed certain n — 1 elements, say #<$, . . . , xn+i, among

ΛΓI, . . . , Xn+u over k(u). Then by (**) we get

(0= Ί?llLiBj\...jrdXjί . . . dXjr,
Γ l

where Bj\..jr are subadjoint polynomials, and therefore we can make the same

argument as in the case K=k(u)(xi, . . . , xn+i). Let v be an extension of vw

to the field k(u)(xu . - . , xn-i)(yi, - . , jym) and let t be an element in

k{u)(Xiy . . . , ΛΓrt-i)(^i, . . . , ^m) such that ϋ(t) = 1 and let yi = ai + βit+ . . . ,

α:/, ft belong to #(w)(#i, . . . , ΛΓM_I). Since any points oί V H are simple and

(αri, . . . > am) is a point of F H, we see that ft r̂ 0 for at least one i and

we can assume that t&k(ai, . . . , tfmMjyi, . . . , ym). Now the restriction of

v to ~k((u'),Xu . . . , Λ;»_i)(α:j, . . ., am)(yu - . . , Vm) is a valuation of dimen-

sion 0 over k((uf), xίt . . . , Λ:«-I)(O:J, . . . , arm). Therefore all ft belong to

k((u'), Xi, . . , ΛΓΛ_i)(α:i, . . . , α:w). As F H is defined over k((u')> Xι, . . . ,

tfM-i) of dimension 1, the dimension of (au > «w) over k{(u'), Xι, . . . ,

#w-i) is at most 1, hence the dimension of (ft, . . . , βm) over k((uf), Xu . . . >

ΛΓ«-I) is also at most 1. Moreover since (xu . . . , tf»-i) are independent over

^(w), (wo«, > Umnf uon+i, - , Umn+i) are independent over k((ur), Xi, - - ,

ΛΓ«-I), therefore for at least one i (i=n or w + 1), say f = w, (wOn, . . . , %n) is

a set of independent elements over ki(u'), Xi, . . . , #«-i)(α:i, . . . , am). Since

Xn = Ôw + Miw^i + . . . + «m» ^m

( m rn

and since ft belong to k({u'), xu . . . , ΛΓ«-I)(O:I, . . . , arm), it follows that

0, which shows that there is an element A in k(u)(Xi9 . . . , xn-i) such

that v(xn - A) = 1. Therefore the different of k(u)(xu . . . , %«-i)(^i, . . . ,

ym) with respect to k(u)(Xu . . . , xn-\)(xn) is not divisible by v. Since

k(u){xu . . . , ^ Λ - I ) [ J Ί , . , J'm] and A(«)(^i, . . . , ΛΓΛ-I)[JVJ, . . . , jym] are inte-

grally closed, we see that the different of k(u)(xi, . . . , A:W-I)(^I, . . . , ym)

~k(u)(xu - - - , Xn+i) with respect to k(u)(xu . . . , xn-ι)(xn) is not divisible

by ί/jκ. Therefore, by the same argument as in the proof of Lemma 7, since
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Fn+i o = cb, we get vAFn+i) -Vπ iC), where C is the subadjoint divisor for V.

Since Λ\.../V are subadjoint polynomial ω is finite at W. If W is not algebraic

over kίu), then obviously ω is finite at FT. Therefore ω is finite at every non-

singular W of F, and hence ω is finite at every simple point of V.

THEOREM β.13) Let Vn, in projective n-\-l space, be a generic projection of

a normal projective variety Vn. Let (1, #j, . . . , xnvi) be a generic point of Vo

and let F(XU . . . , Xn+i) = 0 be equation for Vo. Let ω = ^r~""Σ A/, i,.dxix

Fn + l
. . . dxιr be a differential form on F. Then, if Aiι,.jr~Ai1...ιιXxu . . , %n+i)

are subadjoint polynomials of degree m — l — r and moreover (* ) and ( * *) hold,

ω is finite at every simple point of V and conversely.

Proof. Let FT* be a subvariety of F and let W be the corresponding sub-

variety of V. Then, if W has a representative in VQ, ω is finite at W* by the

preceding lemma. As for Vi since (*) hold, we see by the proof of Theorem 5,

that

-~j—*ΣiBi1...irdXiι . . . d%ir,
FhTin + 1

where B^...^ are equal to polynomials on xu . . . , %n+ι. Therefore ω is finite

at every non-singular Wn~ι of VΊ, similarly at every non-singular Wn~ι of F/.

As V is a generic projection of V, all singular W71'1 of V have representatives

in Fo, hence ω is finite at every simple point of F . The converse follows im-

mediately from Theorem 5, since V is biregularly birationally equivalent to a

variety derived from V by normalization.

COROLLARY. In the above theorem, if V is a variety ivithout singularity,

then ω is of the first kind.

COROLLARY. Assumptions being as in the above theorem, let ω

= Σ ( — I) π>—dx\ . . . dxh - - dxn be a differential form on V7\ where
h-o Γ n + l

A 7?* 4- 4-/4 7*1'
Au - •• , An and Ann— -1—--—^-J—" n -n are equal to subadjoini poly-

nomials of degree m— n and moreover

13) SeeY. Nakai [8].
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where ψu ψ2, . . . , ψn+i polynomials of degree <m— n. Then ω is finite at

every simple point of V, and conversely.

§4. In this section we always assume that the characteristic of the field

k is 0 and give a proof of the following

THEOREM 7. Let Vr {r ^2) be a projective normal variety defined over a

field k of characteristic 0 and let ωi, . . . , ωs be linearly independent simple

closed differential forms which are finite at every simple point of V. Then the

induced forms ωί, * . . , ωf

s on a generic hyperplane section {over k) W7"1 are

also linearly independent.

Let Vr be in the projective space Ln and let Wr~ι be the intersection of

Vr and the hyperplane uoXo+UiXi+ . . . + unXn — Q, where UQ, . . . , un are

n-\-l independent elements over k. It is well known that Wr~1 is also a normal

variety defined over k(uo, uu . . . , un). First we show that it is enough that

we treat the case where all the ωi, . . . , ωs are defined over k. If ωj, . . . , ωs

are defined over a certain larger field K, we can express ωi in the following

form

0)i — 2 j ^ i (fiij 2 = 1, . . . , S,

where aj are constants defined over K and ω/y are simple closed differential

forms which are finite at every simple point of F, defined over k.U) Choosing

among the ω/y a maximal set of linearly independent ones ωh (h = 1, . . . , t),

and expressing all ωij in terms of these, we get for ωi an expression of the form

t

ωi= 'Σβihωπ U = l , . . . , 5), where βih are constants.

As ωi (i = l, . . . , 5) and ωh {h = 1, . . . , t) are linearly independent respec-

tively, we see that the rank of the matrix (βih) is s. Let ω'h be the induced

forms of ωh on W. Then ω\ = Σ βih ω'h ) therefore if ω'h are linearly independent,
h

ω\ are also linearly independent, which shows that we can assume that ω, are

all defined over k.

Next we show that we may assume r = 2. Let r > 2 and let ωί, . . . , ω's
be not linearly independent. As ω/ is defined over k, ω\ is defined over k(uo,

14) §ee S. Koizumi [6].
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uu - - , un), therefore there must be a linear equation

Σ oci Cύ'i = 0

with oci (not all zero) constants defined over k(uQy . . . , un) namely there is

a differential form J2 = Σtf, ω, on F which is finite at every simple point of V

and induces 0 on W. Now let (v0, . . . , vn) be a set of independent variables

over k(uo, . . . , Un) and consider the intersection F r i ) of F and the hyperplane

tfo-Xi-f 01-XΊ + . . . +vnXn = 0 and the intersection PFα) of PF and the (generic)

hyperplane V0X0 + V1X1+ . . . +vnXn = 0.

Vr

Then W{\) is a simple subvariety of V and as Ω induces 0 on W, 42 induces on

P7(D also 0. Since £ is defined over ft(«0, . . . , « » ) and F α ) is a generic hyper-

plane section over kiuv, . . . , un) of F, the form i?(1) induced by Ω on F ( D is

not 0, and is finite at every simple point of F α ) and closed. But as Ω induces

on W(i) 0, Ω(i) must induces 0 on Ww which is a generic hyperplane section

of F(i). Therefore by induction we can assume r = 2.

Next we consider the generic projection. We choose 4(w + l ) elements vf\

Vi\ Vi\ vf\ (f = 0, . . . , n) independent over k and 4 elements Wo, Wu Wz, u>8

independent over k((vi0)), . . . , (v\f})) which satisfy the equations

= Ui

i = 0, 1, . . . , n.

Let (yoy yu . . . , yn) he homogeneous coordinates of a generic point of F 2 over

k(U0)), . . . , («;,-)) and put y0 = ̂ °Vo + v[°)y1 + . . . + v{

n

0)yn, . . . , ys = v{

0

Z)y0

+ . . . -f v{n]yn and consider the projective variety F 2 in Ls with the generic

point over k{{v(p)y . . . , (z#;)), whose homogeneous coordinates are (̂ o, yu 3 ,̂

y3). This variety is birationally equivalent to F 2 and by this birational corre-

spondence the generic hyperplane section FF1, the intersection of F and the hy-

perplane w0X)+ . . . -\-UnXn-0, correspond to the generic hyperplane section

W1, the intersection of F 2 and the hyperplane ^0^0 + ̂ 1X1 + ̂ 2X2 + ̂ 3^3 = 0,

and furthermore W1 and W1 are birationally equivalent. Therefore if Ω induce^
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0 on W, Ω also induces 0 on W. Considering the non-homogeneous coordinates

(1, x, y, z) = (yo/yo, y'ί/yo, ^/yo, yJyo)

we get

WQ + uhx + my + z^z = 0.

Now, since V2 is of dimension 2 in L3, its equation in non-homogeneous

coordinates is

F(x, y, z)=Q

whose order we assume to be m. Let us consider a differential form

ω = Rdx + Sdy

which is finite at every simple point of V. Then we get

Q A ^ _ B n AF'x+BF'y

where A, B> C are subadjoint polynomials in (x, y, z) of degree ^ m — 2 and

we have a relation

(1) y

where D is a polynomial of degree = m — 3.

LEMMA. (Castelnuovo)15) Let f(X, Y, Z)—0 be an irreducible plane curve

of degree m without singular points except nodes. Let

ivhere A, B, C are forms in X, Y, Z of degree I. Then if I < m — 1, they must

be identically zero.

Proof. Let H e a field containing the coefficients of /, A, B and C and

let uo, ui, U2 be a set of independent elements over k. Let D be the curve de-

fined by uofx + uifΎ H- u<ιfz — 0. Then by the classical Bertini's theorem, D has

no multiple points except the points which satisfy fχ=fΎ=fz = 0. But since

the1 latter points are nodes of / = 0 , they must be the simple points of D.

Therefore D has no multiple points and therefore D is an irreducible curve of

degree m-1.

F, Severi [10].
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Let Pi, . . . , Pd be all nodes of / = 0 and denote the cycle

— Ή. Let ξ be an adjoint curve of degree m — 3 for / = 0 (a curve passing

through Pί, . . . , Prf) and let K= D ξ -H be cycle on L2, where D ? is the

intersection of D and ?. Z) ? and iΓ are positive divisors on Zλ Since D is

withought singularity all curves of degree m — 3 cut out on D a complete linear

series containing D ξ which is non-special. The number of linearly independent

curves of degree m - 3 in L2 is - ^ —^ , and that of linearly inde-

pendent curves of degree m-3 passing Pu . . . , Pd, which is the genus of

/ = 0 , is —^ 2 ~ d, namely the dimension of the latter linear series

is equal to that of the former series minus the degree of H. Since the former

is non-special we get, by the Riemann-Roch theorem, or Brill-Noether's Reduc-

tion theorem, that the latter series, and hence K is non-special.

Now Suppose for a moment that there exists an adjoint curve -η of degree

m — 1 for / = 0, and a curve ψ of degree m — 2, such that φ D> G = y D — H.

Let φ D = G-\-S. Then S is positive and its degree is (m-l)(m-2)

( 1 U -x , , (m-l)(m- 4:) r ,^ (m-2)(m-3) Λ-U

- Km — Dim- I) +d= K genus of/> ^ There-

fore there is a curve ψ of degree m - 4 passing the points of S, namely ψ D

> S. Let ψ D = S+ T and let R be the intersection of a line and D. Then

(m-3)/?, G+H- (πι-l)R, G + S ~ (m-2)/?, S + Γ - (w-4)/?.

Therefore /Γ and T are linearly equivalent, but this is a contradiction, because

T is special since there is a curve of degree m — 4 ( = an adjoint curve of

( m - l ) - 3 for D) passing the points of T, on the other hand K is non-special.

Therefore there is no curve ψ of degree m — 2 such that φ D> G -y D

— i7, where ? is an adjoint curve of degree m — 1 for / — 0.

Now suppose

where A, Z? and C are forms of degree Km — 1, not all zero, say A ̂  0. Then

+ (MOC ~ u2A)f'z = 0.

The point of the intersection of D and /y = 0 which is not in H i.e. the point

which does not satisfy f'z = 0, must be contained in the curve UQC-U2A of

degree == m — 2 this is a contradiction.
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Let F(Yo, Yu Ϋ2, Yz) =0 be the homogeneous equation of V, and let / be

the maximum of the degrees of A, B and C. Then the degree of D is ^ / - 1 ,

and we get from (1)

where A, B and C are of degree / and D is of degree / - I , Since YoFψϋ

Fl = »fF, we get

(mA - FiDjFr, + (niB - F 2 D ) F F 2 + (mC - F 3 D ) F F 3 -

As F is a generic projection of normal variety, the intersection of V and Fo = 0

is an algebraic plane curve without singular points except nodes. From the

above lemma we see that mA and Y1D become equal if we put F o = 0 etc.,

therefore the homogeneous term of degree / of mA is equal to that of XD, etc.,

hence we get

A = xθ + Au B=yθ + Bu C = zθ + Cu D = mθ + Dι

where β is a homogeneous polynomial of degree / - I and Au Bu Ci are of

degree ^ / - 1 and A is of degree ^ / - 2. Now we see that if ω is further

closed, then A, £, C are polynomials of degree exactly m-2. For, suppose its

degree Km —2. From (1),

θ'z+Cίz,

Aχ + B'y + C'z- D= (3- m)θ + xθ'x + yθ'y + zθ'z+ (Alx + B[y + Cίz - A )

= (/ + 2 - m)θ + term of degree ^ / - 2

From above we get the following

LEMMA 10. Let ω = i?Λ + Sdy be a closed differential form on V, which is

A B
finite at every simple point of V. Then we get S= -^-> R= =τ- where A,

5 «r^ polynomials in (x, y, z) of degree exactly m - 2 .

Now we proceed to prove the theorem. Ω = Σ cu m may be expressible in

the following form
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• Ω = Σ r/ί ωh

(with some index set I) where ωπ are the closed differential forms, finite at

every simple point of F, defined over k((vi0)), . . . , (vf})) on F 2 and TH are

constant functions defined over k({vi0)), . . . , (#ί 3 ) ) , (u>ι)). Further we may

assume without loss of generality that γπ are monomials in WQ> WU W%, W% and

ωh * 0 for all h e I. Let ωA ̂ RhdxΛ- Shdy and let SΛ = ^ r ? Z?A = - -^r•

Then Ω = i?ώτ + Srfv = - - ^ - JAΓ + ~%-dy, where i? = *ΣrhRh, S = Σ T Λ S Λ and

A - Σ r ^ A/z, β = iLiϊhBh. Let (Λ;',y, z') be a (non-homogeneous) generic point

of Wx( = t h e intersection of F 2 and the generic hyperplane wo-XΌ + wiXi + MfeXs

+ ιc;βXα = 0) over k{{vT), . . . , U 3 ) ) , (w/)). The induced differential form fl'

of i? on W1 is by definition

5' = R'dx' + S'rfy = Σ n Rh dx1 + ΈrhS'h dy\

where R', Sf, Rh and S'u are the specialization of R, S, Rh and SH over the spe-

cialization (ΛΓ, y, z) -*. (xr, y , 2;) with respect to k((vT)y . . . , (t;ί 3 ) ) , («;,-)) re-

spectively. Since

we have

—^-) and (•—̂ -) are the specializations of -~ and --- respectively
r z' v t z ' r z rz

over (x, yy z) -• (JV', y, z') with respect to k{(v{

t

0)), . . . , (^ί 3 ) ) , (wi)). Moreover

a s Wo -}- Wι xf -f ^ 2 ^ ; + w>3 2' = 0

= 0.

Therefore

W i - \

dx'=
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Uh — W%

If we suppose i?' = 0, as / is a variable on W1 over k{(vf])y . . . , (z43)), O/)),

we get

voi - wz—1-) ~ R(1V2 - wz—r )' since the function
Fz ' Fz '

ig z e r o o n yγif t n e function D must be zero on W1 \ and E-
__ t x

m m~pf ^
+ W2B-{• W3C must be zero on FT, where A^^ΣiThAh, B — ̂ ΣΐhBhy C —

As l̂ F1 is a generic hyperplane section of F, the corresponding prime ideal

to W is generated by F and (u)0 + wiX-\-W2Y+wsZ),U) where we can assume

without loss of generality that F is of order m on Z. Since E is 0 on W> E

belongs to this ideal, namely if we replace Wo to — (WIXΛ-WΪY+wzZ) in E,

then E becomes a polynomial ~E which is divisible by F. From TA we choose

where v is the least number such that . . . wt appears in γπ and μ is the least

number such that . . . -u&wX appears in r/* Let the coefficients of W\~1IΌ\W\W\

in A be denoted by m. Then not all at = 0. The coefficient of w\Jrlw^lwl in

2? is

This polynomial is not zero since <n are zero or polynomials of degree m - 2

and not all Λ, = 0. Moreover the degree of this polynomial on Z is not greater

than m — 2, therefore this polynomial is not divisible by F, which is a contra-

diction.

16> See A. Seidenberg [9].
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Remark. An example shows that we can not omit the condition of charac-

teristic 0 in Theorem 7, but if the characteristic is greater than the square of

the degree of V, then the theorem holds.
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