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Abstract

Objective: To assess whether antibiotic duration (AD) and one-year antibiotic-free days (AFD) are associated with key in-hospital and post-
discharge outcomes among critically ill adults.

Design: Prospective observational study.
Setting: 611-bed, quaternary care academic medical center in the United States.
Patients: 126 critically ill adults (mean age 68.1 + 15.6 yr, 51.6% male, median APACHE II score 20.5 [IQR 15-25]); 71.4% met sepsis criteria.

Methods: Secondary infection was defined as >3 consecutive antibiotic days within a year after the index sepsis admission. Multivariate
analyses adjusted for age, APACHE II score, BMI, and glucocorticosteroid dose. Time-to-event analysis employed Cox proportional hazards
modeling; cumulative infection burden was assessed via nonparametric tests using normalized antibiotic exposure (AD as a proportion of days
alive).

Results: Within 30 days, longer AD correlated with increased hospital stay; each additional antibiotic day added ~0.93 hospital days
(P <0.001) in adjusted linear regression. AD did not predict one-year mortality (OR 1.01, P =0.739) or readmission (OR 1.01, P=0.771).
Normalized antibiotic exposure significantly differed by cumulative secondary infection episodes (P = 0.0033), with higher exposure among
patients experiencing two or more secondary infections (P=0.026 and P =0.036, respectively). Cox regression showed a significant
association between AD and time to first secondary infection (HR 1.10, 95% CI: 1.04-1.15, P = 0.001), indicating that longer AD predisposed
to secondary infection or recurrent antibiotic use.

Conclusions: Extended AD, in critically ill patients, prolongs hospitalization without reducing mortality or readmission rates. These findings
highlight the importance of robust antibiotic stewardship practices, where shorter, targeted regimens may minimize unintended
complications.

(Received 31 March 2025; accepted 10 May 2025)

Introduction operationalized secondary infection as receipt of >3 consecutive
antibiotic days post-index admission, differentiating empiric
short-course therapy from treatment of clinically suspected
infections.!>!* We do not presume that this cutoff defines an
optimal AD for any given pathogen; rather, it serves as a practical
tool for discerning short-term empiric treatment from courses
intended for active infection management. By evaluating long-

Sepsis remains a major global cause of morbidity and mortality, yet
its diagnosis is inherently clinical.! Current guidelines rely on the
Sequential Organ Failure Assessment (SOFA) score? to identify
sepsis-related organ dysfunction, though no definitive biomarker
exists. This diagnostic uncertainty drives empiric, broad-spectrum

antibiotic use due to demonstrated survival benefits of early . . . . ;
37 . L g term outcomes—including secondary infections, mortality, and
treatment. However, empirically initiated antibiotics are

. . o : . readmissions—this study informs best practices around antibiotic
frequently continued beyond clinical necessity, increasing the risk L . .
. . . . . T stewardship in intensive care units (ICUs).
of microbiome disruption and secondary infections.
Given these concerns, we hypothesized that prolonged
antibiotic exposure would increase secondary infection risk and  pethods

hospital resource utilization without mortality benefit. We
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Table 1. Patient demographics and outcomes

Parker Burrows et al.

Age (mean + SD) 68.1 + 16.2 68.1 + 14.2 1.00
Female (n, %) 43 (47.7%) 18 (50.0%) 0.82
Race (n, %)

White 80 (88.9%) 32 (88.9%) 0.31
African American 3 (3.3%) 3 (8.3%)

Asian, Indian American, or unknown 7 (7.8%) 1 (2.8%)

Body Mass Index (mean + SD) 34.0 £11.2 31.0 £9.0 0.12
Severity of illness

APACHE Il Score (mean = SD) 212 +7.1 19.6 + 6.6 0.26
SOFA Score (median, IQR) 7.0 (4.8, 10.3) 7.0 (5.0, 9.75) 0.45
Charlson Comorbidity Index (median, IQR) 5.0 (3.0, 7.3) 5.0 (2.25,6.75) 0.56
Patients receiving stress-dosed hydrocortisone > 8 h (n, %) 16 (17.8) 2 (5.6) 0.08
Daily hydrocortisone dose (mg) amongst recipients (median, IQR) 175 (128, 196) 142 (133,150) 0.20
Duration of hydrocortisone (days*) amongst recipients (median, IQR) 3(2.0,4.7) 2.0 (1.0, 4.0) 0.59

Laboratory Values

Leukocyte Count, x103/ul (median, IQR) 16.7 (12.2, 23.5) 10.7 (7.6,18.3) < 0.001
Lactic Acid (mg/dL) on admission (median, IQR) 3.0 (1.8, 4.9) 2.6 (1.6, 4.5) 0.04
Shock (vasopressors and lactate > 2) on admission (n, %) 44 (48.9%) 12 (33.3%) 0.11
Short-Term Outcomes

Total Proportion of Cohort developing secondary infections, defined by positive culture results (n, %) 12 (13.3%) 9 (25%) 0.12
Mean number of days between enrollment and secondary infection, defined by positive culture results 17.9 + 10.8 13.5+9.5 0.03
(mean + SD)

In-Hospital Mortality Rate (n, %) 16 (17.8%) 5 (13.9%) 0.60
30-Day Mortality Rate (n, %) 19 (21.1%) 5 (13.9%) 0.35
Hospital Length of Stay, days (median, IQR) 9.0 (5, 14.3) 9.0 (5.25,18.8) 0.37
30-day Zubrod/ECOG score (median, IQR) 2.4 (1,4) 1.8 (1,3) 0.08
30-Day Hospital Readmission amongst survivors (n, %)

90-Day Mortality Rate (n, %) 13 (14.4%) 3 (8.3%) 0.35
Hospital Discharge Disposition, among in-hospital survivors 25 (27.8%) 6 (16.7%) 0.19
—home (n, %) 39 (43.3%) 12 (36.1%)

—skilled nursing facility (n, %) 27 (30.0%) 15 (41.7%)

—long-term acute care hospital (LTACH) (n, %) 4 (4.4%) 1 (2.8%)

Long-Term Outcomes

1-Year All-cause Mortality Rate (n, %) 34 (37.8%) 13 (36.1%) 0.86
1-Year Zubrod/ECOG score (median, IQR) 1.8 (0,4) 1.2 (0,1) 0.24
Place of patient location at 1-year survival

—home (n, %) 54 (60.0%) 16 (44.4%) 0.11
—skilled nursing facility (n, %) 4(4.4%) 1(2.7%) 0.67
—long-term acute care hospital (LTACH) (n, %) 1 (1.1%) 0 (0.0%) 0.52

Critically ill adults (>18 yr) admitted between April 2023 and July
2024, screened via a Modified Early Warning Score-based
algorithm and meeting Sepsis-3 criteria within 48 hours of
critical illness onset, were included.'*'> Written informed
consent was obtained from patients with decision-making
capacity or from legally authorized representatives before
enrollment.
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Study population

The study was performed at a quaternary care, academic center
in central Pennsylvania. This 611-bed hospital is a level 1
trauma center, managing a patient population with higher-
than-average complexity and acuity, as assessed by multi-
specialty case mix index. Critical illness was defined by
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vasopressor or ventilatory support requirement. Exclusion
criteria included comfort-measures-only care, pregnancy, or
incomplete data.

Data collection

Demographics, clinical characteristics, antibiotic usage, and
outcomes were extracted from electronic health records (EHR).
Structured post-discharge interviews verified follow-up data.
AD, AFD, and normalized antibiotic exposure (antibiotic days/
days alive, capped at 365) were calculated. Covariates included
age, body mass index (BMI), APACHE II score,'® and
glucocorticosteroid use. Functional status was assessed via
Zubrod/ECOG scores. Severity metrics such as SOFA and
APACHE 1II were generated using standardized scoring
algorithms. The Zubrod/ECOG Performance Status score,
ranging from 0 (fully active) to 5 (death), was collected as a
measure of functional status.

Outcome definitions

Secondary infection was defined as receipt of >3 consecutive days
of antibiotics following the index sepsis admission. This pragmatic
threshold was used to distinguish likely infection-driven treatment
from brief empiric coverage. Microbiologic confirmation was not
required, reflecting real-world variability in documentation. While
no consensus cutoff exists, our approach aligns with prior work'?
and is intended to identify cases with strong clinical suspicion of
infection.

Secondary outcomes included one-year bacteremia, other
positive cultures, hospital readmissions, all-cause mortality, and
discharge disposition. Multi-drug-resistant organisms (MDROs)
were noted. Outcomes were monitored through EHR review and
structured phone interviews at 30 days, 3 months, 6 months, and
12 months following study enrollment.

Statistical analysis

Categorical variables were analyzed via Chi-square or Fisher’s
tests, continuous variables via t-tests or nonparametric alter-
natives. Logistic regression assessed AD and AFD impacts on
outcomes, adjusting for confounders. Time-to-event analyses
employed Cox proportional hazards models, with death treated
as a censoring event at 365 days. Nonparametric tests assessed
cumulative infection burden. Adjusted odds ratios (OR) and
hazard ratios (HR) with 95% confidence intervals (CI) were
reported.

Results
Cohort characteristics

A total of 126 critically ill adults were included, of whom 90
(71.4%) met sepsis criteria and 36 (28.6%) were classified as non-
septic. Table 1 summarizes demographic and clinical character-
istics, demonstrating no significant differences between septic and
non-septic groups in mean age, sex distribution, race, body mass
index, or severity-of-illness scores. Septic patients had significantly
higher leukocyte counts (median 16.7 X10%/pL vs 10.7 X10%/pL,
P <0.001) and slightly elevated lactate levels (median 3.0 mg/dL vs
2.6 mg/dL, P=0.04). Although more septic patients required
vasopressors at admission, this difference was not statistically
significant (48.9% vs 33.3%, P=0.11).
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Table 2. Infectious etiology and sources

Critically I, Critically I,
Septic Non-Septic P-value

Etiology of Secondary N=14 N=9 0.48
infections < 30 d
Gram-positive 2 (14.3%) 3 (33.3%)
Gram-negative 2 (14.3%) 2 (22.2%)
Fungal 2 (14.3%) 0 (0.0%)
Viral 1 (7.1%) 1 (11.1%)
Mixed 4 (28.6%) 3 (33.3%)
Clinical Diagnosis of Infection 3 (21.4%) 0 (0.0%)
only
Etiology of Secondary N=32 N=7 0.40
infections 31-365 d
Gram-positive 11 (34.4%) 2 (28.6%)
Gram-negative 7 (21.9%) 4 (57.1%)
Fungal 0 (0.0%) 0 (0.0%)
Viral 2 (6.3%) 0 (0.0%)
Mixed 3 (9.4%) 1 (14.3%)
Clinical Diagnosis of Infection 9 (20.6%) 0 (0.0%)
only
Source of Secondary N=11 N=10 0.70
infections <30 d
Pneumonia 3 (27.3%) 4 (40.0%)
Abdominal Infection 1(9.1%) 1 (10.0%)
Urinary tract infection 1(9.1%) 2 (20.0%)
Skin or Soft Tissue Infection 6 (54.5%) 3 (30.0%)
Other 0 (0.0%) 0 (0.0%)
Source of Secondary N=27 N=6 0.37
infections 31-365 d
Pneumonia 4 (14.8%) 2 (33.3%)
Abdominal Infection 0 (0.0%) 0 (0.0%)
Urinary tract infection 12 (44.4%) 1 (16.7%)
Skin or Soft Tissue Infection 11 (40.7%) 3 (50.0%)
Other 0 (0.0%) 0 (0.0%)

Infectious etiology

Primary infections among septic patients included gram-positive
(30.0%), gram-negative (33.3%), mixed (16.7%), and fungal or viral
etiologies (7.7%). Table 2 summarizes infectious etiologies for
secondary infections, showing that secondary infections varied
broadly, including respiratory, urinary, and soft-tissue infections.
Supplementary Table 1 enumerates the infectious etiologies and
their corresponding sources.

Short-term outcomes

Within 30 days, secondary infections occurred in 13.3% of septic
and 25.0% of non-septic patients (P=0.11)(Table 1). Logistic
regression did not demonstrate a significant relationship between
AFD and 30-day secondary infection (OR 0.97, 95% CI 0.91-1.02,
P =10.232). Attempts to model in-hospital mortality were limited
by perfect prediction (no deaths occurred in specific AFD
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Figure 1. Relationship between the duration of antibiotic use during the index hospitalization and clinical outcomes. (A) Distribution of index hospital length of stay (LOS) among the study
cohort. The x-axis represents LOS in days, while the y-axis shows the frequency of patients within each bin. Descriptive statistics include mean LOS (11.9 d), median (9 d), and standard
deviation (10.1d). (B) Adjusted relationship between antibiotic duration (AD) and hospital LOS. Scatterplot of observed hospital LOS by AD during index hospitalization (blue points). The red
line represents the adjusted predicted LOS derived from a multivariable linear regression model that included AD, age, APACHE Il score, steroid dose, and BMI. Predicted values were
calculated while holding all covariates at their mean. Each additional antibiotic day was associated with an approximate 0.93-day increase in hospital LOS (P < 0.001). (C) Linear regression
model coefficients for predictors of hospital length-of-stay. Each point represents the adjusted regression coefficient (B) for a covariate included in the multivariable linear model of hospital
LOS. Horizontal lines represent 95% confidence intervals. A positive coefficient indicates that higher values of the predictor are associated with longer LOS. Notably, AD during index
hospitalization was the strongest predictor, with each additional day of antibiotics associated with nearly one additional hospital day. The red dashed line indicates the null effect (3 = 0).
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Figure 2. One-year survival by antibiotic duration during index hospitalization. This Kaplan-Meier survival curve illustrates the probability of one-year survival stratified by
antibiotic duration (AD) categories during the index hospitalization. The shaded regions represent 95% confidence intervals. Patients who survived beyond one year were
censored at 365 days. In the long-duration group (>8 d), 69 patients were included, with 24 deaths at one year. In the short-duration group (4-7 d), 36 patients were included, of
whom 17 died within one year. In the ultra-short group (<3 d), 21 patients were included, with 6 deaths at one year. There was no significant difference between AD and mortality,

after factoring age, APACHE Il score, gender and glucocorticosteroid dose as co-variates.

Table 3. Adjusted odds ratios (95% Cl) for effect of 28-day antibiotic-free days
(AFD) on key long-term outcomes

Outcome Adjusted OR per day (95% Cl) P-value
Secondary infection (30 d) 0.97 (0.91-1.02) 0.232
Secondary infection (365 d) 1.05 (0.98- 1.12) 0.184
One-year mortality 1.0 (0.95-1.06) 0.992
One-year readmission 0.99 (0.94-1.04) 0.771
One-year bacteremia 1.06 (0.98-1.15) 0.142

categories), a recognized limitation of logistic regression with small
sample sizes.!”

Multidrug-resistant organisms (MDROs) were identified in
66.6% (n = 8) of septic patients with secondary infections within
30 days and in 48% (n = 12) occurring between 30 days and one
year. In non-septic patients, these rates were 33.3% (n=26)
within 30 days and 60% (n = 6) between 30 days and one year.
Median hospital length of stay (LOS) was 9.0 days (IQR 5-14.3)
(Table 1 and Figure 1A), significantly associated with AD: in
adjusted linear regression, each additional antibiotic day was
associated with a 0.93-day increase in hospital stay (P < 0.001),
independent of age, APACHE II, BMI, and steroid use (Figure 1B
and 1C).
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Long-term outcomes

Kaplan-Meier survival curves (Figure 2) showed no significant
differences in one-year survival among patients with long (>8 d),
short (4-7 d), or ultra-short (<3 d) antibiotic courses (log-rank
P>0.05). Multivariate analyses confirmed that AD did not
significantly predict key one-year outcomes (Table 3).

Antibiotic duration and secondary infections

As expected, patients with two or more secondary infections
demonstrated markedly higher cumulative antibiotic exposure
compared to those with only one episode (P=0.026 and
P =0.036, respectively; Figure 3). This result persisted even after
adjusting for age, APACHE II score, BMI, and corticosteroid
dose. These findings contrast with our logistic regression models,
which showed no significant association between 28-day AFD
and the odds of developing a secondary infection at one year (OR
1.05, 95% CI 0.98-1.12, P=0.184, Table 3). This discrepancy
suggests that cumulative exposure to antibiotics may contribute
to infection risk in a dose-dependent manner not captured by
binary logistic modeling. Importantly, it emphasizes the value of
normalized, continuous metrics in detecting graded clinical
relationships that may be masked in threshold-based binary
outcome analyses.

Cox regression analysis showed a significant relationship AD
and time to first secondary infection (HR 1.10, 95% CI 1.04-1.15,
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Figure 3. Normalized antibiotic exposure (antibiotic days divided by days alive) stratified by the number of secondary infection episodes within one year. Boxes represent the
interquartile range (IQR) with medians; whiskers extend 1.5 times the IQR. Individual patient data points are overlaid as black dots, and the sample size for each group (n) is shown
above each box. Open circle signifies and outlier. Group differences were assessed using the Kruskal-Wallis test (H = 13.72, P =0.0033), with pairwise comparisons evaluated by
Dunn’s test with Bonferroni correction. Statistically significant comparisons are annotated on the plot. These results diverge from logistic regression analyses using binary
secondary infection outcomes, which failed to detect a significant relationship with early antibiotic-free days (AFD). The contrast highlights the added value of continuous, time-
normalized exposure metrics in capturing dose-dependent risk gradients for infection recurrence.

P =0.001). This suggests that prolonged antibiotic use is associated
with earlier onset of secondary infections, in addition to elevating
cumulative infection risk.

Subgroup analyses

Sepsis status was not independently associated with short- or long-
term mortality, readmission, or bacteremia risk. While an initial
unadjusted analysis suggested an inverse association between 28-
day AFD and subsequent bloodstream infections, this relationship
was attenuated and lost statistical significance after adjustment.
Covariates may reflect underlying patient frailty or immune status
and could confound infection risk. Importantly, normalized
antibiotic exposure remained independently associated with an
increased risk of secondary infections (defined by positive cultures)
at one year, suggesting that prolonged antibiotic exposure may
drive microbial dysbiosis or antimicrobial resistance. Notably, the
microbiologic etiology of the index infection—including gram-
positive, gram-negative, fungal, or viral sources—did not
significantly influence either AD or the risk of subsequent
infections.

Discussion

In this prospective cohort study of critically ill adults, we found that
AD during the index hospitalization was significantly associated
with prolonged hospital LOS and increased likelihood of
developing secondary infections. However, the strength of these
associations varied based on the modeling approach used. While
logistic regression analyses using binary AFD measures did not
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consistently yield statistically significant results for secondary
infections, time-to-event models and normalized exposure
analyses did reveal significant dose-dependent relationships.

These findings suggest that modeling approaches which
account for timing and intensity of antibiotic exposure—such as
Cox proportional hazards models or normalized antibiotic
duration (ie, proportion of days alive on antibiotics)—may be
more sensitive to uncovering the adverse effects of prolonged
antibiotic use than simpler binary measures. The observed
attenuation of associations in traditional regression models
underscores the potential limitations of relying solely on
cumulative antibiotic-free days, which do not capture nuanced
exposure patterns or account for survival time.

Moreover, the divergence in findings between models high-
lights the importance of method selection when evaluating
longitudinal antibiotic effects. Whereas logistic models assess
the probability of an outcome without accounting for timing,
survival analysis incorporates both the occurrence and timing of
events. Similarly, normalized AD controls for variation in survival
time, offering a more accurate assessment of relative antibiotic
exposure, especially among patients who may have died early or
were discharged quickly.

Thus, our study not only identifies a clinically meaningful
relationship between prolonged antibiotic use and downstream
infectious risks but also emphasizes the importance of aligning
exposure metrics with appropriate analytical frameworks.
Antibiotic stewardship efforts in critical care should consider
adopting time- and exposure-adjusted metrics when evaluating the
safety and efficacy of antibiotic protocols.
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Prior studies, including the BALANCE and SAFE trials, support
shorter antibiotic regimens for bloodstream infections and
community-acquired pneumonia, demonstrating non-inferiority
compared to longer courses.'®2° Meta-analyses of community-
acquired pneumonia!®?!-2* and other infections?®=* further
support that antibiotic regimens of seven days or fewer are safe
and effective for many clinical scenarios. More targeted inves-
tigations focused on pathogens such as Staphylococcus aureus,
vancomycin-resistant Enterococci, and Pseudomonas aeruginosa
corroborate that reduced durations do not necessarily worsen
survival or readmission rates.*!~>* Moreover, some studies have
demonstrated that prolonged AD are actually harmful® and could
increase mortality.® Our findings align with these studies,
underscoring the benefits of abbreviated AD across various
infectious etiologies in critically ill populations.

The limitations of our study include its single-center design,
relatively small sample size, and reliance on clinical rather than
microbiologically confirmed definitions of secondary infections.
These factors may limit the generalizability and precision of our
results. Furthermore, our definition of secondary infection (>3 d of
antibiotics) is a pragmatic proxy for a treated infection, based on
real-word practice of empiric antibiotic coverage until infection is
ruled out. We recognize that without standardized microbiological
criteria or adjudication, some patients on prolonged empiric
therapy may be misclassified, and conversely short-course
infections might be missed. Nonetheless, the robust associations
observed between prolonged antibiotic use and increased hospital
length-of-stay, coupled with higher cumulative infection burden,
provide important clinical insights.

Conclusion

In this prospective cohort study of critically ill adults, prolonged
AD during the index hospitalization was significantly associated
with longer hospital stays and earlier onset of secondary infections,
but did not improve one-year survival or readmission rates.
Importantly, while traditional logistic regression using 28-day
AFD failed to detect a significant association with secondary
infections, time-to-event and normalized exposure models
revealed strong dose-dependent relationships. These findings
suggest that cumulative and time-adjusted antibiotic exposure
metrics may more sensitively capture the risks of prolonged
antibiotic use, including microbial dysbiosis and recurrent
infections. Our results underscore the importance of antibiotic
stewardship in critical care, emphasizing that shorter, targeted
antibiotic courses may minimize unintended harm without
compromising long-term outcomes.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/ash.2025.10054.
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