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ON THE COHEN-MACAULAY PROPERTY OF Alpt, p >+’
FOR SPACE MONOMIAL CURVES

YUKIO NAKAMURA *

1. Introduection

Let A= k[X, Y, Z] and k[ U] be polynomial rings over a field k and let I,
m and # be positive integers with gcd(l, m, #n) = 1. We denote by p the defining
ideal of the space monomial curve x = ul, y=u", and z= u". In other words, p
is the kernel of the k-algebra homomorphism ¢ : A— k[ U] defined by ¢ (X) =
U', p(Y) = U" and ¢(Z) = U”". Let R,(p) be a symbolic Rees algebra of p, i.e.,
R, = Zizo‘i)(i)ti, where ¢ is an indeterminate over A, and let S be an
A-subalgebra of R, (p) generated by pt and p*t ie, S = Alpt, pPt’]. In this
paper we are mainly interested in the Cohen-Macaulay or Gorenstein property of S.
The research on the ring-theoretic property of S was begun by Herzog and
Ulrich {7], who show among many interesting results that, if p is self-linked, that
is p = (x,, 1,) : p for some x;, X, € p, then S is a Gorenstein ring. When p is not
self-linked, however, there are examples where S is Cohen-Macaulay but not
Gorenstein (cf. [7, Example 2.4]), and examples where S is not Cohen-Macaulay
(cf. [4, Example (3.8)]). The principal aim of this paper is to determine exactly
when S is Cohen-Macaulay. To state our main result, we assume that p is not a
complete intersection and choose a matrix M of the form
a by c
M= [X Y™ z% ]
Y" 7% x®

(here a;, b; and c, are positive integers) so that the ideal p is generated by the 2
by 2 minors of M. We note that this choice is possible, see [5]. Then as was
shown in [7, Corollary 1.10], p is not self-linked if and only if either a, > a,, b,
> b, and ¢ > ¢, or a; < @,, b, < b, and ¢, < ¢,. If for simplicity we assume that

a, > a, b, > b, and ¢; > c,, then our main result can be stated as follows.
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THEOREM 1.1. With the above notation the following two conditions are equiva-
lent.

(2)

(1) S = Alpt, p®t°] is a Cohen-Macaulay ring.
(2) (@, — 2a,) (b, — 2by) (¢, — 2¢,) =0

When this is the case, the Cohen- Macaulay type of S is equal to three.

It follows from this theorem that S is never a Gorenstein ring, unless p is
either a complete intersection or a self-linked ideal. Goto, Nishida and Shimoda
have discovered that condition (2) in Theorem 1.1 implies condition (1) (cf. [4,
Theorem (3.1)]). Thus our contribution is to show that condition (2) is also neces-
sary for S to be a Cohen-Macaulay ring. We shall prove Theorem 1.1 in the next
section.

In section 3 we shall study certain projective space monomial curves. Let
B=k[X,Y,Z, W] and k[U, V] be polynomial rings over k and let @ : B—
k[U, V] be the k-algebra homomorphism defined by @ (X) = U’, @ (V) =
U"V'™ &) = U'V"™" and O(W) = V' where | > m, | > n and m # n. Let
P = Ker @ and let T = B[Pt, P®t*] be a B-subalgebra of R,(P). We shall also
discuss the Cohen-Macaulay property of T and we get a result which is a projec-
tive analogy of Theorem 1.1 (see Theorem 3.7). The proof and some corollaries
will be given in section 3.

2. Proof of Theorem 1.1

Let A=k[X,Y, Z] and k[U] be polynomial rings over a field k. Let
¢ :A— k[U] be the k-algebra homomorphism defined by ¢ (X) = U’, ¢ (¥) =
U™ and ¢(Z) = U”, where I, m, n are positive integers with gcd(l, m, n) = 1.
We denote Ker ¢ by p (I, m, n), then as is well-known, unless p (I, m, n) is a
complete intersection, p (I, m, n) is generated by the maximal minors of a matrix
M of the form

Xal Ybl ch
M= [
Y z°¢ x*
with a,, a,, b,, b,, ¢;, and ¢, positive integers (cf. [5]).
Throughout this section we assume that p = p(l, m, n) is not a complete in-
tersection. The purpose is to investigate the ring S = A[pt, pmtz]. To begin with

we put
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el — Zc1+cz _ )((zzyb1 ez — Xa1+a2 _ YbZch and e — Yb,+l)2 _ XaZZc2
(hence p = (e,, €, €;)A) and

a = min{a,, a,}, a, = max{a, — a,, 0}, a} = max{0, a, — a,},
b = min{b,, b,}, b, = max{b, — b,, 0}, b; = max{0, b, — b,},
¢ = minfc, @,}, ¢; = max{c, — ¢,, 0}, ¢; = max{0, ¢, — ¢,}.

Then we have the following

LemMa 2.1 ([3], [10], [12)). There exists an element A of p° such that

XA —Y"Z% + Y"Z %0, = 0,
Y'A — X®Z%; + X“Z%,e, = 0,
Z°4 — X®Y"el + X®Y e, = 0,

and we have p© = p* + (4).
Proof. See [3, Proposition 2.4, [3, Corollary 2.5], or {10, Lemma 2.3]. O

Let R = A[T,, T,, T;, T,] and A[f] be polynomial rings and let ¢ : R — A[¢]
be the A-algebra homomorphism such that ¢(T,) = et for ¢=1,2,3, and
o(T,) = At’. Then J = Ker ¢ is a prime ideal in R with ht, / = 3, and contains
the following five elements

fi = X“T,+ Y"T, + Z°T,,
f, = Y"T, + Z°T, + X“T,,
g = X°T, — Y"ZST: + Y5Z5T\T,,
g, = Y'T, — XSZ°T? + X“ZT,T,
g, = Z°T, — X“Y"T! + X“Y"T,T,.

We put I = (£, f,, &1, &, &)R. These fi, f,, &1, &, & are pfaffians with degree
four in the skew symmetric matrix.

0 ZST,  X®T, Y"T, T,
~Z5T, 0 Y’ - X° Z°T,
- X571, -Y 0 A
- Y"1, X -~z 0 Y™,

- T, —2Z°T, —X“T, —Y"T, O

Since AlLT,, T,, T,1/(f, f,) = R(p) (the Rees algebra of p), that is an integra do-
main (cf. [14, Theorem 3.6]), we get that f,, f,, and g, forms an R-regular sequ-
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ence. Hence by [1, Theorem 2.1] we have the following
LEmma 2.2 ([4, Lemma (3.2)], [7]). R/I is a Govenstein ving of dimension four.

We say that p is self-linked if there exist elements x;, Z, in p such that p =
(z,, x,) : p. In [7, Corollary 1.10] it is proved on the local ring A = [[X, ¥, Z]]
that conditions (1) and (2) of the following lemma are equivalent. But we need the
equivalence of these on A = k[X, Y, Z].

LeEmMA 2.3 ([7, Corollary1.10]). The following conditions ave equivalent.
(1) p is not a self-linked ideal.
(2) The matrix M satisfies one of the following conditions.

(@) a, > a,, b, > b, and ¢, > ¢,.
(b) a, < a,, by < b, and ¢; < c,.

Proof. 1f p = I,(M) is self-linked, then so is pA = I,(M)A. By [7, Corollary
1.10] we have that condition (2) implies condition (1).

Next we assume that condition (2) is not satisfied. After elementary row and
column operations on M, we may assume that the components of the first column
of M are part of a minimal system of generators of I,(M). So we suppose @, < a,,
b, = b, and construct a 2 by 3 matrix

Ybl—b2 Xaz—al 1
N=M| o 1 0
1 0 0
Then the matrix obtained by deleting the last column of N is symmetric and

p = L(N). We have by [15, Theorem 2.1] that p is self-linked. OJ

Let m = (X, Y, Z)R. Observing the generators f;, fo, &1, &2 &5 of I, we see
by Lemma 2.3 that p is not self-linked if and only if / € m. Therefore we have by
the lemma stated below that p is self-linked if and only if I = J. Although the fol-
lowing lemma is proved in (4], we show the proof for the completeness of this pap-
er.

LemmA 2.4 ([4, Lemma 3.3)). Assp R/IC {J, m} and IR, = JR,.

Proof. By Lemma 2.2, we have J € Mingy R/I = Assgz R/1. Choose § €
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X% Y, Z°)A\ U qepsspmom @ and write &= 3,X°+ 2,Y’ + A,Z°, where
A; €A We put g = A,8, + 2,8, + 2,4, then g = &T, — n with n € A([T}, T,
T, and (f, f,, T, — n/E)RI1/€] < IR[1/& < JR[1/€]. Note that A[T,, T,,
T,1/(f,, f,) is an integral domain of dimension four and so (f;, f,, T, — n/&) *

RI[1/&] is a prime ideal in R[1/&] of height three. Therefore I R[1/&] = JRI[1/
£] and this implies the assertions of Lemma 2.4. O

Here we note that, if p is not self-linked, then we have a primary decomposi-
tion of I of the form I = J N @, where @ is an m-primary ideal.

Let M= (X,Y,Z, T, T, T, TDR. The invariant dim,Exts (S/9MS, S)
with respect to S, we denote by r(S), is called Cohen-Macaulay type of S. It is
known that r(S) = us(K), where K is the canonical module of S and g ( )
denotes the minimal number of generators (cf. [6]). The following proposition is the
key in our proof of Theorem 1.1.

ProprosITION 2.5.  Suppose that p is not a self-linked ideal. Then the following
conditions are equivalent.

(1) S = Alpt, p*#] is a Cohen-Macaulay ring.

(2) IR, N R= (X% Y® Z)R for some a, B, 7 = 1.
When this is the case, r(S) = 3.

Proof. Let I =] N @ be the primary decomposition of I, where @ is an
m-primary ideal. Note that[/:,J] = @ and [ :; @ =/, and we have by
19, Proposition 3.1] that S = R/J is a Cohen-Macaulay ring if and only if R/ @
is a Cohen-Macaulay ring. Thus condition (2) implies condition (1). Now Ky =
Homg,, (R/]J, R/D = I :xJ1/I=Q/I as R-modules and I, (Q/I+ MQ)
= [.(Q/MEQ) = 3. Hence we get r(S) = 3.

Next we assume assertion (1), then R/ @ is a Cohen-Macaulay ring. We may
assume that @, > a,, b,> b,, and ¢, > ¢, by Lemma 2.3. We put positive integers
a = min{a,, a,} , B = min{b,, b,} , and ¥ = minf{c,, ¢}. @ =IR_ N R is con-
tained in (X%, Y%, Z)R, since (X%, Y®, Z')R is an m-primary ideal and con-
tains I. We shall show the opposite inclusion. T}, T, T3, T, is a system of para-
meters of (R/Q g and Ty, T,, T;, T, forms an (R/Q)g-regular sequence,
because rad (Q + (T, Ty, T;, T,)R) = M. Thus we have (T, T,, T, T,)Ryp N
Qp = (T}, T,, Ty, T,) = Qg and this implies (T}, T, T3, T)R N Q = (T3, T,
T,, T) Q.

We regard R as a graded ring with degX =degY=degZ =0, deg T,
=degT,=deg T, =1, and deg T, = 2. Then @ is a graded ideal, since [ is
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generated by homogeneous elements. We can choose homogeneous elements #u,,
Upy..., U, € Q N Ryand vy, v,,..., v, € Q N D, R, which generate Q. Then ¢
= (4, #,,..., u)A is an ideal of A and each v, belongs to @ N (T}, T,, T3, T)R
=(T, T, T, T,)Q and hence @ =qR + (T, T,, T,, T,) Q. By Nakayama's
lemma we have @ = ¢gR.

We have X*, Y™ Z € 4R, since f,=X"T,+ Y"T,+ Z“T, € qR.
Similarly

(X®, Y™, 2% X%, YV 7% X%, Y™ Z®A Cq.

Therefore (X%, Y*?, ZR gR = @, and thus we have @ = (X, Y%, ZDR, as
required. O

Theorem 1.1 means that the Cohen-Macaulay property of S is determined by
the matrix M. In order to prove this theorem, we assume that p is not self-linked
and a, > a,, b, > b,, and ¢; > ¢, We put positive integers a = min{a,, a,}, 8 =
min{b,, b,}, 7 = min{c,, ¢;}, and a matrix

X%T, X“°T\T, —X*“°T]

U=|~-y>*r: v"*1, VY™*L,T,
Z9TNT, —Z%T! Z%7T,

LEMMA 2.6. The inequality (@, — 2a,) (b, — 2b,) (¢, — 2¢,) = 0 holds if and
only if det U & m.
Proof. We have

det U= X °Y" 77T} + XYY" 2T’ T,T,
+ XEOy T T+ XY P 25T, TIT,,

hence det U € m if and only if one of the following conditions is satisfied.

(1) Xaz—aYbZ—BZcz—r — 1’ (2) Xaa—asz—BZcrr — 1’
(3) X&oyhPz T =1, (4) X%y =1,

By the definition of &, 8, 7, condition (1) is equivalent to saying that @, < a,,
b, < b;, and ¢, < ¢, Further by the definition of a;, b;, ¢, we have that condition
(1) and the following condition (1) are equivalent.

(1Y @, — 2a,>0, b, — 2b,> 0, and ¢, — 2¢, > 0.
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Similarly (2), (3), (4) are equivalent to the following conditions (2), (3), (4), re-
spectively.

2Y a,— 2a,<0, b, —2b, 20, and ¢, — 2¢, < 0.
3Y a,—2a, <0, b, — 2b, <0, and ¢, — 2¢, =2 0.
4y a,— 2a,=0, b, — 2b, <0, and ¢; — 2¢, < 0.

This implies that the inequality (@, — 2a,) (b, — 2b,) (¢, — 2¢,) = 0 holds. O

Proof of Theorem 1.1. By Proposition 2.5 and Lemma 2.6 it is sufficient to
prove that det U € m if and only if IR, = (X7, ) A JR,. Note that by
Nakayama’s lemma IR = (X, Y?, Z)R,, if and only if I® K = (X*, Y?,
Z") Qi K, where K = R_/mR,_ the residue field of m. We put a matrix

X000, X*0T, XUTUT, X%\ T, — X%°T?
V=1|y"*r, v*f1, — Y17 v"°1, Y"’L,T, |,
Zo7T, Z°'T, Z%TT T, —Z%TTI  Z°T,
then
[fl’ fz: gl’ gzy g3] = [Xa’ YH) ZT]V

We denote the i-th column vector of V by v, We have v, € mR® and T,v, = Ty,
+ Ty, + Ty, We have IQ, K= (g, g, &) ®; K, since [g,, &, g = [X7,
Y2, Z1U and U= [vs, v,, v . Therefore det U€m S (g, g,, &) ® K =
XY, 2N R, Ko I®, K= (X% Y° Z") ®, K. O

ExampLE 2.7 Let

p=p’+2m+2,n+2n+1,n+n+1), where n>2,
p,=pw’, n"+ 1,0 +n+1), where n>=3,
po=p*+n+1, 2" +2n—1,20° —1), where n>3.

(1) (|4, Example (3.7)]) S is a Cohen-Macaulay ring of r(S) = 3 for p = p, or
b= D
(2) S is not a Cohen-Macaulay ring for p = p,.

Proof. The prime ideals p,, p,, and p; are respectively generated by the max-
imal minors of the matrices

[Xn Yn Zn+1] [Xn Yn Zn—1] ind [Xn Yn Zn ]
y z x1'ly z X Yy 7z x"!
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Since each p; is not self-linked, by Theorem 1.1 we get conclusions (1) and (2). [J

3. The projective cases

In this section we study a projective analogy of Theorem 1.1. For this
purpose we need preliminaries, which are arguments on relations between
non-homogeneous and homogeneous elements (cf. [16, Chap. VII §5]).

Let A= kl[X,, X,,...,X,] and B=klY,, Y,,..., Y,] be polynomial rings.
We regard A and B as graded rings with the grading

n,=degX,=degY; for 1=12,...,n and 7n,=degl,,

where 1, > 0 and 7, divides »; for any i (i = 1,2,..., n). For any polynomial
g=2g(, Y,..., ) in B, we associate the polynomial iy () in A defined by

iv,(@ = g1, X, X,,..., X,).

Then iyo :B— A is a k-algebra homomorphism.
Conversely for any non-zero polynomial f = f(X,, X,,..., X,) in A, we
define its homogenized polynomial hf in B as follows:

ST S A)

Yocl Yo‘zn
where {; = 1,/n,. Note that iyo(hf) = f for 0 # f € A. When a is an ideal in 4,
we denote by "a the ideal in B which is generated by {*f| f € a}. We can check

that, if b is a graded ideal in B and if Y, is a B/b-regular element, then
b ="(iy,()A).

Lemma 3.1. Let C=k[U, U,,...,U,] and D=Kk[V, V,...,V,] be
polynomial rings. We regard D as a graded ving with deg V,, > 0, and let i, : D— C
be the k-algebra homomorphism as above. Suppose that @ : B— D is a homomorphism
of graded rings and that ¢ : A— C is a ving homomorphism such that @°iy = iy Q.
Then iy (Ker ®)A = Ker ¢.

Proof. Obviously, iy, (Ker ®)A C Ker ¢. Conversely, for any & € Ker ¢,
@ ("&) is a homogeneous element in D and @ (*£) € Ker iy, = (V, — 1)D. Hence
we have ®("€) = 0 and & = iy, ("8 € iy (Ker ®)A. O

The purpose of this section is to give an analogy of Theorem 1.1 for the
defining ideal P of a projective space monomial curve. The ideal P is given as
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follows:

Let B=k[X,Y,Z, W] and k[ U, V] be polynomial rings over a field k.
Let @ :B— k[U, V] be the k-algebra homomorphism such that @ (X) = U,
oY) =U"V'™, 0Z) = U"V"™ and ©(W) = V', where I, m, n are positive
integers with gcd (I, m, n) =1, 1> m, | > n, and with m ¥ n. We denote by
P(l, m, n) the prime ideal Ker @ in B. Then we have the following commutative
diagram with exact rows.

0 — PU,mmn — B=kIX,Y,Z W — kU, V]
l iy L,
0 — pU,mmn — A=kIX,Y,Z] — kU

where ¢ is the map we defined in section 2. Moreover we regard B and k[ U, V]
as graded rings with deg X =degY=degZ =degW =1 and deg U=degV
= 1. Then we get the following corollary of Lemma 3.1.

CoroLLARY 3.2. i, (P, m, m)A = p(, m, n).

For the prime ideal P = P(l, m, n), we assume that B/P is not a complete
intersection but a Cohen-Macaulay ring. Then P is generated by the maximal
minors of a matrix M’ of the form

XGIWdl Ybl ch
sz Zcz XaZWdZ ’
where a, + d,, b, b,, ¢, ¢,, and a, + d, are positive integers (cf. [8], [13]). We
put & = Z — XU Y, g, = XU WATR — YHZ% and e = YT -
X“W"Z% then P is generated by ¢,, &,, and €.
Corollary 3.2 means that p = p(l, m, n) is generated by iy (g,), iy (e,), and
iw(e;). Hence the matrices M corresponding to p (I, m, n) and M’ corresponding

to P(l, m, n) have the same exponents @, b;, and ¢, for i = 1,2,
We put

M =

d = min{d,, d,}, d, = max{d, — d,, 0}, d; = max{0, d, — d}},

as is in section 2. Then there exists an element I" of P and we have the follow-
ing three relations by the same method as is in Proposition 2.1.

XW'T = Y"Z%, + Y"Z%, = 0,
Y'T — X“W*Z%%, + X“W*Z %, =0,
Z°T— X“WhY"e + XBW Y "%,e, = 0.
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Moralés and Simis gave the free resolution of B/P’ 4+ (I) and proved the follow-
ing lemma.

Lemma 3.3 (11, (2.1.2) Lemma)). P® = P* + (D).

From now on we regard B as a graded ring with deg X =deg Y =degZ
=degW=1, so that &, ¢, e and I are homogeneous elements. Let
R’ = BIT,, T,, T;, T,] and B[] be polynomial rings and let ¥ : R’ — Bl[t] be
the B-algebra homomorphism such that

W(T) = ¢g;tfori=1,2,3 W(T) =TIt
We also regard R’ and Blf] as graded rings so that ¥is graded, i.e.,
deg T, = dege,; for 1 =1,2,3, deg T, = deg I', and deg ¢t = 0.
LEmMMA 3.4. Suppose W is the map defined above corvesponding to P = P(l, m,

n) and ¢ is the map defined in section 2 corresponding to p = p (I, m, n). Then
iw(Ker )R = Ker 7.

Proof. For the k-algebra homomorphisms ¢, : R’— R and i, : B[f] — A[1],
we have ¢°iy, = ip°¥. By Lemma 3.1 we get the proof of Lemma 3.4. O

In the following section, we discuss the Cohen-Macaulay property of the
algebra T = Im ¥ = B[Pt, P®F].

LeMMA 3.5. Let P =P, m, n) and p = p(I, m, n). If T = B[Pt, P®#] is
a Cohen-Macaulay ring, then so is S = Alpt, p® 1.

Proof. Since T is Cohen-Macaulay, we have projdimg T7=3 and an
R’-graded free resolution F.
dy

dg dy v
0—>F, 3F,>F3F >T—0,

where F; = R’. Since there is a natural identification (R’[1/W]), = R and since
Ker ¥ is a graded ideal in R’, we have

iy(Ker ) R = (Ker ¥) @, R’[1/W]),.

We put G. = (F. ®, R’[1/W]), and let 3, be the differential map of G. induced
by d;. By Lemma 3.4 we have
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Ker ¢ = iy,(Ker ¥) R = ((Im d,) ®, R'[1/W]), = Im 3.

Hence the following sequence is exact and S = Im ¢ is Cohen-Macaulay.
[

0—6,26,2636>5—0 n

We remark that a prime ideal Ker ¥ in R’, which is of hight three, contains
the following five elements

F,=X“W"T, + Y"T, + Z°T,,

F,=Y"T, + Z"T, + X*W"T,,

G, = X"W°'T, — Y*ZT? + Y"Z°T\T,,

G, = Y'T, — X®W*Z°T; + X“W*“Z"T\T,,
G, =Z°T, — X“W=Y"T? + X“W>Y™T,T,.

We put J'=Ker ¥ and I’ = (F,, F,, G,, G,, G;)R’. The following lemma
means that I’ and /' have similar properties as we stated in Lemma 2.2 and
Lemma 2.4.

Although the proof of this lemma is given among the proofs of many other
results of [11, (2.2.1) Theorem], we show it briefly for the completeness of this
paper. Weputm, = (X, Y, Z2)R" and m, = (Y, Z, WR’".

LemmA 3.6 ([11, (2.2.1) Theorem]).
(1) R’ /1’ is a Govenstein ring of dimension five.
(2) ASSR/ R’/I’ C {],, ml, mz} and I, R,]r = ],R,/.

Proof. (1) An ideal I’ is with ht, I’ = 3 and generated by pfaffians of degree
four in the skew symmetric matrix

0 Z5T,  X"WeT, YT, T,

- Z°T, 0 Y’ - Xw'  Z%T,
— XSWhT, —Y° 0 Z° XUWeT,
— Y57, Xw -z 0 YT,
-7, - Z°T, — X"W%T, —Y"T, 0

(2) Choose € € (X*W*, Y’ Z°)B\ U QeasspR /I {my,myy @ and by the same
method of Lemma 2.4 we get I’ R’'[1/&]1 = J" R’[1/&]. This implies I’ R}, =
J R’; and Assp R'/I"’ C {]’, m;, m,}. ]

Remark. As can be seen from Lemma 3.6, I’ # J’ if and only if either I” C
m,; or I’ /m, is satisfied. Furthermore by observing the generators of I’, we can
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check that m; € Ass, R’/1I" if and only if the matrix M’ satisfies one of the fol-
lowing conditions.

(1) a, > a, > 0, b, > b,, and ¢, > c,.
(2) a, > a, > 0, by, > by, and ¢, > c,.

Similarly m, € Assg R’/I’ if and only if the matrix M’ satisfies one of the fol-
lowing conditions.

(1) d, > d, >0, b, > b, and ¢, > ¢,.
(2) d,>d, >0, b,> b, and ¢, > c,.

Note that b;, b,, ¢, and ¢, are always positive because P is not a complete in-
tersection. Now we prove the converse of Lemma 3.5.

THEOREM 3.7. The following conditions are equivalent.

(1) T = BI[Pt, P?# isa Cohen- Macaulay ring for P = P(l, m, n).
2,2 2),2

(2) Alp,t, p, '] and Alp,t, p, t'1 are Cohen-Macaunlay rings, where p, =
pU, m,n) and p, =pU, Il —m, | — n).

When this is the case, the Cohen-Macaulay type of T is given by

(D =1i¢l"=]
=3l +].
Proof. We assume condition (1), then B[Pt, P?#] is also Cohen-Macaulay
for P=P(, 1 —m, !l — n). By Lemma 3.5 we get assertion (2).
Next assume condition (2). If I” = J’, then T is Gorenstein by Lemma 3.6.
When Ass, R’/I’ = {J’, m,}, we have a primary decomposition of I’ of the
form I’ =] N Q, where Q is a graded m,-primary ideal. Since J' = [I":p @I,
by [9, Proposition 3.1] it is sufficient to prove that R’/ @ is Cohen-Macaulay. Let
I and J be ideals in R = Al[T,, T,, T;, T,] defined by p, as is in section 2. By
Corollary 3.2 we have i, (I”) = I and by Lemma 3.4 we have i, (J’) = J. Note
that i, (@R is an (X, Y, Z) R-primary ideal. Now (I'R’[ 1/W]),=
'R [1/WD), N (QR'[1/W]), and there is a natural identification (R'[1/W]),
= R, thus we have I =] N i, (Q)R. By Proposition 2.5 we have i, (Q)R =
(X%, Y®, Z")R for some a, B, v =1, since Al pit, [)I(Z)tz] is Cohen-Macaulay.
Further, Wis an R’/ @-regular element, hence

Q="G, QR ="((x% Y® ZOR) = (X*, Y*, ZHF',
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therefore R’/ @ is Cohen-Macaulay. When this is the case, we have
K, =Homy,,(R'/]', R'/I) = [I":p, J'1/I" = Q/I,

as R’-modules. Hence r(T) = pp (Q/I") = pp (Q) = 3.

When Assp R’ /I’ = {J, m,}, the proof follows from the above discussion by
replacing X for W of B because Alp,t, p;Z)tZ] is Cohen-Macaulay.

When Assp R’/I’ = {J, m,, m,}, then we have the primary decomposition
of I’ of the form I’ = J" N @, N @, where each @, is a graded m;-primary ideal.
Since i, (I") = i, (J") N i,(Q,), as can be seen from the above discussion, we get
Q = (X% Y® Z)R’ for some a, B, = 1. On the other hand, since iy (I’) =
ixJ) N i (Q,), we have @, = (W°, Y*, Z")R’ for some 8, 8, 7 > 1. Note
from the above remark one of the following conditions occurs.

(1) a, > a,, b, > by, ¢, > ¢,, and d, > d,.
(i) a; < a,, b, < by, ¢, > ¢,, and d, < d,.

If assertion (i) is satisfied, as can be seen from the proof of Proposition 2.5, we
have B = min{b,, b} = and 7 = minf{c,, ¢c;} = 7’. Therefore @, N Q,=
(X*W°, Y®, Z")R’ and R’/Q, N Q, is Cohen-Macaulay. It follows that R'/J" is
Cohen-Macaulay, since [I":p J'] = @, N @, When this is the case, we have

K, = Homg,,,(R"/J", R'/I") = [I' i J'1/T' = Q, N Q/T'
and r(7) = pp(Q, N Q,) = 3. ]

By the proof of Theorem 3.7, we can determine the Cohen-Macaulay type of
T in terms of the matrix M.

CoroLLARY 3.8. Suppose T is a Cohen-Macaulay ring and the matrix M’ satis-
fies by, = b,. Then

r(T) =3ifa, > a,> 0 and b, > b, and ¢, > ¢,, or
d, > d, >0 and by > b, and ¢, > ¢,
=1 otherwise.
Finally we consider the self-linked property of P.

CoroLLARY 3.9. If P is a self-linked ideal, then T is a Gorenstein ring.

Proof. Let P=PU,m,n),p,=pU, mn), and p,=pU, | —m, | — n).
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Now there exist 8;, B, € P such that P> C (8, 8,). We put a, = iy (8, for
1 =1,2, then j)f C (e, o) in A=k[X, Y, Z] and a, a, € p,. Now p, is a
prime ideal, therefore it follows that p, = (@, &,) : p, or p, = (a,, @,). Hence
) @

Alpt, p2°] is Gorenstein. Similarly, Alp,t, p,
ma 2.3, Theorem 3.7, and Corollary 3.8, we have the proof. ]

tz] is Gorenstein. Hence by Lem-

The converse of Corollary 3.9 does not hold in general.

ExampLe 3.10. Let P = P (11, 5, 2). Then T is a Gorenstein ring but P is
not a self-linked ideal.

Proof. The defining ideal P is generated by the maximal minors of the matrix

2 3
y = [X Y’ Z ] .
Yy z¢2 w?
Since @ = d = 0, we get that I’ = J’ and r(T) = 1.
We put n = (X, Y, Z, W)B and assume that P = I, (M’) is self-linked.
Note that the statement of [7, Theorem 1.1] is true for the ring B, and the ideal
PB,, even if dim B, =4. Thus there exists a 2 by 3 matrix N= (n,)

(n,; € B,) such that L,(N) = B, and 2, m;n;; = 0, where M" = (m,;). Hence
Xn, + Yon, + 2%, +Yny + Z2n,, + Wnyy = 0,
and
Y(Yn, + n,) + Z°(Zn, + n,y) = — Xny + Wn,y).

Since X, Y, Z, Wis a B, -regular sequence, we have Yn, +un, € (X, Z, W),
Zng+mn, € (X, Y, W and Xn,, + W’n,, € (Y, Z). Hence ny;, #y;, %y, and #y,
€ nB,, and I,(N) € nB_, which is a contradiction. ]
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