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Abstract

The well-known Wilkinson expressions for the first derivatives of (ordinary) eigen-
values and eigenvectors of simple matrices, in terms of the set of eigenvalues
and eigenvectors, are redifferentiated and combined to obtain partial differential
equations for the eigenvalues. Analogous expressions are obtained for the first
derivatives of generalised eigenvalues and eigenvectors of simple pairs of matri-
ces (A, B), defined by (A - Ay5)x; = 0 , y*{A - XjB) = 0 . Again, redif-
ferentiation and combination yields slightly more complicated partial differential
equations for the generalised eigenvalues. When the matrices depend on a few pa-
rameters 0, , 02, ... , the resulting differential equations for the eigenvalues, with
those parameters as independent variables, can easily be derived. These paramet-
ric equations are explicit representations of analytic perturbation results of Kato,
expressed by him as rather abstract complex matrix integrals. Connections with
bounds for eigenvalues derived by Stewart and Sun can also be made. Two ap-
plications are exhibited, the first being to a broken symmetry problem, the second
being to working out the second-order perturbations for a classical problem in the
theory of waves in cold plasmas.

Introduction

The works of Fourier and Rayleigh underlined the central role of eigenvalues
(frequencies) and eigenvectors (modes) in classical physics and engineering.
The dilemma of whether to calculate eigenvalues through characteristic equa-
tions (highly non-linear) or eigenvectors (often tedious) remains. The mode
structure is sometimes of great physical importance (at least for the first few
modes), but often it is not. In quantum mechanics, the eigenvalues pro-
vide energy levels, measurable by spectroscopy, etc., and the eigenvectors
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provide electronic densities or (after integration) probabilities, usually not
measurable. The characteristic equation involves infinite determinants, so
both approaches have drawbacks.

Some relief is offered by perturbation theory. The eigenvectors of the per-
turbed operator are expanded in series of the eigenvectors of the unperturbed
operator. The eigenvalues X'j of the perturbed operator are approximated by
series whose terms have denominators containing A - kt and numerators in-
volving dot products of eigenvectors, all summed over / # ; . This of course
is for operators with discrete spectra, especially simple operators (without
multiple eigenvalues). The continuous part of the spectrum, if present, re-
quires more sophisticated expressions. The point is that a few sets of eigen-
vectors can be used for many eigenvalue problems via perturbations. The
situation for finite matrices is simpler than for Schrodinger equations, but
paradoxically was not exploited until the 1950's, even though Schrodinger
and others had used perturbations in the 1920's.

The question as to whether the changes in eigenvalues can be completely
expressed in terms of eigenvalues of the unperturbed operator, without using
the eigenvectors (or without seeming to use them) is natural. This depends
somewhat on the number of parameters being simultaneously perturbed, from
one to n2, for an n x n matrix. In Section 1, basic perturbation theory
is summarised (after Kato [10]), including the relation between parametric
perturbations and non-parametric (total) perturbations as in Wilkinson [20].

In Section 2, the well-known sensitivity formulas of Wilkinson are derived,
which relate eigenvalue derivatives and eigenvector derivatives to eigenvalues
and eigenvectors. One may hope that by continuing this process, the eigen-
vectors can somehow be eliminated. By suitable manipulations of sextuple
products, this is accomplished for ordinary eigenvalues of simple matrices,
yielding bilinear partial differential equations. In Section 3, these equations
are completely verified for 2 x 2 matrices. Redeveloping the equations for
the case of parametric dependence of perturbations is the subject of Section
4.

Section 5 is devoted to analogs of the Wilkinson formulas for generalised
eigenproblems {A — A,5)x. = 0, y^{A - A .2?) = 0. The results are just a
little more complicated than those of Wilkinson. A useful preliminary is the
theory of matrix pencils as presented in Stewart and Sun [16], especially for
simple matrix pencils. In Section 6, the methods of Section 2 are reapplied
to the results of Section 5, obtaining partial differential equations rather like
those of Section 2, but for generalised eigenvalues.

Section 7 contains two applications. The first is a symmetry-breaking per-
turbation of a 3 x 3 matrix, in which everything can be calculated explicitly,
but which is too simple to be more than an instructive exercise. The second
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is to perturbations of the wave theory of cold plasmas, a substantive question
when it is second-order perturbations. Here the results are applicable, and
quite likely new, showing the real usefulness of the results. Section 8 shows
how the older formula of Rogers for sensitivities relates to that of Wilkinson,
which would permit another path to our formulae.

The most likely special applications of these formulae are in quantum
physics (when extended to infinite matrices), order-disorder calculations,
potential-theory expansions, linear system synthesis, mathematical statistics,
and statistical physics. These formulas permit eigenvalue perturbations of
all orders to be calculated directly from a knowledge of all the unperturbed
eigenvalues; in practice, some can be discarded.

Specific problems which look attractive are the Stark effect (done in the
1930's to third order, by great efforts), the energy levels of positronium,
the Ising model in an external magnetic field, potential theory of ellipsoidal
geometries, amorphous alloys, and nuclear energy levels based on eigenvalues
of random matrices. Non-physical applications include the effect of round-
off on eigenvalues, and the P. D. Lax theory of invariant spectra (important
in soliton theory), which should be reachable via convergent sequences of
circulant/continuant matrices of increasing size. In electrical engineering,
finding matrices with specified eigenvalue properties should be simplified.
Finally, matrix-associated distributions such as the Wishart and A. T. James
invariant distributions can be investigated in this way. Since the equations
of Sections 2 and 6 give eigenvalues a new twist, other applications should
appear.

1. The basic perturbation results of Kato for
simple and semi-simple matrices

The theory of matrix perturbations was developed especially by Kato [10]
and Householder [9] during 1949-1960 and by Wilkinson [20] during 1950-
1965, following early work of Rellich, Friedrichs, A. J. Hoffman/Wielandt,
Ostrowski, Taussky, etc. Kato's results are rather abstract, but contain bounds
needed for convergence proofs, and use very efficient definitions based on
complex-variable theory. Wilkinson's theory is completely nonparametric,
depends on the whole matrix, is robust and rather explicit, and is designed
for numerical analysis. His so-called sensitivity formulas are shown below
to be derivable by Kato's methods, although Wilkinson's technique is more
expedient for simple matrices (those which possess distinct eigenvalues). Ex-
tensions of our results to infinite-dimensional linear operators would require
Kato's methods, it would seem. But even a proper understanding of our
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finite dimensional results benefits from Kato's theory, especially why we re-
strict ourselves to simple matrices here.

The important book of Stewart and Sun [16], which appeared after the
first version of this paper was submitted, contains perturbation bounds for
both ordinary and generalised eigenvalues, but does not attempt to improve
the results of Wilkinson. The results derived here, though originally obtained
from Wilkinson's formulas by extensive manipulation, can be extracted from
some operator power series of Kato by analogs of the Cauchy integral formula
for derivatives of analytic functions.

The objective is to calculate 2nd, 3rd, 4th order perturbations of the eigen-
values from the 1st order perturbations and the unperturbed eigenvalues.
Rather surprisingly, the second-order derivatives of eigenvalues with respect
to matrix elements (or with respect to parameters within the elements) are bi-
linear functional of the first-order derivatives, with coefficients dependent on
the unperturbed eigenvalues. The system is autonomous. By repeated differ-
entiation, all existing higher-order derivatives can be expressed multilinearly
in terms of the first-order derivatives. In most applications, second-order
corrections are sufficient, fortunately.

Similar results are derived for generalised eigenproblems, after analogues
of Wilkinson's formulas are derived. Also, eigenvalue perturbations can be
partially eliminated from eigenvector perturbations. That effort is not carried
out here.

The 1982 book of Kato [10] is an effective introduction, answering Wilkin-
son's plea [20, p. 109] for a brief, rigorous treatment. (Rellich's counter-
examples show that simplicity is absent.) The account below is drawn from
Kato [10], with some help from the recent books of Bhatia [4], and Stewart
and Sun [16].

Let T map a vector space X into a finite-dimensional vector space Y c
X. If A is a scalar of X, let Gk be the subspace of eigenvectors of T
associated with A (if there are any) and let Gx = 0 otherwise. If £ /
A,, X2, ... , Xn the eigenvalues of r . t h e n R(Q = {T—£I)~X is the resolvent,
an operator-valued function of £ and T.

If Xh is an eigenvalue of T , a Laurent-type expansion holds, of the form:

n=\

(This is the key to Kato's presentation.) Here Ph is the eigenprojection, Sh

is the reduced resolvent, and Dh is the eigen-nilpotent of T for Xh , and the
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series converge in any matrix norm for £ in a ring 0 < |£ — kh\ < Sh about
kh. If Th is a piecewise smooth closed curve about kh of small enough
diameter, then

f (1.2)f
The usual consequences are

»H = PhiT ~ V ) = (T- khI)Ph , h h

Collectively, if E = £ A khPh and D = Y,hDh, then

T = E + D, D2 = 0, ED = DE, and

If Dh = 0, then kh is called semi-simple. If all kh are semi-simple, then
T is called semi-simple or diagonable. The space Mh = range Ph = PhX is
called the algebraic eigenspace of kh , and the integer mh = dim Mh is the
algebraic multiplicity of kh . If mh = 1, AA is called simple, and if all kh

are simple, T is also called simple.
If To, Tt are finite-dimensional linear operators on Jf.then T(^) = r o +

XT{ is called a pencil or first-order family of perturbations of TQ, for % m

a complex domain D or real interval / . More generally, if To, Tx, T2,...
is a sequence of finite-dimensional operators, and

x"Tn (1.5)

converges in D (or / ) , then T(x) defines an analytic family of perturba-
tions. The "family" eigenvalues C(x) satisfy

0. (1.6)

If each T(x) is N x N, (1.5) is algebraic of degree N, with coefficients
analytic in x • Hence the Cix) a r e branches of functions analytic in x,
except for algebraic singularities. The number of such branches £(*) is a
constant s < N for all x, except for a finite number of "exceptional" points
in each compact subset of D (or / ) . If all branches are distinct, then s = N,
and T(x) is simple for all "non-exceptional" x • For N — 2, six possibilities
for exceptional x are shown on page 74 of Kato.

If K is a simply-connected subdomain of D, not containing an excep-
tional point, the eigenvalues can be written as k (x), 1 < j < s, where all
the kj(x) are analytic in K. If however XQ is an exceptional point, then
the kj{x) are still analytic in any small disk outside of XQ • Kato shows how
Puiseaux (fractional) expansions of k Ax) are obtained about x = Xo-
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The two-parameter family resolvent

R2(C, X) = (T(X) - C/)"1 (1.7)

is analytic in the two-parameter set: {(C, X): C ¥" any eigenvalue of any
T(X)}.lf Rl(O = R2(C,X0

R2(C,x) =

p=0

for \\T(XQ) - T(X)\\ ||i?,(OII < 1. If r (^0) = To, and r fc) is analytic
around x = Xo> then the series (1.8) in powers of T(x0) — T(x) can, by
a matrix version of Lagrange's composite expansion rule, be rewritten as a
power series in x • Let

summed over all integers p, and integers vx,... ,vp such that 1 < p < n ,
Vj>\, v{ + Yvp = n. Then

xnR\"\Q (1.10)
n = l

on re-expanding (1.6) in power series in x • The pattern of two types of terms
in (1.9), the "opening term" J?,(£) and the various "closing terms" T"RX(C),
can be discerned in a coordinatised analysis, if higher-order derivatives are
calculated. The point is that the eigenprojections can be calculated from in-
tegrating the resolvent, and the first derivative of an eigenvalue with respect
to its matrix is (the transpose of) its corresponding eigenprojection. Thus
the structure of the resolvent expansion is reflected in the structure of the
eigenvalue expansion. Some of these results extend to infinite-dimensional
operators, especially when the operators are Hermitian, with discrete spec-
trum, as in many quantum mechanical applications.

Similar formulas for the eigenvectors, the Jordan form (in non-diagonable
cases) and for group eigenprojections, etc., are found in [10, pages 77-96].

An important application is to the Motzkin-Taussky theorems:

(i) if T(x) = T0 + xT{ is diagonable for all complex x , then all eigen-
values of T(x) have the form XQ + x^\ >

(ii) the eigenprojections are entire functions of x ,
(iii) if T, is also diagonable, then TQTX = TlTQ.

Eigenprojections are more stable numerically than eigenvectors. This justi-
fies the seemingly inverted procedure of determining eigenprojections /*,(*),
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P2{x). • • • and taking a basis { $ , , . . . , (j>N} of X to produce eigenvectors
<f>hk(x) = Ph(x)<t>k- Tbis double sequence yields (sometimes) zero vectors
and (sometimes) duplicates or linear combinations of previous eigenvectors.
Such anomalies can be removed automatically by Kato's elegant transfor-
mation procedure, which expresses Ph(x) as UPh(x0)U~l, where U is a
function of the Ph(x) &nd(d/dx)Ph(x) for A = 1, 2, . . . . This is numer-
ically impractial, but is formally useful in verifying the correctness of the
basic results of this paper when the perturbations depend holomorphically
on a single parameter. For more parameters similar formulas may be found
but are even more impractical.

Leaving the holomorphic case, one first encounters non-convergent per-
turbation series, then bounded-order derivatives, and finally non-parametric
(Wilkinson-type) perturbations, of numerical analysis interest. When T(x)
is merely continuous in / , then R2(£, x) is jointly continuous in the set
where all points such that £ is an eigenvalue of T(x) are deleted. It follows
that eigenvalues and "joint" eigenprojections Pr(x) are continuous, where
F is a closed curve enclosing several eigenvalues of T(x). The number of
distinct eigenvalues of T(x) may vary with x '•> therefore the eigenvalues are
often listed with their multiplicities in a set £*(x) of N elements.

The "distance" between S*(x) = {fij} and S*((x) = {n'j} is defined as
minn maxn |/*n(n)—fi'n | , where FI runs over all permutations of { 1 , 2 , . . . , JV} .
This distance, though not a metric, is continuous. A stronger result is "sepa-
rate continuity": the existence of N eigenvalue functions, /ij(x) > which are
all continuous. If x is confined to the reals, or if all Hj(x) are real, then
separate continuity is valid. Continuity of eigenprojections holds except at
cross-overs between the separate eigenvalues. Even in the holomorphic case,
eigenprojection poles can appear at exceptional points. But when T(x) is
infinitely differentiable, the eigenprojections and eigenvectors may still have
discontinuities of the second (sin[l /( /- ; t0)]) kind, if XQ is a point of non-
analyticity.

On the optimistic side, if T(x) is differentiate, then so are group pro-
jections and eigenvalues. If also T(x0) is diagonable, then the separable
eigenvalues Hj(x) are differentiable at x = XQ > thus defining -^'{XQ) •

New pathologies may arise with two parameters, (x{, X2) > in that to-
tally differentiable, diagonable T(x{, x2) ^ o e s not imply totally differentiate
eigenvalues A (*,, x2)» only partially differentiable eigenvalues. If the num-
ber of distinct eigenvalues is fixed (as when T(xx» X2) is simple), total dif-
ferentiability is restored.

When all the entries can be varied (as in Wilkinson [20]), the eigenval-
ues become functions of T, in effect. Then S" = S?{T) for the repeated
eigenvalues, with four important conclusions:
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(i) S"(T) is a continuous function of T;
(ii) S?\T) is partially difFerentiable at T = To if and only if To is

diagonable;
(iii) if To is simple, then T = TQ + T' is simple for ||r'|| < S ;
(iv) if To is simple, then the Xj(T) are locally holomorphic in T (a

technical operator-based concept dependent on multilinear expan-
sions), and thus separately continuous and totally difFerentiable for
\\T-T0\\<d.

It is (iii) and (iv), together with various counterexamples, which motivate
the restriction to simple matrices in the sequel. Kato suggests that (iv) may
be extended to diagonable To by some kind of fractional Puiseux concepts,
and references the work of Baumgartel [3].

Eigenvalue derivatives of the second order, as considered in Section 2 et
seq. are related to eigenvalue perturbations through the Taylor expansion
theorem.

2
mn pq

where Tx - ( « J P To = (amn)0, t = (amn)' and (amn)0 < (amn\ <

(amn)o + (amny f o r ^ m ' n • Klit0 i n f e r S t h a t

(1.12)

mn pq

Higher-order perturbations behave similarly. Clearly kj(TQ), (dXj/dT)0,
and the formula (2.38) for the second derivatives, derived below, produces
the second-order perturbations.

2. Wilkinson sensitivity formulas and partial differential equations
for eigenvalues

Suppose that A is a simple N x N matrix with eigenvalues kx, ... ,XN,
and complete sets of right (column) eigenvectors x , , . . . , x^ and left (row)
eigenvectors y [ , . . . , y ^ . Without loss of generality, the bi-orthogonal con-
ditions
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can be assumed. Obviously,

where ykm — {yk)m and xfcm = (xk)m are the components of y^ and xk .
Suppose now that A' — A + eA{A is a perturbed matrix to first order and

formally write

x ^ x k + eAlXk + O(e2), (2.3)

y'j = y, + eA,yy + O(e2).

as the eigenvalues and eigenvectors of A'. Hence formally

+ eA.Xj + Ois))

= (Xj + eAxXj + O(e2))(xy. + eA,xy. + O(e2)).

The first-order corrections satisfy

(A,,4)x, + Ai^Xj) = A,(AlX;.) + (A,A;)xfe + 0{e). (2.5)

Left multiplication of (1.5) by y^ yields

= A,yJ(A,x;.) + (A,A .)yjx. + O(e) (2.6)

= Xj^xj) + (A,A.) • (sk3Jk) + O(e).

If j = k, then (2.6) becomes

yJ(A,,4)X; + V l V ; = VJ A i x ; + SAXJ + °^ • (2'7)

Two terms cancel from (2.7), leaving

- SJ \Hdkjldamn)i^)mn + O(|IM||)] + O(e) (2.8)

since by Kato [10] a total differential of A exists in the simple case. Expan-
sion of the left side of (2.8) as Y^mnyjm^\J^mnxjn Pe r mits the conclusion
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that

^j/damn=yjmxjn, (2.9)

Thus (2.10) gives the first eigenvalue derivatives in terms of eigenvector
components. More geometrically, the matrix M. defined by {M)mn =
xjmyjn

 h a s t h e Property that EnWJmnWng = *;«(£,, V * > * « =
xjjjksjykq = sjSjk{Mj)mq> so that if Pj = MJ/SJ, then PkPk = SjkPj,
and the set of i>., j = I, ..., N, is & set of projections. Read matricially,

(2.10) says that dXj/dA = Pj .
The same technique, carried out more elaborately when j ^ k, yields

similar formulas for the eigenvectors. From (2.6),

{^A) + VjA x / ^ j + O(e) or

)yjA,x. + O(e) or

)x;/(A, - kk) + O(e). (2.12)

For a more informative result, note that A,x^ is a specific vector in the
column space and so has the decomposition, for some matrix F,

x/> j=U2,...,N, (2.13)

because of completeness of the x, . Multiplication of (2.13) by y£ leads to

y lv , = E-^yIx/ = Hfjihhi = fjkh
i i (2.14)

= yJ
k(AlA)xj/(Xj-Xk) + O(e).

Thus
fjk = yl^AiXj/ls^j - Xk)] + O(e) (2.15)

and insertion into (2.13) yields

The total diiFerentiability of the eigenvectors in the simple case (Kato [10]),
following the previous reasoning for the eigenvalues, allows the conclusions

(2.17)
yjmXjnX,A^j - */)) •

Hi
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Such triple products as on the right of (2.17) become sextuples in the second
derivatives.

Similar formulas for the left eigenvalues begin with

( 2 J 8 )

Thus the analog of

= (

(2

A\

yl
.5)

+ sA1yk + O{e

is

(A,yjM = yI(/S

Wk+eA,xkk + O{e2)).

^yl + Oie). (2.19)

Right multiplication by x yields equations which for j = k are the same
as (2.8). For j ^ k , the result is for right eigenvectors, in the simple matrix
case

;./(Afc - Xy.) + O(e) = -y^A,x;. + O(e). (2.20)

Using the completeness of the yj as before and the total differentiability for
simple matrices, the equations

(2.21)

finally result. Obviously, they are again sums of triple products of vector
components.

The next step is to redifferentiate and substitute in order to express

R.mn ={d/da ){dX./damn), (2.22)

the second matrix derivatives of X., in terms of the A's and their first deriva-
tives. Now from (2.10), (2.17), (2.21),

JTflttpQ ^ ' pq'*>sjffx jfi I j /

= Ws2j)[-yJmXjl,{O/Oap,)sJ+sJxJI,{d/dapg)yJm

+ sjyjm(dldapq)xjn] (2.23)

E yipXjWjm/Wj - W \ • (2-24)
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This does not apparent
(2.17), (2.21). Clearly
This does not apparently simplify until (d/dapq) X^JV*/, *s obtained from

(2.25)

so that

((2.26))

But Y,tyitxjt = 52txityji - ° f o r ' T̂  J: > s o f r o m (2.26) the first two terms
can be dropped after summation. Thus

RjmnPq = (l/S

P n , m q y ^ j ^ j ,
(2.27)

on using (2.10) four times. This is the desired set of partial differential equa-
tions, iV5 in all. The third-order partial derivatives of A can similarly be
expressed in terms of trilinear expressions in the first-order partial derivatives
of triples of eigenvalues, with coefficients expressible in terms of differences of
eigenvalues. The eigenvectors, modes or principal axes have been eliminated.
The rest of the paper consists of verification, extensions, and applications of
this startling formula, which for the case when only one parameter is allowed
to vary, is a concrete version of a complex Cauchy-like matrix integral for-
mula of Kato [10]. This connects the Wilkinson theory with the Kato theory,
numerical matrix analysis with abstract functional analysis at a rather high
level, via partial differential equations, which become ordinary differential
equations in the case of one parameter. Because all the eigenvalues are cou-
pled in these equations, they are useful when all the unperturbed eigenvalues
are known as an initial condition. There are a few special but important
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cases where this knowledge is in fact available. Also, the eigenvalues should
be well separated for numerical stability, but this is not unexpected.

3. The case N -2

In the case N = 2, the equations (2.10) are easy to work out and provide
a better understanding of the way things fit together. There are 5 essentially
different sub-cases, represented by

d\lda\x = 2(dX2/dan)(dXl/dau)/(Xl - X2), (3.1a)
2

n d a n ) = [{dX2ldan){dXJdan)
+ (aA,/ao11)(aA2/aa12)]/(A, - x2), (3.ib)

nda22) = [(dX2/da2l)(dXJdan)

+ {dXJdan)(dX2ldan)]l{Xy - X2), (3.1c)

d2XJda]2 = 2(dX2/dan){dXl/dan)/(Xi - X2), (3.1d)

d2Xl/(danda2l) = [{dX2lda22){dXJdan)
x - X2)

where
A, 2 = (au + a22 ± H

For the right-hand sides of

A, -A2

dXJdan

dX2/dau

dXJ8a22

dX2/da22

dxjdan

dX2/dal2

dXJda2x

da2/da2l

are needed.

/2)/2, H=(an-

(3.1 a-e), the results

= Hl/2,

= (l/2)(l+H-1/2(an

-(1/2)<1-«-"><«„

= (l/2)(l+H 1/2(a22

= (l/2)(l-//-1/2(a22

= H~l/2a2l,

= -H-"2a21,

= H~1/2<*12>

= -H~V\2

Thus the left-hand side of (3.1a) is

d2X./da2
n = (l/2)[H 1/2 + {dH l/2/dan

a22)

— a

— a

— a

— a

)(«,

2

22

22

11

11

+ 4a12a21 •

) ) ,

) ) ,

) ) ,

) ) ,

(3.2)

(3.3a)

(3.3b)

(3.3c)

(3.3d)

(3.3e)

(3.3f)

(3.3g)

(3.3h)

(3.3i)

= ( l /2 ) /T 3 / 2 [ / / - (a u -a 2 2 ) 2 ]
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while the right-hand side of (3.1a) is

2(1/4- l/4H-\an -an)
2)/Hl/2 = (l/2)/T3/2[tf - (on - a22)2]. (3.4b)

Similarly,

h a u - a22)/T3/2(4a21) (3.5a)

an -a22))(H-l/2a2l)

and the right-hand side of (3.1b) is

H-l/2a2l)

{an - an))]/Hl/2 (3.5b)

= ( l /2 ) [ ( / / - 1 a 2 1 - / f - 1 a 2 1 ) - / / - 3 / 2 2a 2 1 (a u -a 2 2 ) ] .

Also

d2XJ{dand*22) = (d/da22)(l/2)(l+H-l/2(au-a22))

= (l/2)[-H~l/2 - (l/2)/T3/22(au - a22)(a22 - a,,)]

= ( l /2 ) i / - 3 / 2 [ - / f+(a u -a 2 2 ) 2 ]

= (l/2)/f~3/2[-4a12a21]
(3.6a)

while the right-hand side of (3.1c) is
{dk2lda2x){dkjdan) + {dXJa2l)(dX2ldan)

u ir-l/2 \/W-l/2 x , /ir-1/2 w ZJ-1/2 M/t/1/2 (3.6b)

= [(- / / an){H a2l) + (H a,2)(-i/ a2l)]/H

= -2H a1 2a2 1 .
Continuing,

a2
2 = (d/dan)(H-l/2a2i) = a21(-l/2^"3/2)(4a21) (3.7a)

and

Finally,

2(-H~i/2a2l)(H~l/2a2l)/H
l/2 = -2H~V2au . (3.7b)

anda2l) = (d/da2i)(H
 1/2a21)

= H +a2i(-l/2H )4a12

= i /-3 / 2( / /-2a2 1a1 2)
TT 3 / 2 / y \2 ,» v y^ fio\
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1/2(= {1/4(1 + / T 1 / 2 ( a M - a 2 2 ) ) ( l (au - a22))
l/2+ 1/4(1 - / T 1 / 2 ( a u - a 2 2 ) ) ( l -H-l/2(an -a22))}/Hl/2 (3.8b)

= 1/2(1 +H-\an-a22)
2)/Hi/2

= H~3/2[(au - a22)
2 + 2a12a21].

The other 15 unordered identities follow by interchanges of the 5 subscripts
ind2Xk/damndapq.

4. Parametric dependence

In the applications of these formulae, the elements otj of A may be func-
tions of a small number of parameters 6X, 62, ... ,dr. Then

d2Xj/(d9sddt) =

mnpq

Insertion of (2.10) into (4.2) yields

Hj pnq

- X,)

(4.3)
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Let

C = H^dXJd%n)dapqldet fors,t,n,q=l,2,...,N. (4.4)
P

Then

dhjiaefie, = E E E <A^h - *,)

n q

mn

The combination J2nq ^nq^qn *s a m a t r i x trace, namely XT(L"(LJS)) , with
respect to the lower indices. Likewise,

E ^nq^qn ~ M-^ (-̂  *)) (4-6)

so that

(4.7)

Thus the second parametric derivatives of A. are expressible in terms of first
matrix derivatives, which can be reduced to products of first derivatives of
eigenvectors, and eigenprojections of A .

5. Generalised eigenproblems and sensitivity formulas

The generalised eigenproblem discussed below is the solution of

(J-A; JB)x. = 0, yT
k(A-XjB) = 0. (5.1)

This problem is complicated by the fact that B may be singular, in which
case an eigenvalue can be essentially infinite. Projective methods help to
unravel the problem. Corresponding to the pair (A, B) of N x N matri-
ces, introduce pair eigenvalues (a, 0) for the problems (aA - 0B)x = 0,
yT(aA - PB) = 0 . If Bx ^ 0, it is natural to choose a ^ 0 and write
A = PI a as the eigenvalue. If Bx = 0, it is natural to set a = 0. The ac-
count below is based on Stewart and Sun [16], which has a very full account
of the generalised eigenproblem.

If ( a , fl) is a pair eigenvalue associated with a right eigenvector x or a left
eigenvector y for (A, B), then (ca ,cP) is also a pair eigenvalue with c ^ 0.
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A matrix pair (A, B) is called regular if D = xA — aB is non-singular for
some pair (a, x) of scalars. If so, consider the matrix C = oA + xB. Thus,
if (Q, fi) is an eigenvalue for (A, B), then (-ao + fix, fia + ax) is a pair
eigenvalue for (C, D) and conversely, where (a, fi) ^ 0 and {a, x) / 0,
all for the same right eigenvector x , or left eigenvector yT . Now suppose
Bx = 0 and a = 0. Then (fix, fia) is a pair eigenvalue for (C, D) =
(xA - oB, oA + xB) and ft = a/x is the corresponding eigenvalue.

Another approach of physical interest is to replace B (if singular), by a
non-singular approximation B and consider either the unsymmetric problem
B~lAx = Ax, or the symmetrical problem B~l^2AB~l^2z = Ax, in effect
replacing the pair (A, B) by (B~l/2AB~i/2, I). Limits a s B - » f l in some
topology can then be taken. If B is finite-dimensional, the topology is not
very significant.

One important result to be carried over from the ordinary problem is the
completeness of eigenvectors under proper conditions. The "pencil" A-XB
is replaced by D — xA — aB. If Fk is the family of determinantal mi-
nors of order k of D, and Gk(x, a) is the greatest common denominator
of the Fk , then Gk(x, a) is a homogeneous polynomial, and the invariant
polynomials are fm(T, a) = GN_m+l(x, o)IGN_m(x, a). Then the elemen-
tary divisors of (A, B) over a field F of scalars are the polynomial factors
em,l(T' <*)> ••• ' em,qm(T> a) ° f Zm(T> a) 0 V e r & • I f em<gJ

T' °) = ^ f ° f

7m > 1, then im is said to have an infinite root of order ym .
The pair (A, B) is called simple if each elementary divisor is of degree

1 in T (infinite root) or is of degree 1 in a (zero root) or is linear in x
and a (finite, non-zero root). In that case, Weierstrass' reduction theorem
for regular pairs shows that the right and left eigenvectors for simple regu-
lar pairs are complete, which is what is needed to carry out the methods of
Section 2 to reach analogous conclusions. The details of the Weierstrass re-
duction are found in Stewart and Sun, and, most completely, in Gantmacher
[7], vol. I, Chapter 6 and vol. II, Chapter 12. Another condition for com-
plete eigenvectors of {A, B) is that all the finite, non-zero eigenvalues of the
pair are different, and that there is at most one zero eigenvalue and one in-
finite eigenvalue. From now on, we make this assumption, unless otherwise
mentioned.

Returning to the generalised problem, define constants ck (analogous to
the sk of Section 2) by ŷ -Bx̂ . = ck8jk ,

rs

These follow from (5.1) by left and right multiplication by yfe and xy., yield-
ing ykAXj = XJYIBXJ = Xky

T
kBxj, so that (A; - Xk)y

T
kBXj = 0 . Simplicity

implies ykBxj = 0 for j ^ k .
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Now, perturb both A and B to first order so that:

A' = A + e\A, B' = B + eA{B,

X] = kj + eAlkj + O(e2), x'k = xk + eAlxlc + O(e2), (5.3)

Hence

[A + eAxA - (Xj + eA,A,. + O(e2)){B + eA,5)](x; + eA,xy + O(e2)) = 0. (5.4)

The first-order corrections are, as justified by previous reasoning,

(A - XjB)^*. + (A}A - (A,A;)5 - Ay.A,2f)xy = 0{e) (5.5)

relative to the x^., containing 5 terms in place of the 4 terms in (1.5), for all

finite eigenvalues. Left multiplication of (5.5) by yj yields

O(e) + yI(A,^)xy + y^(A,xy.) = yJ(A,^)xy + Akyj5A,X>

= k jvlBA.x. + (V,.)yJ*xy + k/^BXj. (5.6)

If j = /c, then (5.6) becomes

yJtA.^x.+A^V,

= k/jBLpj + (A^Cj + k/^A^Xj + O(e).

Two terms cancel from (5.7), leaving

yJ(A,^)x. - Ay.yJ(A,5)x. = (A,A;)cy + O(e). (5.8)

Expansion of the left side of (5.8) leads, using total difFerenitability, to

'jrbrsxjs '

(5-9)

Clearly, (5.9) gives eigenvalue sensitivities, in terms of eigenvalues and eigen-
vectors. As for right eigenvector sensitivites, take j ^ k in (5.6), so that

)x; = (kj - kk)(ylB)(AiXj) + kjy[{AxB)xj + O(e),

(yJ)(A,xy) = yJ(A,^ - XjA^Xj/ikj - kk) + O(e).

By completeness, there is a matrix D such that
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Left multiplication of (5.11) by yj/? yields, using (5.10),

yJ
kBAlxj=

I

- XjA^Xj/iXj - Xk) + O(e).

Thus
dJk = yT

k(AlA-XJAiB)xj/[ck(Xj-Xk)] + O(e) (5.13)

and insertion of (5.13) into (5.11) produces

V , = E ^ M - ^A15)x.]xfe/[cfc(A> - Xk)] + O(e). (5.14)
k*j

Hence, from total difFerentiability

and

E m ' ^ f c r / ^ ^ " At)] . (5.15)

Similarly

M U (5-16)

provides the right generalised eigenvector sensitivities with respect to B in
terms of eigenvalues and eigenvectors.

As before, the left eigenvector sensitivities are calculated from

(yj + eAy] + O(e2))[A + eAA- {kk + eAxXk + O(e2))(B + eAB)] = 0. (5.17)

The first-order corrections are

Aiy
J
k(A - XjB) + y^A - {A,Xk)B - X^B) = O(e). (5.18)

Again, 5 terms are present instead of the 4 terms in (1.19). Right multipli-
cation by Xj. yields

O(e) + yI(A^)x; + A.y^x,) yI(A,^)x; + A.ŷ A .5x.
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If j = k, then

j)

= kjA^BXj) + A,A/c,) + x/jiA^Xj + O(e).

Two terms cancel, leaving

yJ(A,^)xj -X/jiA^Xj = (A,A.)cy + O(e)

which coincides with (5.8). However, if j ^ k, then (5.19) yields

rf(M)x, = (A, - XfayliBxj) +Xky
T

k(AlB)xJ + O(e),

{Aiy
T

k){BXj) = yli^A - X^Bfrj/iXt - A,] + O(e).

By completeness of the yk , there is a matrix E such that

(5-22)

Hence insertion of (5.22) into (5.21) yields

(5.23)

iB)Xj/[Xk - Xj] + O(e)

and thus
ekj = y^A - XkAxB)x./[c.{Xk - X.)] + O(e). (5.24)

From (5.22)

Y l r f M k - W + (KB) . (5.25)

Hence
dyl/9amn = J v ^ / I c A -A7)],

^ (5.26)

and similarly

l*k (5-27)
/W A)]
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The six sensitivity formulas (5.9), (5.15), (5.16), (5.26), (5.27) are obviously
generalisations of the Wilkinson formulas, reducing to them when B = I
and cl = st. This problem is also treated by Stewart [13].

6. Partial differential equations for generalised eigenvalues

For generalised eigenvalues, the replacement of S/ = J2tyitxit by ct =
^2rsyirbrsxls in the sensitivity formulas is the major complication in redif-
ferentiation. Note that

rs

(6.1)
and

)xls + ylr(dxh/dbmn)]. (6.2)
rs

If the entries brs in B are independent of the entries amn in A, then

dc,/damn = £ brs[(dylr/damn)xh + ylr(dxls/damn)}. (6.3)

However, in a variety of applications, B and A have entries which depend
on the same parameters and so the expression dbrs/damn must be retained
to calculate (6.1). Also, (5.9), (5.5), (5.16), (5.26), (5.27) must be modified
in that case.

Three types of second derivatives require notice. Besides

there are

jtHtipq j ' * ftitt PQ V * /

and

TjmnPq = d\/(dbmndbpg) (6.6)

to consider. Now
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brsXjs (6.7)

XJs

which by (5.26) and (5.16) and (6.1) becomes

(6.8)

Now (6.8) can be expanded to

«

/ * / • "

- A/))

(6.9)
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As in the derivation of (2.10) from (1.10), the first four terms of (6.9) re-
semble (2.10) as seen from (5.9):

- X,)

~ A ' ) ] (6.10)

From (5.9), the above sum is

RjmnPq

(6.11)

since two terms drop out because of the appearance of Sj,.
Thus, if dbrjdapq = 0 for all r, s, p , q, then the differential equation

(6.11) has the same form as (2.10). If not, then (6.11) possibly has the
additional iV2 terms along with the previous 2(N - 1) terms, but retains
the bilinear structure in the first derivatives even after taking account of
dependences between A and B . Next,

= (d/dbpg)(yjmxjjcj)

Expanding with the help of (6.1), (5.16),and (5.27), and exchange of sum-
mations, and finally both parts of (5.9),

SjmnPq

- h } - W)iyJmlcj)
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\yjpxjq

L

j/da^MXj - X,)

+

(dlj/damn)(dXj/dbpQ)/Xj.

j - X,)

(6.13)

Thus the partial differential equations for the mixed second derivatives have
2N - 1 terms, if all eigenvalues are non-zero.

Finally,

Tjmnpq- = (d/dbpq)(dXj/dbmn) =

(6.14)
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From (6.14), (5.9), (5.16), (5.27)

463

Tjmnpq jmXjn'Cjyjm

Hi
kJ - A , ) ]

- E
(6.15)

Reapplying (5.9) six times to (6.13) and dropping the last two terms by or-
thogonality,

= 2{dXJ/dbwm){dXJ/dbp,)/XJ

+ J^
Hi

+ (dXj/dbm9){dydbpn)]nXj - A,).
(6.16)

7. Examples and applications

The interesting applications are primarily to 3 x 3 , 4 x 4 , 6 x 6 and
infinite matrices. For illustrations of the theory, perhaps it will be sufficient
to use 3 x 3 matrices in showing how to get the second-order derivatives.
One such example, or exercise, is deliberately chosen to require relatively few
calculations. The other is quite a realistic problem in cold plasma theory,
which has not been carried out to this extent previously, and where the new
techniques seem to be quite useful.

I. Partially-broken symmetry.

Let A =
a b c
c a -b

—bca

so that
- XI) = {a- A)3 + b3 + c + bc(a - A)

(7.1)

(7.2)
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Taking c = b + b' to be a perturbation of b, we see that the unperturbed
3 3 2 2 2

equation is ( a -
whose roots are

, =a-bzi,

-A)((«-A) -b(a-A) + 2bz) = 0

(7.3)X-i = a- bz3

where z, 3 = (1 ± v/ z7)/2.
The unperturbed right eigenvectors are

" 1 •

- 1

Li-*J
rI

.0 .

• I "

- i

and the unperturbed left eigenvectors are

[1, - 1 , 2 , - 1 ] , [1, 1, 0], [1, - 1 , z 3 -

The projections are

(7.4)

(7.5)

1
- 1

-1
1 1-z ,

1 - z , z, - 1 1 + z ^

1
1

.0

1
1
0

0"
0
0.

1

1
- 1

- 1
1

z, - 1

Z 3 -
1 - 2
1+2

1
(7.6)

The second-order approximation to the A's requires the first derivatives,
which are the transposes of Pt, P2, P3, and the second derivatives, con-
tained in (2.10). Since only a,3, a2i, and a32 are perturbed, only six second
derivatives need calculation.

Writing out (2.10) in 3 typical cases,

* i , 13,12 - 4 ^ 3 . [}—T2 + j ^ r j ^ J '

• ^ 1 , 1 3 , 2 1 ~ r / E

^1,13,32 = [(^2)33(^1)21 + (^1)33(^2)21

. - ^ ) - (7-7)

Note how many different entries from the projections are needed to get just
these three second-order terms: 5 of the P{, 5 of the P2 and 5 of the P3.
The actual results are not very interesting except in the peculiar mixture of
symmetry and asymmetry, and in that any six second derivatives of interest
involve all of the entries in all three projections.
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c =
[S-n2 cos2 0

iD

II. Waves in cold magnetised plasmas, and other examples. A non-trivial ex-
ample of some independent interest, which avoids extensive computing, is
provided by the accepted theory of waves in a "cold" magnetised plasma.
The account, based on Stix [17], is centered on the "plane wave" matrix

—iD n2 cos d sin 6'
S-n2 0 (7.8)

n2cos0sin0 0 P - « 2 s i n 2 0 .

which is Hermitian and just a touch complex. This matrix follows from
Maxwell's equations in a cold plasma, Ohm's law for current density, and a
special coordinate system for the wave and the magnetic field. The parame-
ters S, D, P depend on the assumed frequency w and the characteristics
of the various components of the plasma and on the magnitude B of the
magnetic field. The cold-plasma derivation is based on warm-plasma theory
in the low-temperature limit, assuming a Gaussian zero-mean distribution
for the transverse particle velocities, and a drifted mean distribution for the
parallel (to the magnetic field) velocities [17, Chapters 8, 9].

If k is the wave-order of the electric field E = Ee\p(iwt — ik • x), and n
has the direction k and the magnitude n = kc/w , then n is dimensionless.
If n is taken in the xz plane, the magnetic field B is along the z-axis, and
0 is the angle between B and n , then CE = 0 is the free wave equation.
This is a generalised eigenvector problem for a pair (A, M) of matrices, of
the form (A - n2M)E = 0, where

A = siD
0

-iD
S
0

0
0
P

M =
cos 0

0
cos 0 sin 0

0
1
0

cos 0 sin 0
0

sin20
(7.9)

OWously detA/ = 0, detA = (S2 - D2)P so we will assume P / 0,
The more basic quantities are R = S + D, L = S - D, resulting

Clearly

detC = an4-bn2-c, (7.10)

in RL = S2- D2

where
d + Pcos26,

b = RLsin2 0 + PS(l + cos2 0),

c=

(7.11)

Since n2
 3 = (b ± Vb2 - 4ac)/2a are the two roots, the root n\ =

(b + Vb2 - 4ac)/2a ->oo as a -» 0, while n2 —• c/b as a - > 0 .
Since (7.10) is quadratic in n2 , one of the eigenvalues is infinite even for

a # 0 because detM = 0. When a - » 0 , 0 -> 0O where tan2 0O = -P/S.
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This 0O is called the resonance angle. Another important angle is 0 = 0 , ,
where b = RL + PS + (PS - RL) cos2 0, = 0. When S -> 0, the resonance
angle 0O —> 7i/2.

Two unperturbed eigenvectors E, , E3 lie in the subspace whose 2nd com-
ponent is zero. They are related by the equations

(E3)j = [Xj cos 0 sin 6/(P - Xj sin 0)](E,)_. (7.12)

for j = 1, 3 . If b - Aac > 0, E, 3 can be real. These facts are stated in
Stix [17], but the behavior of the remaining eigenvector is not.

The third "eigenvector" E' satisfies the inequation E2 ^ 0 and the con-
ditions CE' ^ 0 and C2E' = 0, and exists if

a'X2 - j + c ± 0 for j = 1, 3 ,

where

a = P2 cos2 6 + (S2 + D2) sin2 0 - (5 - P)1 cos2 0 sin2 0,

&' = 2P[S7>cos2

c = P2(S + P)2

(S2 D2) sin2 0],

(7.13)

(7.14)

are related to C . The parameters S, P, D, R, L are not optimal, as
(7.11) and (7.14) and Kato's theory shows, but they are conventional.

A long calculation shows that both conditions of (7.13) are satisfied except
on a singular manifold in (S, P, D) space. If E'2 is real, then E\ and E'3
are purely imaginary.

The full set of eigenvalues can be restored by regularising M into

M =
cos 0

0
.a cos 0 sin 0

0
1
0

a cos 0 sin
0

sin20

0'
(7.15)

and writing Ca = A - XMa , for |a|2 < 1.
Then det Ca = (det M J det(A^ - XI), where

N=M~l/2AM~l/2. (7.16)

3 and eigenprojections R{, R2, R3 of Ma areThe eigenvalues
needed. Clearly

ji2

H2 = 1 and
0
0
0

0
1
0

0
0
0

The other eigenvalues satisfy /i2 - n + (1 - a2) sin2 0 • cos2 0 = 0, and

x 3 = (1 ± yjl - 4 ( 1 -a 2 )s in 2 0cos 2 ) /2 (7.17)
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which are real if (1 - a 2 ) sin2 6 cos2 6 < 1/4. The un-normalised eigenvectors
are

j , j j 2 (7.18)

for j = 1, 3 . Thus

rj = Pj = (fij- cos2 6) I {a sin0 cos 6)

RJ =

Obviously M~l/2 = 1£jnjl/2Rj and

1 0 p
0 0 0
Pj 0 p)

-1/2 1

f o r a = l , 3 . (7.19)

jk

0
0

.0

. V
f 2

h

0

s
0

0"
0
0.

+

ijl/2

+ P
2

Element-wise

0

0

N22 = S,

, = -iDm2,

-iD
0

-iDpj

0

0

• 1 0

0 0
.Pj 0

Pk
0 - 1 / 2 - 1 / 2

(7.20)

— mxm2S

where

3̂3 = m2S + m\P '

1 = 0 , 1 , 2 .

(7.21)

(7.22)

The eigenvalues and eigenvectors of N are obtainable with further effort
even when D ^ 0 . To apply (2.10), we need the first derivatives of these
eigenvalues with respect to 6, or alternatively, the projections and a few
other facts. All this becomes quite tedious, unless D = 0 in which case

N =
m]s + m\P

0 S ' 0
0 m622S

(7.23)

where p2 = 0. The eigenvalues of N are i/,, v2, v-i, where v2 = S, and
i/,, z/3 satisfy

i/2 - v[(m2S •{m2
2S + m]P)] 2,2 „

,-m2] = 0 .
(7.24)

Now from (7.17) and (7.18), px, p3 depend on 6, and from (7.22), m , ,
m2, w3 also depend on 0 . From here on, the algebraic details become rather
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unpleasant and the conclusions are of primary interest to plasma physicists.
However, the possibility of obtaining the perturbations around the resonance
angle, at which many of the expressions will simplify, may be sufficiently
clear. Without the formulas previously obtained, there would be little hope
of working the results out, and indeed this has not been done to the writer's
knowledge.

Similar calculations appear in the dynamics of streaming filaments, in
which the unperturbed state is a moving helix and instability is manifested
in various kink and balloon modes. Again, the longitudinal eigenvalues and
modes are fairly simple and the transverse modes are quadratics or iterated
quadratics, algebraically. A book on this subject is in preparation by Dr.
M. Zak of the Jet Propulsion Laboratory, and the present writer. However
applied mathematics is full of unworked higher-order perturbations of low-
dimensional dynamics, in which parametric and not merely numerical solu-
tions are desirable. The interest in the stability theory of fusion reactions,
in which both 3 x 3 and 6 x 6 matrices are known to enter centrally, was
another motivating example. However, the immediate impetus was problems
in platform stability of thin structures, to which the writer intends to return.

8. A formula of Rogers

In the compendium of Rogers [12], many of the formulas derived here are
absent. However, one of them is equivalent to (2.10), due to Wilkinson, and
it could have been used as the basis for our work. It is less convenient, as
seen from its form:

dkJdA = \[[{AT - XjiyiX, - X.)]. (8.1)

Given this form, however, it is easy to see how to derive (8.1) from the
spectral theorem (1.4 et seq.) for simple matrices and (2.10).

Let

Y[XjI), (8.2)

then for r ^ i,

= (A-XrI)

If A is simple, A = Y^k^-k^k- Since G^A) commutes with A, Gt{A) =
Y,j gijPj and thus PrG,{A) = PF(A - XrI) Uj^ M " V ) = 0 for r ^ / and
PfiM) = £ / SijPrPj = girPr • Hence gir = 0 for r ± i and Gt(A) = g..Pt =
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orthogonal to Pt.
From the above, gu = n , ¥ , 0 W , ) and so /» = n j V f - [ (^-

Now Pj = dXJdA, is the coordinate-free form of (2.10), and so dkJdA =

Uj+MA - A ./)/(A,. - A .)]T = n,Vl-[(^T - V > W * - A ; ) ] ' w h i c h i s ( 8- ! )-
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