A review of the conservation status of the endemic Pritchardia palms of Hawaii

Melany H. Chapin, Kenneth R. Wood, Steven P. Perlman and Mike Maunder

Abstract The conservation status of 23 Hawaiian endemic palms, Pritchardia spp., is reviewed. Field survey reports, recovery plans, herbaria holdings and observations have been utilized to assess each taxon’s current range and status. Eleven species are categorized as Critically Endangered, nine Endangered, two Vulnerable and one as Data Deficient when subject to the IUCN Red List criteria. Conservation management options are discussed. A large proportion of this genus is on the verge of extinction and will continue to decline in the wild without active conservation management. Recommendations involving long-term management include maintaining and protecting the existing wild populations, establishment of effective ex situ populations, reintroduction into the wild, and the establishment of procedures to deal with invasive plants and animals.

Keywords Arecaceae, Hawaii, Pacific islands, palms, Pritchardia, Red List.

Introduction

The genus Pritchardia (Family Arecaceae) has 28 known species restricted to the Pacific archipelagos of Hawaii, Fiji, the Cook Islands, Tonga, and the Tuamotus, with 23 species endemic to Hawaii (Fig. 1). Pritchardia is placed in Sub-family Coryphoideae, Tribe Corypheae and Sub-tribe Livistoninae, which it shares with 11 genera, five of Asian/Indo-Pacific origin, and six from the New World (Uhl & Dransfield, 1999). The Pacific species, although abundant in cultivation (most notably P. pacifica Seem. & H.Wendl. and P. thurstonii F. Muell. & Drude), are relatively poorly studied in the wild. The wild populations of P. mitiaroana J. Dransfield & Y.Ehrhart from the Cook Islands, P. vyyskekeana Hort. from the Tuamotus, P. pacifica from Tonga and P. thurstonii, from Fiji, require field studies to assess their conservation status and management needs (Smith, 1979; Dowe, 1989; Fosberg, 1998). Another species, P. maideniana Becc., known only from cultivation at the Royal Botanic Gardens Sydney, is thought to have been derived from a Hawaiian collection (Riffle & Craft, 2003); this species requires phylogenetic studies to ascertain its taxonomic status and probable origin.

Hawaiian Pritchardia species currently occupy a wide range of habitats, including mesic forests and narrow ravines, wet forests, cliffs and coastal cliff areas, and offshore islets. Wild populations occur between sea level and 1,270 m. Population sizes range from two to over 10,000 individuals. Nine taxa are restricted to single populations and others have up to 10 populations (Table 1). All species are single island endemics. Kauai, approximately 5 million years older than Hawaii, has the highest number of Pritchardia taxa (eight), and the youngest and largest island, Hawaii (10,458 km²), has four taxa (Wagner et al., 1990).

The dramatic decline of the Hawaiian Pritchardia is documented in recent archaeological records. Fossil Pritchardia stems found near sea level on Oahu date from 100,000 years ago, suggesting that the genus was widespread prior to human settlement in 400 AD (Carlquist, 1980; Cudihy & Stone, 1990). Further evidence from both seed and trunk macrofossils and pollen indicates that Pritchardia was one of the most abundant trees in pre-settlement times (Burney et al., 2001; Rauzon, 2001; Athens et al., 2002), comprising up to half of the pollen in soil cores from lowland Hawaiian archaeological sites (Hotchkiss & Juvik, 1999). Athens et al. (2002) have found evidence of extensive dry lowland forests containing Pritchardia on Oahu that disappeared around 1020 AD.

By the time of Captain Cook’s arrival in 1778, the coastal zones of the major Hawaiian Islands were heavily settled and modified (Cudihy & Stone, 1990) and accounts by early botanists provide few insights into the recent historical status of Pritchardia. Jules Remy (1826–1893), after 4 years in Hawaii, mentions Pritchardia only once, describing Huelo Islet, “… on a small offshore inaccessible islet he saw charming palm trees
Wilhelm Hillebrand (1888) noted that, “… one species of *Pritchardia* in Nuuanu, … was completely exterminated when natives found that the trees were saleable to amateurs of gardening in Honolulu.” Beccari & Rock (1921) note that in south Kona, “… the original forest surrounding this species [*P. affinis*] has practically disappeared”; they add, “… There is no doubt that some of the species are on the verge of extinction.”

The major contemporary threats include introduced rats, *Rattus rattus*, *R. exulans*, and *R. norvegicus*, which feed on the seeds and seedlings and damage palm hearts. Introduced goats *Capra hircus* and deer, *Axis axis* and *Odocoileus hemionus columbianus*, graze seedlings. Pigs *Sus scrofa* eat seedlings, and their digging destroys seedlings and habitat. Invasive plants compete with both established trees and seedlings (Cuddihy & Stone, 1990; Staples & Cowie, 2001).

The IUCN recognizes the Hawaiian Islands as a Centre of Plant Diversity (Davis et al., 1996) and Myers et al. (2000) include Hawaii within the Polynesia/Micronesia Hotspot. The islands have suffered a catastrophic decline in endemic plant diversity (Bruegmann et al., 2002). The aim of this paper is to present the first comprehensive assessment of one of Hawaii’s most spectacular adaptive radiations and to provide a summary of our knowledge of the conservation status of the Hawaiian *Pritchardia* (Table 1).

Methods

This study uses three main sources of information: (1) herbarium records, (2) published accounts and recovery plans, and (3) field assessments. The distribution of the Hawaiian *Pritchardia* species was assessed using three major herbarium collections: Bishop Museum, Honolulu (BISH), National Tropical Botanical Garden (PTBG), and United States National Herbarium, Smithsonian Institution (US). The earliest specimens were collected by Joseph Rock in 1910. Most of the herbarium labels lack detailed descriptions of population size, elevation, demography and associated species. Further information was gathered from publications (Rock, 1913; Beccari & Rock, 1921) but these works do not detail population numbers, ecology or phenology. We undertook field surveys of all the *Pritchardia* species on the major Hawaiian Islands, except Niihau and Nihoa, between 1973 and 2002. The results of these surveys and studies, which include community descriptions, number of populations and individuals, demography, altitude and threats, are found within the Hawaiian Natural Heritage Program database (HINHP), the PTBG accessions, Genetic Safety Net reports (that identify the most threatened Hawaiian endemics), US Fish and Wildlife Service (USFWS) Recovery Plans and published and unpublished field studies (Conant, 1985; USFWS, 1996a, b, c, d, e; Wood, 2000; Rauzon, 2001; Wood et al., 2001; Chapin et al., 2002; HINHP, 2002; PTBG, 2002; Wood & LaGrande, 2002). Conservation assessments were obtained from *Palms, Their Conservation and Sustained Utilization* (Johnson, 1996), USFWS listings, the 1997 *IUCN Red List of Threatened Plants* (Walter & Gillett, 1998) and Wagner et al. (1999). We made updated conservation status assessments using the IUCN Red List Categories (IUCN, 2001). These should be regarded as provisional assessments and will require verification from both the IUCN-Species...
Table 1 Distribution, ecology, number of individuals and populations, elevation range, regeneration in situ and conservation assessments of the Hawaiian endemic *Pritchardia* organized by island (north to south), and then alphabetically by species.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Distribution</th>
<th>Ecology</th>
<th>No. individuals</th>
<th>No. populations</th>
<th>Elevation range (m)</th>
<th>Regeneration in situ</th>
<th>IUCN/SSC Palm Action Plan<sup>1</sup></th>
<th>IUCN Red List of Threatened Plants<sup>2</sup></th>
<th>USFWS assessment<sup>3</sup></th>
<th>This study (criteria)<sup>4</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>P. remota Becc.</td>
<td>Nihoa</td>
<td>Coastal forest representing a relatively intact low-elevation dryland ecosystem</td>
<td>600–700</td>
<td>1</td>
<td>45–800</td>
<td>Y</td>
<td>E</td>
<td>EN</td>
<td>E</td>
<td>VU (D1 + 2)</td>
</tr>
<tr>
<td>P. auburn-robinsonii St. John</td>
<td>Nihaui</td>
<td>Kaali Cliff and in Mokouia and Haao Valleys, originally a component of the coastal dry forest</td>
<td>2</td>
<td>1</td>
<td>70–270</td>
<td>N</td>
<td>E</td>
<td>EN</td>
<td>E</td>
<td>CR (D)</td>
</tr>
<tr>
<td>P. hardyi Rock</td>
<td>Kauai</td>
<td>Wide range of habitats on the windward side</td>
<td>250–300</td>
<td>3</td>
<td>500–750</td>
<td>Y</td>
<td>EN</td>
<td>R</td>
<td>EN (C2)</td>
<td></td>
</tr>
<tr>
<td>P. limahuliensis H. St. John</td>
<td>Kauai</td>
<td>Upper Limahuli Valley, in open and mesic forests</td>
<td>300</td>
<td>2</td>
<td>152–914</td>
<td>Y</td>
<td>DD</td>
<td>E</td>
<td>CR (B1ab)</td>
<td></td>
</tr>
<tr>
<td>P. minor Becc.</td>
<td>Kauai</td>
<td>Mesic to wet forests, near the Alakai Swamp to the Kokee area to the Na Pali Coast</td>
<td>500</td>
<td>10</td>
<td>760–1,220</td>
<td>N</td>
<td>DD</td>
<td>AS</td>
<td>EN (B2ab)</td>
<td></td>
</tr>
<tr>
<td>P. napalensis H. St. John</td>
<td>Kauai</td>
<td>Na Pali coast, and grows in mesic-wet forests to montane wet forests</td>
<td>160</td>
<td>3</td>
<td>150–1,160</td>
<td>N</td>
<td>E</td>
<td>EN</td>
<td>E</td>
<td>CR (C1)</td>
</tr>
<tr>
<td>P. perlmanii C.E.C. Gemmill</td>
<td>Kauai</td>
<td>Waioli Valley, high pocket valley on main waterfall of Namolokama</td>
<td>500</td>
<td>3</td>
<td>420–850</td>
<td>N</td>
<td>DD</td>
<td>E</td>
<td>EN (B1ab)</td>
<td></td>
</tr>
<tr>
<td>P. sp. A</td>
<td>Kauai</td>
<td>Near the Wahiawa Bog, South Kauai, in the Makaleha Range, and along the Powerline Trail</td>
<td>est. 350–450</td>
<td>4</td>
<td>914</td>
<td>N</td>
<td>DD</td>
<td>EN</td>
<td>B2a</td>
<td></td>
</tr>
<tr>
<td>P. viscosa Rock</td>
<td>Kauai</td>
<td>Degraded open mesic forests with clay substrate</td>
<td>3</td>
<td>1</td>
<td>500–700</td>
<td>N</td>
<td>E</td>
<td>EN</td>
<td>E</td>
<td>CR (D)</td>
</tr>
<tr>
<td>P. waikakeana R.W. Read</td>
<td>Kauai</td>
<td>Wet forest habitats, on windward slopes</td>
<td>unknown<sup>5</sup></td>
<td>1</td>
<td>600</td>
<td>N</td>
<td>CR</td>
<td>AS</td>
<td>DD</td>
<td></td>
</tr>
<tr>
<td>P. kaalae Rock</td>
<td>Oahu</td>
<td>Open, windswept mesic forests</td>
<td>170</td>
<td>1</td>
<td>450–980</td>
<td>N</td>
<td>E</td>
<td>EN</td>
<td>E</td>
<td>CR (B1 + 2)</td>
</tr>
<tr>
<td>P. martii H. Wendl.</td>
<td>Oahu</td>
<td>Wet forest slopes and ridges or cliffs</td>
<td>c. 10,000</td>
<td>1</td>
<td>360–762</td>
<td>N</td>
<td>DD</td>
<td>AS</td>
<td>VU (A1ce)</td>
<td></td>
</tr>
<tr>
<td>P. hillebrandii Becc.</td>
<td>Molokai</td>
<td>Huelo Rock, only remaining intact lowland palm forest</td>
<td><200</td>
<td>?</td>
<td>30–750</td>
<td>Y</td>
<td>DD</td>
<td>AS</td>
<td>EN (D)</td>
<td></td>
</tr>
</tbody>
</table>
Table 1 (Continued)

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Distribution</th>
<th>Ecology</th>
<th>No. individuals</th>
<th>No. populations</th>
<th>Elevation range (m)</th>
<th>Regeneration in situ</th>
<th>IUCN/SSC Palm Action Plan¹</th>
<th>IUCN Red List of Threatened Plants²</th>
<th>USFWS assessment³</th>
<th>This study (criteria)³</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. lowreyana Rock ex Becc.</td>
<td>Molokai</td>
<td>Mesic valleys and inland cliffs</td>
<td>2,000</td>
<td>1</td>
<td>130–920</td>
<td>N</td>
<td>EN</td>
<td>AS</td>
<td>CR (B1ab)</td>
<td></td>
</tr>
<tr>
<td>P. munroi Rock</td>
<td>Molokai</td>
<td>Mesic gulch, and in a drainage</td>
<td>2</td>
<td>1</td>
<td>610</td>
<td>N</td>
<td>E</td>
<td>EN</td>
<td>E</td>
<td>CR (D)</td>
</tr>
<tr>
<td>P. lanaiensis Becc.</td>
<td>Lanai</td>
<td>Highly degraded mesic-wet forest habitat</td>
<td>130–150</td>
<td>3</td>
<td>550–660</td>
<td>N</td>
<td>DD</td>
<td>V</td>
<td>EN (D)</td>
<td></td>
</tr>
<tr>
<td>P. arecina Becc.</td>
<td>Maui</td>
<td>East and north-east slope of Haleakala</td>
<td>500</td>
<td>7</td>
<td>600–1,220</td>
<td>N</td>
<td>DD</td>
<td>AS</td>
<td>CR (B1 + 2)</td>
<td></td>
</tr>
<tr>
<td>P. forbesiana Rock</td>
<td>Maui</td>
<td>Western portion of Honokohau drainage basin and north and east slopes of Mt. 'Eke</td>
<td>170</td>
<td>4</td>
<td>914–1,220</td>
<td>N</td>
<td>VU</td>
<td>R</td>
<td>CR (B1 + 2)</td>
<td></td>
</tr>
<tr>
<td>P. glabrata Becc. & Rock</td>
<td>Maui</td>
<td>Cliffs and in mesic gulches</td>
<td>c. 50</td>
<td>2</td>
<td>550</td>
<td>N</td>
<td>CR</td>
<td>V</td>
<td>CR (D)</td>
<td></td>
</tr>
<tr>
<td>P. affinis Becc.</td>
<td>Hawaii</td>
<td>Leeward coastal sites and inland gulches in mesic forests</td>
<td>> 25</td>
<td>7 (?)</td>
<td>0–600</td>
<td>N</td>
<td>E</td>
<td>EN</td>
<td>E</td>
<td>CR (D)</td>
</tr>
<tr>
<td>P. beccarioides Rock</td>
<td>Hawaii</td>
<td>Wet forest, in the region around Kilauea, in the forest near Glenwood on the slopes of Mauna Kea</td>
<td>est. > 1,000</td>
<td>7</td>
<td>610–1,270</td>
<td>N</td>
<td>DD</td>
<td>AS</td>
<td>EN (B1 + 2)</td>
<td></td>
</tr>
<tr>
<td>P. lanigera Becc.</td>
<td>Hawaii</td>
<td>Dense wet forests or flat, boggy plateaus and windward slopes</td>
<td>150</td>
<td>1</td>
<td>610–1,220</td>
<td>N</td>
<td>EN</td>
<td>R</td>
<td>CR (B1 + 2)</td>
<td></td>
</tr>
<tr>
<td>P. schattaueri D.R. Hodel</td>
<td>Hawaii</td>
<td>Lowland mesic forests</td>
<td>13</td>
<td>3</td>
<td>600–800</td>
<td>N</td>
<td>E</td>
<td>EN</td>
<td>E</td>
<td>CR (D)</td>
</tr>
</tbody>
</table>

¹Johnson, 1996; E Highly Endangered
²Walter & Gillett, 1998; CR Critically Endangered, EN Endangered, VU Vulnerable, DD Data Deficient
³Wagner et al., 1990, 1999, E Endangered, V Vulnerable, R Rare, AS Apparently Secure
⁴Wagner et al., 1990, Chapin et al., 2002, and pers. obs.; CR Critically Endangered, EN Endangered, VU Vulnerable, DD Data Deficient; criteria as per IUCN (2001)
⁵More data needed to make assessment
Survival Commission Hawaiian and Palm Specialist Groups before formal adoption into the IUCN Red List. We have used the IUCN Red List categories because they represent a quantitative and verifiable assessment system that is being widely used internationally to generate national and global Red Lists.

Results

Species summaries

P. remota is found on Nihoa, which is part of the Hawaiian Islands National Wildlife Refuge and has been designated a Research Natural Area (Clapp *et al.*, 1977; Conant, 1985; Chapin, 1990). Photographs indicate the presence of a native *Pritchardia* on the uninhabited island of Laysan, north-west of Nihoa (Rauzon, 2001), thought most likely to be *P. remota* or a closely related taxon. Although the ecosystem of Nihoa is more intact than other major Hawaiian islands, it is considered vulnerable to threats that could eliminate or greatly reduce its numbers. The USFWS Recovery Plan (USFWS, 1996a) specifically identifies natural disasters, or the introduction of any invasive species, predators or pathogens, as serious potential threats.

P. aylmer-robinsonii, on Niihau, was discovered by Harold St. John in 1947 (St. John, 1959; Wichman & St. John, 1990). The two wild trees occur in a rugged and steep cliff area where they receive protection from grazing animals. However, the species is widely cultivated by residents on Niihau and seed production is abundant (USFWS, 1996b).

P. hardyi, on Kauai, has the majority of its range managed by the State of Hawaii. We have observed some regeneration in the wild (Chapin *et al.*, 2002). It is near an area accessible to the public and is subject to the impacts of invasive plants and animals.

P. limahuliensis, found on Kauai, is benefitting from *in situ* activities such as monitoring and habitat management, including a fenced enclosure. Wild-collected seeds have been catalogued and propagated at PTBG, and reintroduced to PTBG’s Limahuli Preserve.

P. minor from Kauai is found largely within the boundaries of the Kokee State Park where wild-sourced seedlings have been successfully reintroduced. The Kokee Resource Conservation Program manages invasive weeds and rats within exclosures containing the species. The Department of Land and Natural Resources, Division of Forestry and Wildlife (DLNR-DOFAW), has also planted *P. minor* in protective exclosures. Field studies have recorded poor regeneration, (Chapin *et al.*, 2002; K. Cassell, pers. comm.).

P. napaliensis from Kauai, is restricted to the Na Pali coast. It grows on state-owned land: Hoolulu and Waiahuakua valleys in the Hono O Na Pali Natural Area Reserve and Alealau in Kalalau Valley (within or close to the boundaries of the Reserve and Na Pali Coast State Park).

P. perlmanii from Kauai was discovered in 1998, at which time about 500 individuals were known from Waioli Valley.

An undescribed species *Pritchardia sp. A* was collected on Kauai in 1987 (D. Lorence, pers. comm.). The State of Hawaii and private land managers, Alexander and Baldwin, manage the majority of its range. There is currently no *in situ* management.

P. viscosa from Kauai is managed by the Division of Forestry and Wildlife who contribute to the protection of the population through an enclosure protecting against grazing animals and pigs, and with metal rat guards around the tree stems. Prior to Hurricane Iniki in 1992, 12 trees were known but there are now only three living trees. A seedling was observed by the authors in 1998, but this has since been removed, probably by poachers.

P. waialealeana from Kauai requires more research and information on the range of the wild population to make an accurate assessment of its status.

P. kaalae, from Oahu, occurs in Kaala, Makaleha, Waianae Kai and Makua. The US Army controls rats and conducts reintroductions. This population is located on state land, including Mount Kaala Natural Area Reserve and land leased to the Department of Defence for Makua Military Reservation, and federal land on Schofield Barracks Military Reservation.

P. martii is found in the Koolau Mountains on Oahu. This species has the highest number of individuals yet it occurs on the island with the greatest impacts in terms of human population pressures, pests, diseases and invasive species, and it lacks protective management.

P. hillebrandii is found on Molokai and offshore islands. The population at Huelo Rock is one of the few *Pritchardia* populations in Hawaii reproducing in the wild and the islet is currently free from rats and goats. Twelve individuals are also found on the adjacent islet of Mokapu. Kalaupapa National Historical Park is helping to protect and establish additional coastal populations of this species.

P. lawreyana from Molokai benefits from protective exclosures provided by The Nature Conservancy of Hawaii.

P. munroi from Molokai has one individual with an enclosure surrounding it, provided by The Nature Conservancy of Hawaii. There is a second individual that is not protected. Seeds collected from the one tree in the enclosure that has flowered and fruited are grown in botanical gardens (Chapin & Lorence, 2000; Chapin *et al.*, 2001).
P. lanaiensis from Lanai is receiving protection from grazing animals through the installation of fencing provided by the Lanai Company.

P. arecina from Maui receives protective management from Haleakala National Park and efforts by the East Maui Watershed Partnership. There is a high degree of fragmentation, low seedling recruitment and low numbers of individuals.

P. forbesiana from Maui is protected through the management of West Maui Watershed and Maui Land and Pine, a local private business, through rat and pig control, and fencing.

P. glabrata is endemic to Maui. Read (in Wagner et al., 1990) considers it a miniature palm because it characteristically reaches 1–2 m in height and has a slender trunk c. 15–20 cm in diameter. Beccari & Rock (1921) describe it as one of the smallest Pritchardia species.

P. affinis from Hawaii is widely cultivated. Read (undated) noted that it occurs naturally within areas of early Polynesian settlements. He suggests that it has an ecology similar to Washingtonia from California and Livistona from Australia, which also occur in natural seepages in xeric habitats.

P. beccariana from Hawaii benefits from DLNR-DOFAW protection through fencing and pig control. The narrow range and high fragmentation makes the palms highly susceptible to single events such as hurricanes or the introduction of a disease.

P. lanigera from Hawaii is a robust tree with a trunk of 30–50 cm diameter. Its fruits are larger than most Pritchardia and measure c. 40 × 35 mm. The Division of Forestry and Wildlife Big Island has 12 P. lanigera that are protected within Puu O Umi bog unit, and three at Kaukini, Hawaii.

P. schattaueri from Hawaii has benefited from Division of Forestry and Wildlife activities where individuals are planted in protective exclosures in addition to the reintroduction of seedlings to another site. A private landowner, in collaboration with the US Fish and Wildlife Service, is also taking measures to protect the species.

Conservation management

With respect to in situ conservation, 14 of the 23 Hawaiian Pritchardia species are represented in preserves or are subject to some form of conservation management, as outlined above.

The ex situ collections of Hawaiian Pritchardia are an incomplete and limited representation of species. The majority of cultivated stocks lack basic data on the origin, quality or genetic diversity of each collection and it is therefore difficult to assess their conservation value. The largest cultivated collections are held by the University of Hawaii (UH), Lyon Arboretum, the Waima Arboretum and PTBG. The UH Lyon Arboretum Tissue Culture Laboratory propagates many species of Hawaiian Pritchardia, often from immature seeds, and is conducting research on seed storage techniques. The PTBG has a comprehensive collection with all but two Hawaiian species in cultivation (Chapin et al., 2001). The Division of Forestry and Wildlife has an array of nurseries and reintroduction sites throughout the state. For instance, the Kiolakaa Ranger Station has over 30 P. affinis and 30 P. beccariana planted out. The US Army on Oahu has a nursery and reintroduction sites for P. kaalae, and is also working with the University of Hawaii on seed viability studies.

Pritchardia is one of the most widely cultivated ornamental palms (Maunder et al., 2001); 33 botanic gardens in 10 countries cultivate 25 species of Pritchardia (BGCI, 2000). The distribution of Pritchardia reflects the pattern of cultivation for many threatened species, with a few easily cultivated species dominating the ex situ representation (e.g. P. affinis, P. martii, P. lanigera and P. kaalae) with others (e.g. P. hardyi, P. hillebrandii, P. limahuliensis, P. lowreyana, P. perlmannii, P. renota and P. waialealeana) found only in a single institution (Maunder et al., 2001).

Most of the important genetic material in cultivation exists within Hawaii, although it is possible that important material may be found in international collections. For instance, Jardín Botánico Canario Viera y Clavijo, Gran Canaria, Spain, has reproducing trees of P. munnri derived from a wild tree (D. Bramwell, pers comm.). Seed was repatriated to Hawaii in 2002.

The cultivated populations of some species exceed wild populations (e.g. P. aymer-robinsonii, P. munnri and P. viscosa) and may contain genetic diversity lost from wild populations. For instance, it is possible that seed was collected from trees of P. viscosa and P. limahuliensis prior to Hurricane Iniki in 1992. Pritchardia is valued as a garden and landscape species in Hawaii, and accordingly there is a large commercial propagation of species, including some that are highly threatened. Some species are subject to damaging levels of collecting (both of seeds and seedlings) but the extensive horticultural community holds invaluable expertise that can, and sometimes does, support the conservation of wild populations.

There is an international trade in Pritchardia seeds and commercial seed dealers are offering P. lowreyana and P. renota for $20–30 per 10 seeds and P. hillebrandii for $95 per 100. It is most likely that these originate from cultivated sources but wild collection of threatened species does occur. Pritchardia species are being planted outside their known range and on islands from which they have not been recorded. This raises the possibility of hybridization as a result of artificial sympatry.

Until recently, seed banking was considered impractical for palm seeds (T.D. Hong, pers. comm.). However, some palm species demonstrate orthodox or
intermediate behaviour in seed storage (Hong et al., 1998). Preliminary findings at Fairchild Tropical Garden indicate that many palm species would tolerate desiccation and storage (D. Garvue, pers. comm.). Tests at the National Seed Storage Laboratory in Colorado using *Pritchardia* seeds have shown promising results (C. Walters, pers. comm.). Additional research to establish reliable protocols for storage of *Pritchardia* palm seeds is needed (Pritchard et al., 1998). Tissue culture of *Pritchardia* species has been successful. Immature fruits can be effectively germinated if the embryo has sufficiently developed (N. Sugii, pers. comm.).

Discussion

Hawaiian endemic *Pritchardia* species will not survive without continued conservation management. All species that we reviewed face threats from introduced invasive plants, animals, pests and diseases. Three species have three or fewer individuals left in the wild, and nine species have less than 200 wild individuals. Three species survive with <10 individuals and most of the remaining taxa have little or no recorded regeneration *in situ*. To help reduce further loss we make the following recommendations, which can be applied to other threatened island endemic palm floras (e.g. Maunder et al., 2002a).

The first priority should be the retention of the existing wild populations. We propose that rat eradication and control of feral goats and pigs be adopted to allow seed production and regeneration. This will need to be matched by a commitment to control invasive weeds within the managed area. With the increasing practicality of rodent and goat control there are more opportunities within the managed area. With the increasing practicality matched by a commitment to control invasive weeds seed production and regeneration. This will need to be established new populations of *P. munroi*. Similarly it is feasible to consider re-introduction of *P. remota* to Laysan, from where it was eradicated. However, for other lowland sites the selection of taxa for planting is problematic. The lowland populations, and possibly lowland taxa or species, were eradicated during Polynesian settlement. Choosing the appropriate taxa presents a challenge due to the unknown identity of the extinct lowland *Pritchardia* populations; it is not known whether the extirpated populations were lowland populations of still extant taxa now known only from upland sites, or extirpated endemic taxa.

Establishing procedures to deal with invasive animals and plants with all conservation partners can protect preservation efforts. Both wild and garden *Pritchardia* populations are prone to introduced and invasive pests and pathogens. Without effective quarantine measures new pests and diseases could become established. *Pritchardia* is known to be particularly susceptible to Lethal Yellowing disease (Broschat & Meerow, 2000). Fortunately, the disease and its known vector, the palm cicada *Myndus crudus* do not yet occur in Hawaii, but vigilance is essential and quarantine laws should continue to be strictly enforced or strengthened. Another potential threat is the West Indian sugarcane borer *Metamasius hemipterus* known to damage palms in Florida (Broschat & Meerow, 2000). A recent pest introduction that has adversely affected native *Pritchardia* is the two-spotted leaf hopper *Sophonia rufofascia*. It was first discovered in Hawaii in 1987. Findings indicated that this pest attacks a suite of both native and exotic plants including *Pritchardia*. Constant monitoring of both wild and cultivated *Pritchardia* populations will be necessary.

Pre-settlement ranges of *Pritchardia* in Hawaii were more extensive than at present and the genus formed a major component of lowland and interior forests. Today only fragments remain with minimal natural regeneration (Chapin et al., 2002). These surviving populations persist in an ecosystem highly modified since human colonization (see Given, 1995 and Maunder et al., 1995 for discussions on conservation within degraded island ecosystems). We hypothesize that the original forest ecology of Hawaii was very different from today, with an absence of exotic earthworm and ant species, no terrestrial mammals and the presence of large, extinct, frugivorous birds, and huge colonies of nesting seabirds importing marine nutrients to the forest ecosystems. Today the ecology is different in terms of soil conditions and ecological relationships. The Pacific islands, including the Hawaiian archipelago, have been subject to profound human-induced environmental change leading to the catastrophic loss of endemic diversity, most notably the extinction of Pacific avifauna (Steadman, 1997) and endemic plant species, as characterized by Rapa Nui palm *Pritchardia* species has been successful. Immature fruits can be effectively germinated if the embryo has sufficiently developed (N. Sugii, pers. comm.).

Acknowledgements

The authors extend their gratitude to fellow members of the Hawaiian Rare Plant Restoration Group and in particular Marie Bruegmann of the US Fish and Wildlife Service, Wayne Souza of State Parks, Kauai, Hawaii and...
the Department of Land and Natural Resources, Division of Forestry and Wildlife staff of all Hawaiian Islands. We thank The Nature Conservancy of Hawaii and the Hawaiian Heritage Program, Honolulu, Hawaii. Our appreciation to Nellie Sugii, of the University of Hawaii, Lyon Arboretum Tissue Culture Laboratory, Honolulu, Hawaii, and Christina Walters, of the National Seed Storage Laboratory, Fort Collins, Colorado.

References

HINHP (2002) *Hawaii Natural Heritage Program Database*. Hawaii Natural Heritage Program, Honolulu, USA.

Biographical sketches

Melany H. Chapin is a member of the IUCN-SSC Palm Specialist Group. Her other research interests include the demography, fruit morphology and phenology of palms, conservation biology and gene banks.

Kenneth R. Wood is a member of the IUCN-SSC Pteridophyte Specialist Group. His research interests include biological inventory, conservation collections of endangered species, ecosystem conservation and education.

Steven P. Perlman has over 30 years of field botany experience. His research interests include Hawaii and Pacific island ecosystems, threatened species and utilizing rough terrain field techniques.

Mike Maunder is Director of Fairchild Tropical Garden and a member of the IUCN-SSC Plant Conservation Committee and Palm Specialist Group. He is a specialist in island and ex situ plant conservation.