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Cerebral Manifestations of Mitochondrial
Disorders

Josef Finsterer, Elmano Henrique Torres de Carvalho

ABSTRACT: This review aims at summarizing and discussing previous and recent findings concering the cerebral manifestations of
mitochondrial disorders (MIDs). MIDs frequently present as mitochondrial multiorgan disorder syndrome (MIMODS) either already at onset or
later in the course. After the muscle, the brain is the organ second most frequently affected in MIMODS. Cerebral manifestations of MIDs are
variable and may present with or without a lesion on imaging or functional studies, but there can be imaging/functional lesions without clinical
manifestations. The most well-known cerebral manifestations of MIDs include stroke-like episodes, epilepsy, headache, ataxia, movement
disorders, hypopituitarism, muscle weakness, psychiatric abnormalities, nystagmus, white and gray matter lesions, atrophy, basal ganglia
calcification, and hypometabolism on 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron-emission tomography. For most MIDs, only symptomatic
therapy is currently available. Symptomatic treatment should be supplemented by vitamins, cofactors, and antioxidants. In conclusion, cerebral
manifestations of MIDs need to be recognized and appropriately managed because they strongly determine the outcome of MID patients.

RESUME: Manifestations cliniques cérébrales relatives aux troubles mitochondriaux. Cet article vise A résumer et & aborder les conclusions, 2 la fois
antérieures et récentes, relatives aux manifestations cliniques cérébrales des troubles mitochondriaux. De fagon générale, ces manifestations sont fréquemment
I’expression du syndrome de défaillance multi-viscérale d’origine mitochondriale, que ce soit a ses débuts ou lors de son évolution. Apres les muscles, le
cerveau est I’organe le plus fréquemment affecté lorsqu’on diagnostique un syndrome de défaillance multi-viscérale. De telles manifestations cliniques
cérébrales demeurent variables ; elles peuvent (ou ne pas étre) associées a des Iésions a la suite d’examens d’imagerie cérébrale ou d’études fonctionnelles.
Cela étant, il est possible que de telles 1ésions n’entrainent aucune manifestation clinique. Parmi les manifestations cliniques cérébrales des troubles
mitochondriaux les plus répandues, on peut inclure des pseudo-AVC (stroke-like episodes), 1’ épilepsie, des maux de téte, 1’ataxie, des troubles du mouvement,
I’hypopituitarisme, de la faiblesse musculaire, des problemes psychiatriques, le nystagmus, des 1ésions de la substance blanche ou de la substance grise,
I’atrophie, la calcification des noyaux gris centraux et I’hypo-métabolisme de la molécule 2-désoxy-2-['*F]fluoro-D-glucose détecté lors d’un examen de
tomographie par émission de positrons. Pour la plupart de ces manifestations, seul un traitement symptomatique est offert a I’heure actuelle. Un tel traitement
devrait étre complété par la prise de vitamines, de cofacteurs et d’antioxydants. En conclusion, les manifestations cliniques cérébrales des troubles
mitochondriaux doivent étre détectées et soignées de facon appropriée car elles ont une grande incidence sur 1’évolution de I’état de santé des patients.
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INTRODUCTION depending on the affected tissue, also as vascular, astrocytic, or
neuronal. Cerebral manifestations of MIDs may be permanent (e.g.

Mitochondrial disorders (MIDs) are usually multisystem dis- . ] ;
dementia) or transient (e.g. seizure, SLE, headache) and may be a

eases (mitochondrial multiorgan disorder syndrome [MIMODS]),

either already at onset or with progression of the disease.' One
of the organs most frequently involved in MIDs is the brain.”
Cerebral manifestations in MIDs are variable and may be classi-
fied as pure clinical without abnormalities on imaging or
functional studies, as clinical with functional or imaging
abnormalities, or as functional or imaging abnormalities without
appropriate clinical manifestations (Table 1).? This review aims at
summarizing and discussing recent findings and future perspec-
tives concerning the clinical presentation, pathophysiology,
diagnosis, treatment, and outcome of cerebral disease in MIDs.

CLASSIFICATION

Cerebral abnormalities in MIDs may not only be classified as
pure clinical (e.g. headache) or as clinical with abnormalities on
functional or imaging studies (e.g. stroke-like episode [SLE]) but,
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direct consequence of the metabolic defect (e.g. SLE) or secondary
resulting from involvement of other organs (e.g. stroke from atrial
fibrillation, bleeding from hypertension). Central nervous system
(CNS) abnormalities of MIDs may be also categorized as treatable
(e.g. epilepsy) or inaccessible to treatment (e.g. basal ganglia cal-
cification, atrophy). Additionally, a CNS abnormality may go
along with or without other CNS abnormalities attributable to the
MID. Furthermore, cerebral abnormalities in MIDs may or may not
be accompanied by manifestations in other organs (MIMODS).
CNS involvement in MIDs may be also categorized according to
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Table 1: Classification of CNS abnormalities in MIDs
according to the predominant presentation either on clin-
ical examination or on imaging/functional studies

CNS manifestation Imaging/FS* Clinical only Both
SLE X X
Epilepsy X X
Headache X X
Ataxia X X
Movement disorder X X
HHAA X X
Muscle weakness X X
Psychiatric abnormality X X
Nystagmus X X
‘White matter lesions X X
Gray matter lesions X X
Atrophy X X
Basal ganglia calcification X X
Hypometabolism on FDG-PET X X
Optic atrophy X X
Central sleep apnea syndrome X X

*Instrumental investigations are inevitable for diagnosing stroke-like
episodes (SLEs), gray matter lesions, white matter lesions (WMLs),
cerebral atrophy, basal ganglia calcification, hypometabolism, and sleep
apnea syndrome.

FS = functional studies, HHAA = hypothalamic-hypophysial-adrenal axis.

the affected anatomical structure (cortex, subcortical, white matter,
basal ganglia, thalamus, midbrain, pons, cerebellum, medulla, or
spinal cord) or according to the onset of the clinical manifestations
as early or late onset. Finally, cerebral lesions can be delineated
from spinal cord lesions and CNS lesions resulting from
respiratory-chain defects can be delineated from CNS lesions from
nonrespiratory chain mitochondrial defects.

CNS MANIFESTATIONS OF MIDs

There are several clinical CNS abnormalities with or without
concomitant morphological/functional abnormalities and several
morphological and functional abnormalities with or without
clinical manifestations, which have been identified as manifesta-
tions of specific and nonspecific MIDs (nsMIDs) (Table 1).
These include SLEs, epilepsy, headache, ataxia, movement dis-
orders, nystagmus, muscle weakness, insufficiency of the
hypothalamic-hypopituitary-adrenal axis, muscle weakness, psy-
chiatric abnormalities, nystagmus, white matter lesions (WMLs),
gray matter lesions, atrophy, basal ganglia calcification, and
hypometabolism on 2-deoxy-2-[fluorine-18]fluoro-D-glucose
positron-emission tomography (FDG-PET) (Table 1).

SLEs

SLEs are a typical phenotypic feature of mitochondrial
encephalomyopathy, lactic acidosis, and stroke-like episodes
(MELAS) syndrome, with which they occur in the majority of
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the patients. However, SLEs have been also reported in patients with
myoclonus epilepsy with ragged-red fibers (MERRF) syndrome,*
Kearns-Sayre syndrome (KSS), Saguenay-Lac-St. Jean cyto-
chrome oxidase deﬁciency,6 Leigh syndrome,7 and coenzyme-Q
deficiency resulting from ADCK3 mutations.® Additionally, SLEs
have been reported in nonmitochondrial conditions, such as
X-linked hereditary motor and sensory neuropathy (HMSN1),’
neurobrucellosis,'’, cerebral amyloid angiopathy,'' or sarcoi-
dosis."? Clinical presentation of SLEs can be heterogeneous.
The most frequent symptom of an SLE is cortical blindness.’
Other clinical manifestations include psychiatric disorders,"
e:pilepsy,14 headache, ' hemiparesis,16 and various types of
aphasia.'” More rarely, visual agnosia, prosopagnosia, cortical
deafness, auditory agnosia (from the mutation m.10197G > A),
topographical disorientation, disinhibition, agitation, euphoria,
anxiety, impaired face recognition, prolonged visual aura,
hemianopia or quadrantanopia, or hemispatial neglect have been
repor“[ed.3’17’18

The morphological correlate of an SLE on cerebral imaging is
the stroke-like lesion (SLL). Depending on the interval after onset,
an acute or chronic stage of an SLL can be delineated.
The acute stage of an SLL on magnetic resonance imaging (MRI)
is characterized by hyperintensity on T2-w/fluid-attenuated
inversion recovery images, hyperintensity on diffusion weighted
imaging (DWIs), and hyperintensity on apparent diffusion
coefficient (ADC) maps (Figure 1). Occasionally, areas with
cytotoxic edema within the SLL. may be found. Blood flow is
increased on perfusion weighted imaging in the acute stage.
Magnetic resonance spectroscopy may show a lactate peak
and a reduced N-acetyl-aspartate/creatine ratio indicating neuro-
nal death (Table 2).'"° A lactate peak is regarded as abnormal
only if the N-acetyl-aspartate/choline ratio is normal. In a study
of 13 patients with, altogether, 44 SLLs, DWI showed hyper-
intensity in 37 and isointensity in seven cases.”’ On ADC, 16
were hyperintense, 16 hypointense, and 15 isointense.?’ The
chronic stage of SLLs is characterized by spreading and later
regression of the lesion, hyperintensity, hypointensity, or
isointensity on T2,?! hyperintensity, fainting or disappearance on
DWI, hypointensity or isointensity on ADC, and hypoperfusion. 19
Outcomes from SLLs include complete recovery, focal
atrophy, laminar cortical necrosis, or a WML.2!"?? Besides SLEs,
patients with MIDs may experience ordinary ischemic strokes
or transitory ischemic attacks secondary to cardiac involvement
in the MID.?® SLEs are frequently accessible to the nitric
oxide precursors L-arginine (500 mg/kg/d), citrulline, or
succinate. Supportive measures include a ketogenic diet** and
symptomatic treatment of the various clinical manifestations of
an SLE.*

Epilepsy

Mitochondrial epilepsy is a common feature of specific and
nsMIDs. Epilepsy may be the dominant feature (e.g. MERRF) or
nondominant feature (e.g. Leber hereditary optic neuropathy
(LHON)) of the phenotype. All types of seizures may occur with
mitochondrial epilepsy, but focal seizures appear more frequent
than generalized seizures. However, no systematic studies on this
matter have been carried out. According to a literature review,
focal seizures with secondary generalization were more prevalent
than primary generalized seizures in pediatric MIDs, which are
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Table 2: Specific and nonspecific MIDs with CNS involve-
ment and location of the predominant genetic defect

MID CNS manifestation mtDNA | nDNA
MELAS SLE, E, H, A, MD, HH, P, N, W, G, AT, C, X
HM

MERRF SLE, E, H, A, MD, HH, P, G, AT X

KSS SLE, E, A, HH, P, WML, AT, C X

LRPPRC SLE X
LS SLE, E, H, A, MD, W, P, WML, G, C, HM X X
CoQ-def. SLE, W X
MEMSA E X
MIRAS E. H A X
I0SCA E, P X
LBSL E, WML X
AHD E, P X
LHON E, H, MD, HH, P, N, WML, AT X

NARP E,A,P,W X

SANDO E A X
CPEO H, MD, P, AT X

CVS H X
MDS H, AN X
nsMIDs H, A, HH, W, P, N, WML, AT, C X X
XLSA A X
PDH A, AT X
MSL A x?
DCMA A X
PCH A, WML, AT X
MNGIE P, WML, G, HM X

?=uncertain, A = ataxia, AT =cerebral atrophy, C =basal ganglia calci-
fication, CoQ-def = coenzyme Q deficiency, DCMA = dilated cardio-
myopathy with ataxia, E =epilepsy, G = gray matter lesions,

H =headache, HH = hypothalamic-hypophysial axis, HM =
hypometabolism, IOSCA = infantile onset spinocerebellar ataxia,

LBSL =leukoencephalopathy, brainstem and spinal cord lesions, and
lactic acidosis, MD = movement disorder, MEMSA = myoclonic epi-
lepsy myopathy sensory ataxia, MSL = multiple systemic lipomatosis,
N =nystagmus, P = psychiatric abnormalities, SANDO = sensory ataxic
neuropathy, dysarthria, and ophthalmoparesis, W = muscle weakness or
hypotonia, WML = white matter lesions

more frequently the result of nuclear DNA than mitochondrial
DNA (mtDNA) mutations.?® In adult MIDs, which are more
frequently from mtDNA than nuclear DNA mutations, generalized
seizures are more prevalent than focal seizures.”® A common type
of epilepsy in MIDs is myoclonic epilepsy. Among the specific
MIDs, mitochondrial epilepsy with early onset occurs in MELAS,
MERRF, KSS, Leigh syndrome, myoclonic epilepsy myopathy
sensory ataxia, mitochondrial recessive ataxia syndrome (MIRAS),
infantile onset spinocerebellar ataxia (IOSCA), leukoencephalo-
pathy, brainstem and spinal cord lesions, and lactic acidosis, and
Alpers-Huttenlocher syndrome.26 Mitochondrial epilepsy with
adult onset has been reported in MELAS, LHON, neuropathy
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ataxia and retinitis pigmentosa (NARP), and sensory ataxic
neuropathy, dysarthria, and ophthalmoparesis.”® In a study of
seven MELAS patients, seizures usually occurred during the acute
phase of an SLE and included epilepsia partialis continua, hemi-
clonic status epilepticus, nonconvulsive status, and occipital status
e:pilepticus.27 Among pediatric patients, infantile spasms, refractory
or recurrent status epilepticus, epilepsia partialis continua, and
myoclonic epilepsy were the most prevalent seizure types.”®
In a retrospective study of 109 pediatric and adult MID patients
undergoing electroencephalography, 85% had epileptiform dis-
charges, including multifocal discharges (41%), focal discharges
(39%), and generalized discharges (3’9%).29 The most common
types of seizures were complex partial (37%) and generalized tonic-
clonic (39%).% Among those with seizures (55%), 28% were
intractable to treatment.”’ Patients with Leigh syndrome most
commonly had focal or generalized seizures (11% in both) and
patients with MELAS most commonly had generalized seizures
(33%).%° NARP may be associated with catastrophic epilepsy.30
Intractable seizures with epileptic encephalopathy have been
also reported in patients carrying CARS2 mutations associated
with combined respiratory chain deficiency of complexes I, III, and
IV (Table 3).”!

Treatment of mitochondrial epilepsy mainly relies on anti-
epileptic drugs (AEDs). Additional measures include epilepsy
surgery, diets, vagal nerve stimulation, and supportive agents.>>
Treatment should start with AEDs with a low mitochondrion-
toxic potential, such as levetiracetam, lamotrigine, gabapentin,
or zonisamide. Only when these agents are ineffective or accom-
panied by severe side effects should AEDs with high
mitochondrion-toxic potential, such as valproic acid, carbamaze-
pine, phenytoin, or phenobarbital, be tried.** Valproic acid seems
to have one of the highest mitochondrion-toxic potentials, which
is why it should be avoided particularly in patients carrying
POLGI mutations or in patients with MERREF. In all patients with
mitochondrial epilepsy, a ketogenic diet should be considered as
a supportive measure. In some cases, a ketogenic diet may
be the only effective treatment of mitochondrial epilepsy.®
Whether the application of vitamins, cofactors, or antioxidants
has an additional beneficial effect on mitochondrial epilepsy has
not been systematically investigated.> In single cases with
MELAS syndrome, L-arginine has been shown to be beneficial
not only for SLEs, but also for seizures, including status
epilepticus.**

Headache

Headache as a feature of a MID manifests as migraine-like
headache, cluster headache, nonclassified headache, or tension
headache. Headache may be the dominant feature of a MID or only
an ancillary feature of the phenotype. Headache may manifest as
a pure manifestation of a MID or may be part of a MIMODS. For
example, migraine-like headache may be an isolated manifestation
of a MID or may occur together with MELAS, MERRF, chronic
progressive external ophthalmoplegia (CPEO), LHON, Leigh
syndrome, MIRAS, cyclic vomiting syndrome, mitochondrial
depletion syndrome (MDS), or nsMIDs. Nonclassified headache
has been reported in patients carrying POLGI mutations.> If
headache during an SLE is resistant to L-arginine, midazolam may
be effective alternatively.15 Unfortunately, headache is only insuf-
ficiently described in most MID cases. Up to 58% of the patients
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Table 3: Respiratory chain defects in MIDs with CNS
involvement

C1 Cl (93111 CIv Cv
AHS NR NR NR X NR
CPEO X NR X X X
IOSCA NR NR NR NR NR
KSS NR NR NR X NR
LBSL NR NR NR NR NR
LHON X NR NR X NR
MDS X X X X X
MELAS X NR X X X
MERRF X NR X X NR
MIRAS X NR NR X NR
MNGIE NR NR NR X NR
MSL NR NR NR NR NR
NARP NR NR NR NR NR
PCH NR NR NR NR NR
SANDO NR NR NR v NR
XLSA NR NR NR NR NR
MIMODS X NR X X NR

AHS = Alpers-Huttenlocher syndrome, NR = not reported.

carrying the m.3243A > G mutation develop migraine.*® Migraine
may be also part of the clinical presentation of an SLE."> The
pathophysiology of migraine-like headache is poorly understood,
but there are indications that it is a vascular pathology, resulting in
initial hyperperfusion, which results from activation of the
calcitonin-related protein or from enhanced influx of calcium into
mitochondria resulting in increased oxidative stress.”” Whether
lactic acidosis plays a role in the development of headache in MID
patients remains speculative. Only few MIDs with cluster headache
have been reported.*® Treatment of headache in MIDs is the same
as in non-MID patients. Migraine and migraine-like headache in
MIDs may respond to nonsteroidal antirheumatic drugs, vitamin
supplementation, and triptans.*’Additionally, migraine may be
accessible to ketogenic diet in single patients (personal commu-
nications with patients). Headache during SLEs may respond to
L-arginine or midazolam. ">

Ataxia

Ataxia is a frequent clinical manifestation of MIDs with CNS
involvement. Ataxia in MIDs may dominate the phenotype or
may be only an ancillary phenotypic feature. Ataxia may or
may not be associated with a cerebellar or basal ganglia lesion.
MIDs in which ataxia may dominate the phenotype include
X-linked sideroblastic anemia with ataxia (XLSA), pyruvate-
dehydrogenase (PDH) deficiency, NARP, MIRAS, and some
nsMIDs. XLSA is characterized by early-onset sideroblastic
anemia and cerebellar ataxia.*® Ataxia in XLSA is usually non-
progressive, but a few cases with mild progression after the fifth
decade have been reported. Ataxia predominantly manifests as
gait or trunk ataxia, which may be accompanied by dysdia-
dochokinesia, dysmetria, dysarthria, nystagmus, hypometric
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saccades, strabism, or tremor.> Only some patients additionally
develop lower-limb spasticity.*' Occasionally, female carriers of
the X-linked forms manifest clinically.42 XLSA is genetically
heterogeneous and may be due to mutations in the ALAS?2,
TRTNI, or ABCB7 genes. PDH deficiency is a rare, nonrespiratory
chain associated MID resulting from mutations in the PDHA,
PDHB, PDHC, and PDHD genes, which encode the four subunits
of the PDH complex. PDH deficiency manifests with a wide range
of abnormalities, from isolated lactic acidosis to severe Leigh
syndrome.** Some cases may present with isolated intermittent
ataxia.** Rarely, chromosomal defects have been reported as
causative.*> NARP is a specific MID resulting from mutations in
the ATP6 gene. It is clinically characterized by muscle weakness,
ataxia, and retinitis pigmentosa. Additional phenotypic
features may be learning difficulties since childhood, deafness,
muscle weakness, and myoclonus. The NARP mutation
m.8993T > C may also cause adult-onset myoclonus ataxia.*®
MIRAS is a mitochondrial syndrome resulting from POLGI
mutations (c.1399G > A and 2243G > C) with early-onset ataxia.
Ataxia occurs as a collateral feature in MELAS, MERRF, KSS,
Leigh syndrome, multiple systemic lipomatosis, MDS, sensory
ataxic neuropathy, dysarthria, dilated cardiomyopathy with
ataxia, pontocerebellar hypoplasia (PCH),*” sensory ataxic neuro-
pathy, dysarthria, and ophthalmoparesis, and some nsMIDs. In a
study of 126 MID patients with cerebellar ataxia, 24 had pure
ataxia and 102 ataxia with other MID manifestations.*® Among
patients with idiopathic cerebellar ataxia, 28% had a MID.*®
Ataxia in MIDs is hardly accessible to treatment, which is
why only supportive measures and administration of vitamins,
coenzymes, or antioxidants can be offered.

Movement Disorders

Movement disorders are a group of neurodegenerative diseases
characterized by involuntary movements of the eyes, head, trunk,
or limbs, at rest or during movements. Movement disorders are
characterized by either paucity or excess of involuntary/
asymptomatic or voluntary movements unrelated to weakness or
spasticity.49 Two main groups of movement disorders are deli-
neated: the akinetic-rigid syndromes (e.g. Parkinson syndrome)
and the hyperkinetic-dyskinetic syndromes (e.g. restless leg syn-
drome, tremor).*’ Any of these types of movement disorders have
been occasionally described in single cases or small case series of
patients with specific or nsMIDs,*® and there is increasing evi-
dence that movement disorders can be a major part of the phe-
notypic spectrum of MIDs.”' However, there are only a few
retrospective studies commenting on movement disorders in a
larger group of genetically or biochemically confirmed MIDs
available. In a recent retrospective study, 42 patients with a
movement disorder were identified among 678 MID patients.””
Almost two-thirds of the 42 cases were male. Parkinsonism was
found in 13 patients and dystonia in 11. The most frequent ima-
ging abnormality among the 42 patients was basal ganglia calci-
fication, which was associated with generalized dystonia or Leigh
syndrome.” Dystonia was the most common movement disorder
among pediatric patients and most commonly associated with
mtDNA mutations. Parkinsonism was the most frequent move-
ment disorder among adult MID patients and was most commonly
associated with POLGI mutations.”® Parkinson syndrome has
been also reported in patients with a deletion of the cytb gene,5 Zin
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MERRF,>® CPEO from CI0orf2 mutations,”® in nsMIDs from
mutations in the STXBP] gene5 5 or MPV17,°% and in MIDs from
the m.4296G > A mutation.’’ Dystonia has been most frequently
reported in MELAS, where it may be the presenting manifesta-
tion,® in MERRF in the form of spasmodic dysphonia,® in
LHON,” and in nsMIDs from SUCLA2 mutations®' or the
m.8332A > G mutation.®” Some patients with complex-I defect
or PDH deficiency may develop exertion-induced dystonia.®?
Paroxysmal exercise-induced dystonia may occur in patients with
mitochondrial ECHS1 deficiency. Treatment of movement
disorders in MIDs is not different from non-MID movement
disorders, but occasionally less effective.?

Hypothalamic-Hypophysial-Adrenal Axis (HHAA)

Involvement of the HHAA may manifest as hypopituitarism or
pituitary adenoma. Hypopituitarism may manifest as short stature,
hypothyroidism, hypocorticism, hypogonadism, polydipsia,
or arterial hypotonia. Hypopituitarism has been reported in
MELAS,* KSS.% or nsMIDs from mutations in the isoleucyl
1-RNA synthetase gene.®® Pituitary adenoma has been reported in
LHON®” and some nsMIDs.®® Supplementation of decreased
hormone levels has been tried with a beneficial effect in single
cases.®’

Muscle Weakness

Weakness of bulbar muscles in MIDs may occasionally be due
to affection of the upper motor neuron or involvement of the
intracerebral segment of the lower motor neuron. Involvement of
the upper motor neuron may go along with muscle weakness and
spasticity, exaggerated tendon reflexes, and positive pyramidal
signs. Involvement of the intracerebral segment of the lower
motor neuron can go along with muscle weakness, muscle hypo-
tonia, and reduced tendon reflexes, such as in Leigh syndrome.
There are also cases that present with spasticity but without
muscle weakness and also cases with muscle hypotonia but
without muscle weakness. If cranial nerves innervating bulbar
muscles are affected, dysarthria, dysphagia, and tongue or facial
weakness and wasting may ensue. If bulbar involvement is due to
an upper motor neuron lesion, the masseter reflex may be exag-
gerated. Involvement of the bulbar muscles and the limb muscles
together with pyramidal signs may give rise to mix up a MID with
amyotrophic lateral sclerosis.' Spasticity with muscle weakness
has been reported in CHCHD10 disorders’ and complex I defi-
ciency.71 Spasticity without muscle weakness has been reported in
nsMIDs from an SPG7 mutation.” Hypotonia with muscle
weakness has been found in nsMIDs from PMPCA mutations.”
Muscle hypotonia without muscle weakness has been observed in
coenzyme-Q deficiency’* and other MIDs (Table 2). Only sup-
portive measures are available to influence muscle weakness,
hypotonia, and spasticity.

Psychiatric Abnormalities

The main psychiatric abnormalities associated with MIDs
include cognitive deterioration including dementia, mood dis-
orders, anxiety disorders, and psychosis.75 More rarely reported
are attention deficit hyperactivity disorder in Leigh syndrome,”®
autism spectrum disorders,”’ Miinchausen syndrome, and bipolar
disorder.”® Psychiatric disorders in MIDs may go along with or
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without neurological abnormalities. This is why isolated psy-
chiatric disease has to be considered as a manifestation of a MID.
Cognitive dysfunction has been occasionally reported in MIDs
with diffuse cerebral lesions but not in cases with SLEs.> Affected
domains of cognitive function include abstract reasoning, verbal
memory, visual memory, language (naming and fluency), execu-
tive or constructive functions, attention, and visuospatial func-
tion.> Cognitive impairment may be a transient condition if it is
due to a complex partial seizure or a permanent or even pro-
gressive condition if it is the direct manifestation of the underlying
metabolic defect. Cognitive dysfunction has been reported in
MELAS,* MERRF, NARP,”® LHON, CPEO, KSS, mitochondrial
neurogastrointestinal encephalopathy (MNGIE), Leigh syndrome,
and Alpers-Huttenlocher syndrome.®® Mitochondrial dementia
has been recognized in MELAS,®' MERRF,** KSS,** CPEO,*
and nsMIDs due to the m.586G > A mutation in the tRNA(Phe)
gene.85 Mood disorders, such as depression, have been observed
in MELAS where it may be treatment-resistant,75’86 MERRF,87
NARP,% CPEO due to C100rf2 (twinkle) mutations,>*%° POLGI-
related disorders,”® and in nsMIDs.’! An anxiety disorder as
a manifestation of a MID has been described in nsMIDs.”"
Psychosis has been reported in MELAS,?® KSS,”? POLGI-related
disorders,”® infantile onset spinocerebellar ataxia,”* Leigh
syndrome:,95 and nsMIDs.”® Psychiatric abnormalities particularly
occur in patients with MELAS, in which 50% of cases are
affected.”® Psychiatric abnormalities in MELAS other than those
described previously include borderline personality disorder,”
confusional states,*¢ logorrhea, disinhibition, agitation, and
euphoria.'” Psychiatric abnormalities may even be the presenting
manifestation of MELAS.” Psychiatric disorders in MIDs are
treated in the same way as in non-MID patients, but there are
few data about mitochondrion toxicity of antipsychotic drugs
available.”

Nystagmus

Spontaneous, gaze-evoked, or pursuit-paretic nystagmus is an
infrequent clinical manifestation of a MID and rarely occurs as an
isolated phenotypic feature. Together with other CNS or extra-
CNS abnormalities, it has been reported most frequently in Leigh
syndrome97’98 and more rarely in LHON,” MELAS,'® MDS
from DGUOK deﬁciency,101 POLG-related disorders,102 or in
nsMIDs.' %1% Downbeat nystagmus has been reported in a
patient with MELAS syndrome as a result of the tRNA(Leu)
mutation m.3271T > C.'"% Nystagmus may also be due to ves-
tibular involvement in the MID, which can be differentiated by
vestibular testing.'”” Nystagmus has to be further differentiated
from epileptic nystagmus.lo0 In a retrospective study of
59 patients with genetically confirmed MID, nine (5.3%)
presented with nystagmus.'®® There is no specific treatment of
nystagmus available, but in some cases it may respond to non-
specific therapy with vitamins, cofactors, or antioxidants given as
a general supportive treatment in MIDs.'?”

WMLs

WDMLs are the most frequent morphological CNS abnormality
of MIDs. They may or may not be accompanied by clinical mani-
festations, other CNS abnormalities, or non-CNS manifestations.
WMLs may coexist with gray matter lesions such as in MNGIE
resulting from TYMP mutations.''® The morphology of WMLs in
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MIDs is quite variable, which is why they may be easily mixed up
with other CNS disorders; other hereditary leukoencephalopathies,
leukodystrophies, and multiple sclerosis particularly can be easily
mixed up with WMLs in MIDs. WMLs may be categorized as
spotty, patchy, confluent, centripetal or centrifugal, or as sub-
cortical or central. MIDs with prominent white matter involvement
include MELAS, MNGIE, LHON,'"! KSS,""? Leigh syndrome,"'"?
NARP,'"* PCH,'" leukoencephalopathy, brainstem and spinal
cord lesions, and lactic acidosis (LBSL),116 and nsMIDs from a
single mtDNA deletion,"'” tRNA(Trp),''® ECSHI,""® or a NDU-
FAFI mutation."* In a study of 33 genetically confirmed MIDs
resulting from mutations in mtDNA located genes, the SURF I, and
the POLGI gene, 18.1% had WMLs.'*!

Gray Matter Lesions

Gray matter lesions may occur as an isolated feature or together
with WMLs or other cerebral abnormalities. They may be symmetric
or asymmetric. They may be stable, progressive, or regressive
over time.'?> Most commonly, gray matter lesions occur in patients
with Leigh syndrome.'** Gray matter lesions in Leigh syndrome
show up as T2-hyperintensities of the caudate nucleus, putamen,
tegmentum, tectum, periaqueductal area, cerebellum, or pons.122 The
cortical gray matter may be involved in patients with MELAS.'*
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The periaqueductal gray matter can be affected in MERRF in
addition to atrophy of the cerebellar pedunculi.'** Gray matter
lesions together with WMLs have been described in MNGIE.'"?

Atrophy

Atrophy may be diffuse or focal, may affect the supratentorial
section or the infratentorial section, may go along with or
without clinical manifestations, may be mild or severe, or may
be associated with or without other CNS lesions of a MID.
Cerebral atrophy occurs in specific MIDs and nsMIDs. Among
the specific MIDs, atrophy is particularly prevalent in
PCH,'* CPEO,"”® MELAS,"” MERRF,'** PDH deficiency,
128 ¥SS,'%6 and LHON.'?® PCH can even show up as complete
agenesis of the corpus callosum.'” PCH is genetically hetero-
geneous and can be due to mutations in the AMPD2, DKCI,
RARS2, PCLO, VRKI, EXOSC3, TSEN54, CASK, TSEN2,
ALAAS2, ABCB7, or TET2 genes, respectively. Predominantly
cortical atrophy has been reported in patients with CPEO.'*
Pontine and cerebellar atrophy with a hot cross bun sign resulting
from the mtDNA deletion m.3264_1607del12806 may clinically
mimic the cerebellar type of multisystem atrophy (MSA-C)
manifesting as dysarthria, nystagmus, falls, tremor, impaired
coordination, incontinence, dysphagia, or frequent choking.'*!

Figure 1: (A) T2-weighted image obtained at day 3 after onset of an SLE shows mild swelling (arrows) of right temporo-
occipital lobe. (B) T2-weighted image obtained at day 11 after onset shows progression of edema in the right temporo-
occipital lobe and newly appearing thalamic lesion (arrowhead). (C) Hyperintensity of affected areas (arrowhead) on
DWI. (D) Hypointensity of the white matter and hyper-/isointensity of the cortex and thalamus on ADC (arrowhead).
(E) T1-weighted image shows hyperintense rim (arrows) along cortex of swollen right temporo-occipital lobe, suggesting
cortical laminar necrosis. (Reproduced from Kim et al. Korean J Radiol. 2011;12:15-24, with permission.)
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Basal Ganglia Calcification

Basal ganglia calcification is a rare phenotypic feature of
nsMIDs and often presents without clinical manifestations and is
thus often an incidental finding. Basal ganglia calcification may
occur unilaterally or bilaterally and in case of bilateral occurrence
it may be symmetric or asymmetric. Basal ganglia calcification
may or may not be associated with other cerebral or extracerebral
manifestations. Basal ganglia calcification is often attributed to
non-MID causes and thus neglected as a phenotypic feature of
MID. Basal ganglia calcification has been reported in specific and
nsMIDs. Among the specific MIDs it has been described
in MELAS,'** Leigh syndrome,” and KSS."** More frequently,
basal ganglia calcification can be found in nsMIDs than in specific
MIDs."** Basal ganglia calcification may even occur in pediatric
patients with MELAS.'*'3 In single cases, basal ganglia
calcification was associated with generalized dystonia.*’

Hypometabolism

FDG-PET reflects glucose uptake into cells. Reduced uptake
into cells reflects hypometabolism within cells. In a study of five
patients with Leigh syndrome, of whom four were genetically
confirmed, FDG-PET showed hypometabolism in the cerebellum,
the basal ganglia, and the temporal lobes."*” In one patient,
hypometabolism was present despite morphologically normal
cerebellum on MRL'*’ In a patient with MELAS syndrome
manifesting clinically as headache, seizures, and hemianopia to
the right, hypometabolism on FDG-PET was demonstrated in
both occipital lobes.'*® In two siblings with an MNGIE-like
phenotype resulting from multiple mtDNA deletions, but absence
of a TYMPI, POLGI, ANTI, or ClOorf2 mutation, FDG-PET
showed asymmetric and patchy glucose hypometabolism in the
frontotemporal areas.

Rare CNS Abnormalities in MIDs

Rare CNS abnormalities in MIDs include central sleep apnea
syndrome, as has been described in CPEO patients,'*’ and optic
atrophy. Optic atrophy may be the dominant feature of a MID
phenotype or a nondominant feature. As a nondominant feature,
optic atrophy has been reported in dilated cardiomyopathy with
ataxia syndrome.m Only in single cases was auditory agnosia
reported as a CNS manifestation of an mtDNA mutation.'**
Microcephaly may be another rare manifestation of a MID, as has
been reported in an infant with MELAS syndrome.143 Rarely, the
spinal cord can be affected in nsMIDs manifesting as transverse
syndrome, LBSL, or motor neuron disease.!**

CONCLUSIONS

This review shows that cerebral manifestations of MIDs can be
heterogeneous and occur as isolated clinical manifestations,
isolated radiologic/functional abnormalities, or as both. CN'S mani-
festations can be the presenting feature of a MID, which is why CNS
abnormalities without conclusive explanation can be indicative of a
MID. If only clinical manifestations represent the onset of a MID
without abnormalities on imaging or functional studies, suspecting a
MID becomes difficult. The suspicion of a MID may be strength-
ened if there are abnormalities on imaging or functional studies in
addition to the clinical manifestations. Imaging studies that strongly
suggest a MID include basal ganglia calcification; symmetric gray
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matter lesions in the basal ganglia, brain stem, or cerebellum; or
SLLs. However, the number of nonspecific findings on imaging,
such as WMLs, prevail and are difficult of being attributed to a MID
unless more typical manifestations in organs other than the CNS
support the suspicion. The reason why certain cerebral regions are
predominantly affected is unknown, but there are indications that
mutation loads of maternally inherited mtDNA mutations may differ
between cerebral regions and that the threshold for clinical mani-
festations may differ according to the local energy demand. Future
studies characterizing more precisely the nature of a clinical or
functional/imaging abnormality are required to improve the sensi-
tivity of the workup. In addition to improving the diagnosis of CNS
manifestations in MIDs, there is a need to improve the treatment of
CNS disease in MIDs, particularly of stroke-like episodes, head-
ache, and mitochondrial movement disorders.
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