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Abstract

Objective: To develop a fully automated algorithm using data from the Veterans’ Affairs (VA) electrical medical record (EMR) to identify
deep-incisional surgical site infections (SSIs) after cardiac surgeries and total joint arthroplasties (TJAs) to be used for research studies.

Design: Retrospective cohort study.

Setting: This study was conducted in 11 VA hospitals.

Participants: Patients who underwent coronary artery bypass grafting or valve replacement between January 1, 2010, andMarch 31, 2018 (cardiac
cohort) and patients who underwent total hip arthroplasty or total knee arthroplasty between January 1, 2007, andMarch 31, 2018 (TJA cohort).

Methods: Relevant clinical information and administrative code data were extracted from the EMR. The outcomes of interest were media-
stinitis, endocarditis, or deep-incisional or organ-space SSI within 30 days after surgery. Multiple logistic regression analysis with a repeated
regular bootstrap procedure was used to select variables and to assign points in the models. Sensitivities, specificities, positive predictive values
(PPVs) and negative predictive values were calculated with comparison to outcomes collected by the Veterans’ Affairs Surgical Quality
Improvement Program (VASQIP).

Results: Overall, 49 (0.5%) of the 13,341 cardiac surgeries were classified asmediastinitis or endocarditis, and 83 (0.6%) of the 12,992 TJAswere
classified as deep-incisional or organ-space SSIs. With at least 60% sensitivity, the PPVs of the SSI detection algorithms after cardiac surgeries
and TJAs were 52.5% and 62.0%, respectively.

Conclusions: Considering the low prevalence rate of SSIs, our algorithms were successful in identifying amajority of patients with a true SSI while
simultaneously reducing false-positive cases. As a next step, validation of these algorithms in different hospital systems with EMRwill be needed.

(Received 16 September 2020; accepted 29 November 2020; electronically published 23 February 2021)

Studies of interventions to decrease the incidence of surgical site
infections (SSIs) must include thousands of patients to achieve suf-
ficient statistical power because SSI rates are typically low.1

Traditional SSI detection relies on manual chart reviews, which
is time-consuming and prone to subjective error and facility-level
variation. Therefore, it is important to utilize data available from
the electronicmedical record (EMR) to accurately identify SSIs and
to decrease the burden of manual chart reviews.2

Semiautomated or fully automated algorithms are 2 strategies
for using EMR data for SSI detection.3 A semiautomated algorithm
classifies cases as high or low likelihood of a SSI after it has
occurred based on EMR data (eg, antibiotic administration) and
prioritizes the time-intensive manual review process based on
algorithm output. This strategy aims to maintain high sensitivity
to detect all cases of SSIs while decreasing the burden of chart
reviews, and, therefore, it is suitable for surveillance. Prior studies
have reported significant workload reduction by developing semi-
automated SSI detection algorithms.4 Fully automated algorithms
use EMR data to identify SSIs, without the added expense of time-
intensive manual chart review. Due to the lack of confirmatory
review, a fully automated algorithm aims to achieve a satisfactory
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positive predictive value (PPV) and specificity to identify SSIs, and
it is suitable for research purposes.3

We aimed to develop a fully automated algorithm using data
from the Veterans’ Affairs (VA) EMR to identify deep-incisional
SSIs (ie, SSIs involving deep soft tissues of the incision, such as fas-
cial and muscle layers) or organ-space SSIs (ie, SSIs involving any
part of the body deeper than the fascial or muscle layers that was
opened or manipulated during the operative procedure) after car-
diac or orthopedic surgery.5

Methods

We conducted a retrospective cohort study of patients who under-
went 1 of 3 primary surgeries: coronary artery bypass grafting,
valve replacement, or total joint arthroplasty (TJA, which indicates
total hip arthroplasty or total knee arthroplasty) at 11VAhospitals.
The TJA cohort was derived from data collected between January 1,
2007, and March 31, 2018, and the cardiac surgery cohort was
derived from data collected between January 1, 2010, and March
31, 2018. Data collection for the cardiac surgery cohort began in
2010 due to changes in the way the VA measured cardiac surgery
outcomes before that date. Data from the VA’s integrated EMR
were obtained from the Corporate Data Warehouse (CDW)
through the Veterans’ Affairs Informatics and Computing
Infrastructure (VINCI).

Data were collected for positive microbiology results, erythro-
cyte sedimentation rate (ESR), C-reactive protein (CRP), type and
duration of inpatient antibiotic orders and outpatient oral antibi-
otic orders prescribed, length of stay at admission for primary sur-
gery, readmission, consultation notes, and administrative code
data (ACD) including International Classification of Disease,
Ninth or Tenth Revision (ICD-9 or -10) codes for SSIs and current
procedural terminology (CPT) codes for reoperation for an infec-
tion-related purpose. Consultation notes were extracted as text
fields, and we conducted a search for SSI-related key words
(Supplemental Table 1 online). Positive microbiology results were
collected for blood cultures and local cultures and categorized as
Staphylococcus aureus, coagulase-negative Staphylococcus spp,
gram-positive cocci other than Staphylococcus spp, gram-negative
rods, and other organisms. The highest value of CRP and ESR dur-
ing follow-up period was recorded and used for analyses. ICD
codes and CPT codes were selected to capture possible SSI diagno-
ses broadly, using codes described in previous studies.6,7

The outcome of interest was mediastinitis, endocarditis, or
deep-incisional or organ-space SSI within 30 days after surgery.
The algorithm was tested for accuracy through comparison with
outcomes collected via the Veterans’ Affairs Surgical Quality
Improvement Program (VASQIP).8 VASQIP is a national pro-
gram that uses a validated sampling algorithm to direct manual
review for SSI surveillance, and it is very similar to the National
Surgical Quality Improvement Program. VASQIP applies
National Healthcare Safety Network (NHSN) definitions, with
the exception of a 30-day end point for all types of SSI.9

However, VASQIP only reviews 70% of all major surgical cases.
Patients without VASQIP review were excluded from the analysis.
We elected to not to include superficial SSIs because superficial
SSIs are subject to subjective bias and VASQIP did not collect
superficial SSIs for large duration of study period.

We used multiple logistic regression analysis with repeated
regular bootstrap procedure to select model variables. To build a
model to predict SSIs, we started by assessing each candidate var-
iable for bivariable associations with outcomes. We fit a

multivariable logistic regression with SSIs as the outcome. To avoid
overfitting of the model to the data, we selected variables using a
backward elimination strategy to minimize Akaike’s information
criterion (AIC). This variable selection was repeated 1,000 times
using a bootstrapping method proposed by Austin and Tu10 to
select only those variables identified as predictors in at least 90%
of the bootstrap samples.

We then estimated coefficients of this multivariable logistic
regression model by maximum likelihood estimation and used
them to assign points for included variables. Coefficient values
were approximated to the nearest integers for the ease of calcula-
tion and to improve practicality of the algorithm. We assigned
points based on the created algorithm, and we measured sensitiv-
ity, specificity, PPV and negative predictive value (NPV) for each
cutoff. We also used these summary statistics at each cutoff to cre-
ate a receiver operating characteristic (ROC) curve to demonstrate
the algorithm performance to predict SSIs. All statistical analyses
were performed with SAS version 9.4 software (SAS Institution,
Cary, NC).

The study was approved by the VA Central Institutional
Review Board.

Results

Among the 11 VA hospitals, we identified 13,341 cardiac surgeries
and 18,914 TJAs during the study period. Of these, 9,557 (72.0%)
cardiac surgeries and 12,992 (69.0%) TJAs were evaluated by
VASQIP and were included in our final cohort. Moreover, 49
(0.5%) cardiac surgeries were classified mediastinitis or endocardi-
tis in VASQIP, and 83 TJAs (0.6%) were classified as deep-inci-
sional or organ-space SSIs.

The ICD codes for infection, subsequent surgery (sternal
debridement in cardiac surgeries and reoperation in TJAs) and
positive cultures for S. aureus were included in both models
(Table 1). Sensitivities, specificities, PPVs and NPVs in varying
cutoffs are shown in Table 2. With ≥60% sensitivity, the PPV of
the SSI detection algorithm after cardiac surgeries was 52.5%.
With 80% sensitivity, the PPV of the SSI detection algorithm after
TJA was 62.0%. The area under the curve (AUC) of the receiver
operating characteristic (ROC) curve for SSI detection algorithms
after cardiac surgeries and TJAs were 0.96 and 0.97 in the final
models, respectively (Fig. 1).

Discussion

We used data from the existing VA EMR to develop a fully auto-
mated SSI detection algorithms for cardiac surgeries and TJAs.
With VASQIP as a reference standard, the algorithms achieved
high specificities and NPVs, with PPVs of 52.5% for cardiac sur-
geries and 62.0% for TJAs while maintaining at least 60% sensitiv-
ity. Considering the low prevalence rate of SSIs, our algorithms
were successful in identifying a majority of patients with a true
SSI while simultaneously reducing false-positive cases.

Our study utilized detailed clinical data combined with ACD to
differentiate cases with and without SSIs. ACD are widely used in
surveillance and public reporting programs but are insufficient as a
sole indicator for detecting SSIs.11 In addition to ACD, positive
clinical cultures for S. aureus were assigned high points. The pos-
sible rationale behind this is that S. aureus is the most common
pathogen causing postoperative mediastinitis and early-onset
prosthetic joint infections. In our study, the performance of the
SSI detection algorithm for TJAs was better than that for cardiac
surgeries. This difference is probably due to the better performance
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Table 1. Bivariate and Multivariate Analysis of Variables Associated With Surgical Site Infection

A. Cardiac surgery (N = 9,557)

No. (%) of Cases Bivariate Analysis
Presence in

1,000
Bootstrap

Replications, %

Multivariate Analysis

Clinical characteristic

Mediastinitis or
Endocarditis
(n = 49)

No SSI
(n = 9,508) OR (95% CI) P Value OR (95% CI)

β-
Coefficient
(95% CI)

P
Value

Point
Score

Any consult note mentioning sternal or
wound infection

12 (24.5) 27 (0.3) 3.9 (1.2–12.9) .02 22.9

ICD codes for mediastinitis 22 (44.9) 22 (0.2) 10.0 (3.7–26.6) <.01 99.8 14.3 (5.6–36.0) 1.3 <.01 1

ICD codes for endocarditis 1 (2.0) 47 (0.5) 0.5 (<0.01–306.0) .82 0

ICD codes for other SSIs 44 (89.8) 519 (5.5) 17.2 (5.2–56.8) <.01 99.4 42.7 (15.1–120.1) 1.9 <.01 2

ICD codes for other diagnosis for
possible SSI

7 (14.3) 121 (1.3) 2.0 (0.6–6.0) .24 11.3

Sternal debridement 21 (42.9) 11 (0.1) 21.8 (6.9–69.0) <.01 100 33.3 (11.7–94.6) 1.8 <.01 2

Reoperation 14 (28.6) 92 (1.0) 1.7 (0.6–4.8) .32 77.2

Readmission 30 (61.2) 1,632 (17.2) 1.5 (0.6–3.8) .37 11.1

Positive culture for MRSA 4 (8.2) 5 (0.1) 3.4 (0.6–19.5) .17 84.4

Positive culture for Staphylococcus
aureus

13 (26.5) 37 (0.4) 5.5 (1.6–19.3) <.01 93.3 7.3 (2.5–21.0) 1.0 <.01 1

Positive culture for GPC other than
Staphylococcus spp

2 (4.1) 30 (0.3) 1.0 (0.1–17.2) 1.00 17.0

Positive culture for GNR 8 (16.3) 98 (1.0) 0.8 (0.2–3.9) .78 10.9

Positive culture for other organisms 6 (12.2) 30 (0.3) 3.3 (0.6–18.3) .18 15.3

CRP >3 mg/dL 14 (28.6) 260 (2.7) 0.4 (0.1–1.8) .26 74.7

ESR >30 mm/h 13 (26.5) 258 (2.7) 4.2 (1.1–16.2) .04 88.9

ICD codes for respiratory infection 4 (8.2) 124 (1.3) 4.4 (0.9–21.0) .06 88.1

ICD codes for sepsis 8 (16.3) 100 (1.1) 2.1 (0.5–9.2) .32 7.3

Use of cefazolin, nafcillin or oxacillin 17 (34.7) 431 (4.5) 0.9 (0.3–2.6) .90 6.0

Any other antibiotic prescription 45 (91.8) 2,878 (30.3) 2.3 (0.6–8.6) .23 12.2

Length of primary hospital stay ≥14 d 22 (44.9) 1,840 (19.4) 2.1 (0.9–5.3) .10 86.9

B. Total Joint Arthroplasty (N = 12,992)

Clinical Characteristic

No. (%) of Cases Bivariate Analysis

Presence in
1,000

Bootstrap
Replications, %

Multivariate Analysis

Deep-Incisional
or Organ-
Space

SSI (n = 83)

No SSI
(n =

12,909) OR (95% CI) P Value OR (95% CI)

β-
Coefficient
(95% CI)

P
Value

Point
Score

Any consult note mentioning hip/knee/
surgical infection

55 (66.3) 70 (0.5) 7.1 (3.0–16.6) <.01 99.8 7.7 (3.4–17.1) 1.0 <.01 1

ICD codes for definite SSIs 53 (63.9) 74 (0.6) 17.9 (7.3–43.9) <.01 100 27.7 (11.7–65.8) 1.7 <.01 2

(Continued)
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Table 1. (Continued )

B. Total Joint Arthroplasty (N = 12,992)

Clinical Characteristic

No. (%) of Cases Bivariate Analysis

Presence in
1,000

Bootstrap
Replications, %

Multivariate Analysis

Deep-Incisional
or Organ-
Space

SSI (n = 83)

No SSI
(n =

12,909) OR (95% CI) P Value OR (95% CI)

β-
Coefficient
(95% CI)

P
Value

Point
Score

ICD codes for other SSIs 27 (32.5) 99 (0.8) 0.8 (0.3–2.4) .76 72.9

ICD codes for other diagnosis for
possible SSI

23 (27.7) 62 (0.5) 16.3 (5.6–47.5) <.01 99.8 23.7 (8.7–64.4) 1.6 <.01 2

Reoperation 21 (25.3) 28 (0.2) 10.6 (3.6–31.1) <.01 99.6 12.9 (4.6–35.9) 1.3 <.01 1

Readmission 60 (72.3) 1,725 (13.4) 2.7 (1.2–6.1) .02 90.3 3.2 (1.5–6.9) 0.6 <.01 1

Positive culture for MRSA 15 (18.1) 41 (0.3) 0.8 (0.1–3.9) .73 76.5

Positive culture for Staphylococcus
aureus

23 (27.7) 44 (0.3) 8.9 (2.7–29.4) <.01 97.3 7.7 (2.8–21.0) 1.0 <.01 1

Positive culture for other Staphylococcus
species

8 (9.6) 55 (0.4) 0.8 (0.2–3.3) .76 12.2

Positive culture for GPC other than
Staphylococcus spp

7 (8.4) 11 (0.1) 4.0 (0.5–30.5) .18 14.0

Positive culture for GNR 9 (10.8) 35 (0.3) 1.9 (0.3–10.6) .47 77.6

Positive culture for other organisms 4 (4.8) 10 (0.1) 0.1 (0.01–0.6) .01 89.1

CRP >3 mg/dL 64 (77.1) 883 (6.8) 0.9 (0.3–3.3) .92 4.3

ESR >30 mm/h 61 (73.5) 682 (5.3) 1.6 (0.5–5.2) .47 7.8

ICD codes for endocarditis 0 (0) 1 (0.01) <0.01 (<0.01–>999) 1.0 10.0

ICD codes for respiratory infection 1 (1.2) 50 (0.4) 1.0 (0–40.3) 1.0 0

ICD codes for sepsis 6 (7.2) 51 (0.4) 0.5 (0.1–4.8) .59 7.6

Use of vancomycin or piperacillin/tazo-
bactam ≥ 6 days

34 (41.0) 116 (0.9) 7.9 (3.3–18.6) <.01 99.6 7.8 (3.4–18.0) 1.0 <.01 1

Use of rifampin 24 (28.9) 13 (0.1) 6.1 (2.0–18.3) <.01 95.5 5.8 (2.0–16.9) 0.9 <.01 1

Any other antibiotic prescription 73 (88.0) 2,452 (19.0) 4.1 (1.6–10.6) <.01 29.3

Length of primary hospital stay≥ 14 days 7 (8.4) 270 (2.1) 3.8 (1.2–12.3) .03 19.4

Note. OR, odds ratio; CI, confidence interval; SSI, surgical site infection; ICD, International Classification of Diseases; MRSA,methicillin-resistant Staphylococcus aureus; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; GPC, gram-positive cocci; GNR,
gram-negative rod.
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of ACD used for SSIs after orthopedic surgeries, compared to those
used for SSIs after cardiac surgeries.11,12

This study has several limitations. First, we only evaluated
patients for 30 days after index surgery because VASQIP only
detects SSIs within 30 days. This method differs from NHSN sur-
veillance that detects SSIs within 90 days for TJA and cardiac sur-
geries. We might have missed SSIs caused by more indolent

organisms with onset beyond the 30-day period. Second, only
deep-incisional and organ-space SSIs were targeted in our algo-
rithm because the symptoms and definitions associated with
superficial infections are vague. Third, different ACD (ICD-9/-
10) were used in different time frames during study period.
ICD-9/-10 translations do not always align and produce disconti-
nuity in some diagnoses.13 Fourth, we evaluated only positive

Table 2. Sensitivities, Specificities, PPV Positive Predictive Values and NPV Negative Predictive Values of Surgical Site Infection
Detection Algorithms, With Varying Cutoffs

Cutoff
Cases Detected as
Having SSIs, No. (%) Sensitivity, % Specificity, %

Positive Predictive
Value, %

Negative Predictive
Value, %

Cardiac surgery (N = 9,557)a

1 581 (6.1) 93.9 94.4 7.9 99.9

2 86 (0.9) 67.4 99.4 38.4 99.8

3 59 (0.6) 63.3 99.7 52.5 99.8

4 20 (0.2) 32.7 99.9 80.0 99.7

5 14 (0.2) 24.5 99.9 85.7 99.6

6 5 (0.1) 10.2 100 100 99.5

Total joint arthroplasty (N = 12,992)b

1 1,983 (15.3) 96.4 85.3 4.0 99.9

2 277 (2.1) 91.6 98.4 27.4 99.9

3 178 (1.4) 90.4 99.2 42.1 99.9

4 108 (0.8) 80.7 99.7 62.0 99.9

5 63 (0.5) 59.0 99.9 77.8 99.7

6 21 (0.2) 20.5 99.9 81.0 99.5

7 6 (0.1) 6.0 99.9 83.3 99.4

Note. PPV, positive predictive values; NPV, negative predictive values; SSI, surgical site infection; ESR, erythrocyte sedimentation rate; ICD, International
Classification of Diseases.
aPositive culture for Staphylococcus aureus = 1 points, sternal debridement = 2 points, ICD codes for other SSIs = 2 points, ICD codes for mediastinitis =
1 point.
bICD codes for definite SSIs = 2 points, ICD codes for other diagnosis for possible SSIs = 2 points, any consultation note mentioning hip or knee surgical
infection = 1 point, reoperation = 1 point, readmission = 1 point, positive culture for Staphylococcus aureus = 1 point, use of vancomycin or piperacillin/
tazobactam ≥6 days = 1 point, use of rifampin = 1 point.

ROC curve for mediastinitis/endocarditis ROC curve for deep incisional/organ-space SSI

Area under the curve = 0.96 Area under the curve = 0.97

Fig. 1. Receiver operating characteristic (ROC) curve for surgical site infection (SSI) detection algorithms.
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clinical cultures; thus, wemight have missed some culture-negative
SSIs. However, this limitation was mitigated by other elements of
the algorithm, which would have flagged patients in other ways,
such as ACD or antimicrobial orders. Finally, due to limitations
of the EMR, we could not obtain outpatient intravenous antibiotic
data; however, the vast majority of patients with deep-incisional or
organ-space SSIs are first evaluated on an inpatient basis; thus,
those orders would have been included in the algorithm.

Future research to improve these algorithms should include
machine-learning approaches or advanced key word searches for
infection-related terms, as has been applied for measurement of
infections following cardiac device procedures within the VA.14

These algorithms should also be validated in other healthcare sys-
tems with EMR data using NHSN data as the gold standard.

Current research studies of interventions to prevent SSI rely on
either ACD alone or on data from intensive chart review to assess
whether the interventions were successful.11,15 These algorithms
will improve our ability to accurately evaluate SSI interventions
in large healthcare systems. In the VA context, these algorithms
can be combined with VASQIP data to assess SSIs among all rel-
evant surgical patients in the VA system, rather than only the pro-
portion of patients assessed by VASQIP.
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