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On converse duality in

complex nonlinear programming

J. Parida

In this note a converse duality theorem is proved for a class of

nonlinear programming problems over polyhedral cones in finite

dimensional complex space by a direct use of a Kuhn-Tucker type

necessary and sufficient condition for constrained optimization

in complex space.

0. Introduction

Abrams and Ben-Israel [2] and Abrams [7] have established a converse

duality theorem for nonlinear programming in complex space. For the proof

they have assumed the existence of an auxiliary analytic function. Craven

and Mond [5] have given a converse duality theorem for complex space

through a method of proof that depends on mapping a complex minimization

problem onto an equivalent minimization problem in real space. In [2],

Abrams and Ben-Israel have obtained a necessary condition of the Kuhn-

Tucker type for a class of nonlinear programming problems in complex space.

In the present paper, we have modified their result so as to be applicable

to the case where there may occur equality constraints in the constraint

set and then used this modified result to prove a converse duality theorem

for complex space.

1 . Notations and p re l im ina r i es

Let u [R ) denote the n-dimensional complex (real) space, with

hermitian (euclidean) norm. R denotes the half l ine [0, °°) . If A i s
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m n

a complex matrix or vector, then A , A and A denote its transpose,

complex conjugate, and conjugate transpose. S c ( T is a polyhedral cone

if it is finite intersection of closed half-spaces in C , each containing

0 on its boundary. The polar S* of 5 is defined by

S* = {y € (f : x € S => Re yHx > 0} .

We s h a l l make use of t h e following [ I ] , [ 2 ] , [ 5 ] : i f S and T a re

po lyhedra l cones in C , then

(5 x T)* = S* x T* ,

S x T i s a po lyhedra l cone.

I f S = d" , t hen 5* = {o} .

Define t h e l i n e a r manifold QcCn=Cn^Cn by

Q = {{w1, W2) € C2n : w2 = J7} .

The analytic function f : Q ->• C has a convex real part with respect to

i?+ on Q if for all a1, z2 Z Q ,

ReCft,1, 7)-f{z2, 7)-VTf{z2, 7){z1-z2)-^f{z2, 7)(7-7)} >- 0 ,

z , z ) and V—f[z z )

vectors of partial derivatives

where V f{z , z ) and V—f[z , z ) denote, respectively, the column
3 Z

ana

The analytic function g : Q •* V is concave with respect to S on § if

for all z1, z2 (. Q ,

, 3 ) (3 -3 ) + Z># (s , 3 ) (s -3 ) + 3 (s , 3 ) - 3 (3 , 3 ) € S

where D ̂ (s , s ) and D~g[z , 3 1 denote, respectively, the m x

matrices whose i, j-th elements are
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r 2 2-v . r 2 2-,
'^13 ,3 J 3 ^ Is ,z J

and

3 3

If f : Q •* C , J : Q •* R , and f : Q •* R are analytic on Q , and

f(z, J) = ̂ {z, I) + ̂ ( s , 7) then

(A) V s / ( 2 , s) + V-/(s , 3) = 2V-f{z, z) .

If / : Q •+ C i s an analytic function, then (see [ 5 ] , p . 6l9)

(B) !£.
1 .2

and
1 "

^ ^ % %

2. Complex version of the Kuhn-Tucker conditions

We shall make use of the following results of Abrams and Ben-Israel

[2].

THEOREM 2.1. Let (P) denote the problem

(P) MINIMIZE Re f(z, i")

SUBJECT TO g(z, J) ? S

where S is a polyhedral cone in (T , and f : Q -*• C , g : Q -*• u are

analytic in a neighborhood of a qualified point ( 2 , 3 ) . A necessary

condition for ( 3 , 3 ) to be optimal is that there exists a u t S* such

that

(2.1) Re uHg(z°, z°) = 0

and

(2.2) V2/(2°, S°) + Vjf{z°, z°) - D
B
zg{z\ z°)u + ̂ ( 2 ° , z°)u .

REMARKS 2.2. A point (3°, 3°) qualified means it is a feasible

point of (P) and the (Kuhn-Tucker) constraint qualification defined in [3]

holds at this point.

If f : Q -*• C is analytic and has convex real part with respect to

R on Q and g : Q •* C is analytic and concave with respect to S on
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Q , then in Theorem 2.1 the necessary condition is also sufficient [/].

We want to modify Theorem 2.1 so as to include equality, as well as

inequality, constraints.

COROLLARY 2.3. If (p) itself is of the form

MINIMIZE Re f(z, 1, W, w)

SUBJECT TO G(z, 1, W, w) i S .

(2.3) H(z, z, w, w) = 0 , w € T ,

then a necessary condition for t,= [z,z,w,w~j to be optimal is

u € S* 3

(2.5) Re / G ( C ) = 0 ,

(2.6) Re[v^/(<;)+v|f(c)-"\ff(c)-/zy;(5)-Awfl(?)-/i>;^(c)]w
0 = o ,

and

( 2 . 7 ) V fU) V f ( ? ) Z^C(c)u L^GiOu / f f ( ^ ) u iFz z z z z z

Proof. The constraint set (2.3) can be written as

(G(z, ~Z, W,

\H(z, H, W,W)\ (. S x {o} x T .

W

An easy application of Theorem 2.1 then gives the required result.

3. Converse duality

Assume f(z, z) and g(z, z) in (P) satisfy the hypothesis of

Theorem 2.1. A dual of (P) in the sense of Wolfe [7] is

(D) MAXIMIZE Re f(x, x) - Re yHg(x, x~)

SUBJECT TO !Kx, x, y, y) = V ^ s , x) + V-/(x, x) - lFg(x, x)y

- l£g{x, ~x)y = 0 , y i S*

THEOREM 3.1. Let f : Q •*• C be analytic and have convex real part
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with respect to B+ on Q , let S be a polyhedral cone in (f , and let

g : Q ~+ C be analytic and concave with, respect to S on Q . If

[z , z , u ) is an optimal solution of (D) such that the matrix

(3.1)

uk>{x, x, y, y) DJi(x, x, y, y)

Dj)(x, x, y, y) LH>{x, x, y, y)

i , ( - 0 0 0 C K , , f 0 0 i . j. • 7
is nonsvngular at [z , z , u , u ) , then [z , z ) is an optimal

solution of (P).

Proof. We shall suppose that [z , z , u ) i s a qualified point

re la t ive to the feasible region of (D). So [z , z , u ) i s a feasible

point of (D) and we have

(3-2) V f{z°, «°) + V-f(z°, z°) - lFa{z0, z°)u° - &{z0, z°)u° = 0

and

0
(3.3)

Utilising Corollary 2.3, we get

(3.1*) gr(2 , 3 J + D g[z , z )v

S* .

(3 .5)

and

(3.6)

Re

«°, 3°)y € 5 ,

3 , S )lT> = 0 ,

°, z°, u°,u°)v = 0 .
- 2 r v a — 3 — 5 — j - 2

Combining (3-6) with its complex conjugate, we obtain

(3 -7 ) = 0

The second part of the statement of Theorem 3.1 assures us that the
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solution (y, v) of the homogeneous system (3-7) is unique, and therefore

(3.8) v = 0 .

Using (3-8) we find that (3-M and (3.5) become

(3-9) g{z°, s°) I S

and

(3.10) Re w g[z , 2 ) = 0 .

Equation (3-9) implies that ( 2 , 2 ) is feasible for (P). Since Re /

is convex with respect to R on Q and g is concave with respect to 5

on Q , the conditions (3-2), (3-3), and (3-10) are sufficient for

optimality, and thus ( 2 , 2 ) is an optimal solution for (P).

REMARKS 3.2. Let cp = ^{z, ~z) and let partial derivatives be

denoted by subscripts. Using identities (A) and (B) , the matrix (3.1)

becomes

p
zz

<p — <p—
zz zz

zz

9*1

y - y ,

which is similar to the matrix obtained in [5] (Theorem 1, p. 622).

Abrams in [I] (Theorem k, p. 627) has assumed the existence of an

analytic function a : <J •* (T with certain properties. It can be checked

that for the existence of such a function, non-singularity of the matrix

(3.1) is a sufficient condition (see [4], Theorem 9, p. 39).

One can prove this theorem by using Fritz John type necessary

conditions [6], which requires no constraint qualifications, thus being

able to eliminate the assumption that the optimal solution of the dual is a

qualified point.
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