REMARKS ABOUT THE DIGITS OF INTEGERS

RALPH ALEXANDER ¹

(Received 6 January 1969; revised 23 September 1969)

Communicated by B. Mond

Introduction

Let $n_1 < n_2 < \cdots$ be the sequence of positive integers whose base b representations involve the digit $t \le b-1$ at most d-1 times. B. D. Craven [2] shows that $\sum_i 1/n_i$ converges by giving an upper bound for this sum as a function of b and d.

The method used by Professor Craven gives an upper bound on the sum $\sum_i 1/0_i$, where $0_1 < 0_2 < \cdots$ is the much larger positive integer sequence whose members have the property that the digit t occurs at most d-1 times in succession in their base b representations. The first theorem is a corollary to the main theorem in [2].

THEOREM 1. Let $0_1 < 0_2 < \cdots$ be the sequence of positive integers whose base b representations involve the digit $t \le b-1$ at most d-1 times in succession. Then $\sum_i 1/0_i$ is less than $b^d(1+d\log b)$.

Using a variation of one of the methods in our article [1], we will give estimates of both types of sum mentioned above.

A method of estimating certain harmonic sums

Let $n = \sum_{r=0}^{\infty} a(n, r)b^r$ be the representation of n to the base b. We define L(n) to be k+1, where k is the largest integer i for which $a(n, i) \neq 0$. Clearly L(n) is the number of significant digits in the base b representation of n. For any positive integer n,

$$(1) n < b^{L(n)} \le bn.$$

If $\{a_i+jc_i: j=0,1,\cdots\}$, $i=1,2,\cdots$, is a pairwise disjoint sequence of arithmetic progressions in the positive integers, then

$$\sum_{i} 1/c_{i} \leq 1.$$

¹ This research was supported by NSF grant gp-7537.

This follows at once from the observation that the natural density of the *i*-th progression is $1/c_i$.

THEOREM 2. Let $n_1 < n_2 < \cdots$ be the sequence of positive integers whose base b representations involve the digit $t \le b-1$ at most d-1 times. Then $\sum_i 1/n_i$ is at most db^2 .

PROOF. Let $m_1 < m_2 < \cdots$ be the sequence of positive integers whose base b representations involve the digit t exactly k times. We claim that the sequence of arithmetic progressions

$$\{\lceil m_i + tb^{L(m_i)} \rceil + jb^{L(m_i)+1} : j = 0, 1, \dots \}, \quad i = 1, 2, \dots$$

is pairwise disjoint. Indeed, given any integer in the union of these progressions, the associated m_i is immediately identified by noting where the (k+1)-st t occurs in the base b representation of that integer. For example (using arabic notation with b=10, t=0, and k=2), suppose the integer is 103,020,109; then our method of construction would give m_i as 20,109. Hence, $\sum_i b^{-L(m_i)-1} \le 1$ by remark (2) and by remark (1) it follows that $\sum_i 1/m_i \le b^2$. Letting $k=0,1,\cdots$, d-1 and summing, we obtain $\sum_i 1/n_i \le db^2$.

THEOREM 3. Let $0_1 < 0_2 < \cdots$ be the sequence of positive integers whose base b representations do not have the digit $t \le b-1$ appearing d times in succession. Then

$$\sum_{i} 1/0_i \leq b^{d+2}.$$

PROOF. We consider the sequence of progressions

$$\{ [0_i + \sum_{k=1}^d tb^{L(0_i)+k}] + jb^{L(0_i)+d+1} : j = 0, 1, \dots \}, \qquad i = 1, 2, \dots.$$

As before, these progressions are pairwise disjoint, since an integer in the union of the progressions may be associated with a unique 0_i simply by examining the blocks of t's in the integer's base b representation. For example (using arabic notation with b = 10, t = 9, and d = 3), suppose the integer is 699,909,927; then our method of construction identifies 0_i as 9,927.

Thus

$$\sum_{i} b^{-L(0_i)-d-1} \le 1$$

be remark (2), and

$$\sum_{i} 1/0_i \leq b^{d+2}$$

by remark (1).

Closing remarks

By a more careful estimate of the sums occurring in the proof of Theorem 2, we could replace db^2 by $Kdb \log b$, where K is a constant slightly larger than 1.

Also, we note that Theorem 3 improves Theorem 1 only if $d \log b > b^2$. Assuming t = 0 and using a more elaborate estimate, we could replace b^{d+2} by $Kb^d \log b$ in Theorem 3.

Finally, we wish to thank the referee for a number of comments which helped improve the accuracy and clarity of our article.

References

- [1] R. Alexander, 'Density and digits of sequences of integers', Michigan Math, J. 16 (1969), 85-92.
- [2] B. D. Craven, 'On digital distribution in some integer sequences', J. Australian Math. Soc. 5 (1965), 325—330.

University of Illinois 61801