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Some product varieties of groups

R. A. Bryce and John Cossey

We consider varieties V = A A A with m prime to p . We

P ^
show that the subvariety lattice of V. is distributive and has

descending chain condition and that A A is its only just

"FT

non-Cross subvariety. When m is prime we determine the

join-irreducible subvarieties of V. . The method involves

fairly detailed description of the structure of non-nilpotent

critical groups in V_ .

1. Introduction

The principal motivation behind many investigations in the theory of

varieties of groups since its inception seems to have been a desire to

decide whether or not every variety requires only finitely many laws to

define it; and a large number of varieties do have this property (which

is usually known as 'the finite basis property'). The papers [7], [3],

[6], [7 7], [77], [27], for example, all contain finite basis theorems.

There have been conjectures that every variety has the finite basis

property and, more cautiously, that every soluble-of-finite-exponent

variety does. Recently, however, two (unpublished) counter-examples to

this have been produced: the first, by A.Yu. Ol'shanskii, is soluble of

length 5 and exponent 120 and the second, by M.R. Vaughan-Lee, is

soluble of length h and exponent 16 . One of the results proved here

(Theorem 5.1) goes a small way towards closing the gap between these

examples and known finitely based varieties of smaller soluble length.

Even before these examples of Ol'shanskii and Vaughan-Lee were known

the range of questions considered, for locally finite varieties at any
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rate, had widened considerably as people found that, from methods

developed to prove finite basis theorems, much more information could be

obtained; see, for example, [/], [Z], [4, 5], [7], [75], [76]. The test

questions, on which one can determine the efficacy of one's methods for

dealing with a given variety V̂  then, include those following.

a) Does Y , and all its subvarieties, have the finite basis

property?

b) Is the lattice A(^) of subvarieties of .V distributive?

If the answer to (a) is 'yes' for i then every subvariety of £ can be

written as a finite join of (finitely) join-irreducible subvarieties.

c) What are the join-irreduaible subvarieties of £ ?

If i is not a Cross variety it has subvarieties which are just non-Cross

(Kovacs and Newman [76]).

d) What are the just non-Cross subvarieties of V_ ?

This list is far from exhaustive, of course - we have not, for

example, mentioned Graham Higman's interesting question about the orders

of the free groups of V. , (§2 in [72]) - but it is with these questions

in mind that the present paper has been written. The varieties ^ with

which we will be concerned are A A .A where p is a prime not dividing

m ; we answer (a), (b) affirmatively and provide answers to (c), (d).

The reader is referred to Hanna Neumann [7is] for definitions and

terminology about varieties of groups and to Curtis and Reiner [£] for

representation theory.

The technique employed involves fairly detailed description of the

structure of non-nilpotent critical groups in V. , and may be regarded as

a natural development of the methods of Chapter 3 in [5] (see also [4]):

in particular the concepts of bigroup and variety of bigroups used there

will be needed here. The structure theorems are proved in §4, while other

preliminary results which will be needed in §5 are introduced in §§2, 3;

§2 deals with representations of groups in A A over fields of
—ill—~y

characteristic p and §3 with enough representation theory over the ring

of integers modulo p for our present purposes.
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A convention used needs comment. If A is an abelian normal

subgroup of a group G we shall often regard A as a G-module and may,

without comment, write A additively. The action of elements of G on

A will be written <£ (a € A, g d G) , -but note that other linear

transformations of A may be written as right multiplication; thus if e

is an endormorphism of the module A we write ae for the image of a

under e .

2. Representations of A J L groups

For convenience we s t a r t by stat ing a well-known theorem in a form
appropriate for our purposes (see Higman [JO, Lemma]).

LEMMA 2 .1 . Let A be an abelian p-group, K a finite group of

automorphisms of A and K^ a normal p'-subgroup of K . If A is

the subgroup of A whose elements are fixed by every element of K\ then

A has a complement in A which admits K .

This section is devoted to proving the following theorem.

THEOREM 2.2. Let p be a prime and m a natural number prime to

p , and let K in A A be a finite group which has a faithful

irreducible representation over a field E of characteristic p . All

the faithful irreducible representation modules for K over E are

principal indecomposables and the representations they afford form a

single linear isomorphism class.

Proof. Start by assuming that E is algebraically closed and l e t

M be a faithful co-monolithic module for K over E , with unique

maximal submodule M , say. Write S for the normal Hall p'-subgroup

of K : notice that S i s not 1 . By Maschke's Theorem there exists an

irreducible submodule N of M- outside M . Now N i s one
D O

dimensional and, since 5 is normal in K , Nk is a submodule of Mc
o

whenever k d K . Hence if T is a transversal of K to 5

(2.3) M = I Nt .
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Suppose k f K is such that N = Nk . That is, there is a

one-to-one linear transformation 9 : N ->• Nk such that

(2.U) (ns)e = (n6)s , s € 5 , n d N .

However s acts simply as a scalar multiplication, say ns = na(s) where

a(s) € if ; so that if w9 = n'k , then n »• «' is a linear

transformation and

(2.5) (ns)' = (nct(s))' = n'a(s) = n's , n i N , s € 5 .

We conclude from (2.U) and (2.5) that

(n'k)s = (ns)'k = (n's)k , n' Z N , s € S ,

whence it follows that [S, k] 5 kerN . Now S centralizes K' and

therefore [S, k] is normal in K . Lemma 2.1, and the fact that M is

faithful and indecomposable, ensures that [S, k] = 1 ; but CAS) = S
A

or else K would have a non-trivial normal p-subgroup and could not have

a faithful irreducible representation over E . Hence k t S and it

follows from (2.3) that

(2.6) M = © Nt .

We have shown, therefore, that the dimension of M is |A* : S\ . A

simple application of Lemma 2.1 and Maschke's Theorem shows that M/M is

faithful and, being irreducible, is co-monolithic, so that

dimM = dimM/M ;

in other words M = 0 . The first statement of the theorem is now proved

(for closed fields) by observing that a principal indecomposable for K

over E is co-monolithic and that it is faithful if the co-monolith is

faithful.

The restriction on the field can now be removed. If V is a

faithful irreducible module for K over E , and E* is the closure of

E then, by (70.15) of Curtis and Reiner [£], E* gL V is completely

reducible and each irreducible component is faithful, hence projective, by

what has already been proved; and therefore E* gL, V is projective.

This in turn will imply that V is projective. For, if
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V

a

is a diagram with exact row then there exists Y* such that the diagram

® a

E* ®g, V X ® 3 E* ®E V >• 0

commutes. If V i V and (l © v)y* = 7 e. ® V. (where

{l = e , e., .•.} is a basis for E* over E) it is easily checked that

Y : V **• v1 is an ff^-homomorphism such that YB = a , as required.

Finally then, V is a direct sum of principal indecomposables and is

therefore itself a principal indecomposable.

To proceed further, more structure on K is required. The lemma

that follows comes either directly from, or by routine modification of,

results of Kochendorffer [73] and Taunt [20].

LEMMA 2.7. S is a direct product of indecomposable normal

homocylic subgroups S. (l 5 i 5 r) of K . Moreover each OS. is a

minimal normal subgroup of K and aK is their direct product, this

being the unique decomposition of oK as a direct product of minimal

normal subgroups of K .

In order to prove that the faithful irreducibles of K over E form

a single linear isomorphism class it suffices, by Theorem 2.5 in [7], to

assume that E is algebraically closed. If, then, M is a faithful

irreducible module for K over E (2.6), and (Ul+.l) in [S], ensures that

(2.8) M = /

where N is a one-dimensional submodule of M^ . The proof consists in

choosing a basis for M and a set of generators for K , depending on M ,

and evaluating the matrices representing these generators; it will be

obvious that the linear group they generate is independent of M .
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In (2.6) T may be chosen as a complement for S and is to be fixed

throughout. Also the subgroups S. ( l 5 i 5 r ) in Lemma 2.7 are to be
Is

fixed. Regard aS. and S./<&{S.) as T-modules over a field of prime

order (NOTE: 5. has prime-power order); they are easily seen to be

isomorphic and hence, by 12.2.2 of [9], keraS. = C [S.) . With at most

one exception (by Lemma 2.7 at most one aS• is central in K)

\T : CJS.)\ is therefore equal to p ; choose a fixed t. € T \ cJs.) .
J. Is Is J. Is

Next, given the faithful irreducible module M choose N so that (2.8)

holds; let L = kertf . Note that S/L is cyclic, hence S./S.nL are
1* Is

all cyclic and that, because of Lemmas 2.7 and 2.1,

(2.9) \S./S.nL\ = expS. , \S/l\ = expS , 1 < £ < r .
Ts Is 1*

Choose an element s € S\L whose order i s expS .

The following lemma is v i t a l .

LEMMA 2.10. Let V be a free module of rank p over the ring of

integers modulo q (q a prime), and let V (^ qV) be a free

submodule of V of rank p - 1 . H = (h) is a q'-cycle acting

faithfully and indecomposably on V . There is a basis {v., . . . , u } of

V such that v. d Vn ( l < i < p-l) and
IS O

(2.11) v .h = v. , 1 5 i 5 p-l .
1 "Z+1

Moreover the matrices representing h with respect to all bases with the

property (2.1l) are the same.

Proof. No proper submodule of V , not in qV , admits h . I t

follows easily that i f

U. = V n V h n . . . n V hv~ , 1 £ i < p ,

then the rank of U. i s p - i . Choose 0 + v € U _ . Since

V l = ^P-S n Up-2h t h e r e e x i S t S Up-2 € V-2 SUCh t h a t V l = VQ-2h

and V \ U . In a similar fashion choose V _ , , . . . , u (t VJ
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and define v = v h . Now {v , ..., v ,} is a basis for V by

construction and hence v ^ V so that {u,, ..., V } is a basis for

V , and has the desired properties. Notice that the coefficients in the

expression for v h are coefficients of the minimum polynomial for h .

This completes the proof of Lemma 2.10.

Choose a basis {v--,, ..., v. . ..} for S. respecting S. n L as

in the lemma, with t. playing the role of h : for convenience set
1

s. = vJ

that

. Jatj\ • Then there exists an integer m. , independent of L , such

m. u.
s = s. modi^

r U. u. -I

where [u., expS.) = 1 . However ju--,> •••> v ̂  I • )\ i s s t i 1 1 a basis

for S. with the properties of Lemma 2.10, so, without loss of generality,

m.
(2.12) s V 5 s. modi .

Now s. is a generator of S. as T-module and the action of T on s.
^ If 1r

depends only on that of t. ; specifically, to each t £ T there exists
1r

an integer x(i, t) , independent of L by Lemma 2.10, such that

s. = s. ' modi .
i ^

Finally iet N = sp{n} , ns = an (a e £) , and B = {n ® t : t ( J1}

be our basis for M (from (2.8) this is possible). Note that

[n®t)s.=n®ts.=n®s. t = ns. *• ' J ® t = a ( n ® t ) .
If tr 1r Xf

If V is the representation afforded by M then, with respect to 13 ,

6 .U has diagonal matrix, and the diagonal entries are powers of a . Our

choice of the quantities m. , x(i, t) was independent of M . Hence if

U' is a faithful irreducible representation of K and a' is the

analogue of a , then a' is a power of a and so, with respect to a
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suitable basis, s^ll is a power of sAJ . Since the matrix of tU with

respect to B is a permutation matrix for all t £ T we see that the

linear group KU is independent of the faithful irreducible U .

3. Further preliminaries

Let p be a prime and R the ring of integers modulo p . We

need some facts about representations over R , analogues of well known

facts about representations over fields.

If K is a finite group the group ring R K has minimum condition

P
on right ideals. Let R K = © A. be a decomposition of R K as a

a i=l % a

direct sum of indecomposable right ideals. Since R K/pR K and pa~ R K

axe isomorphic vector spaces over i?j it follows in a familiar fashion

that each A • is a free R -module. By (5it.ll) in [£] each A./pA. is

a principal indecomposable of R-fi .

Next suppose that Ni is an irreducible module for K over Rx ,

and write E^ = End-JV , a finite field isomorphic to GF(p ) , say. Let

C\ be the multiplicative group of 2?i ; then #] is a Cj^-module over

i?i and we shall show that if #j is projective as .ffjtf-module it is

projective as RiCiK-module. Choose a fixed isomorphism <p : GF[p ) •+ E±

thus turning N\ into a GF[p )#-module - call it 2?j . How Ni is

r d-\
projective since it occurs as a direct summand of GF(p J £L N\ , and N\

is projective (using somewhat more than 70.15 of [&]; L.G. Kovacs

(unpublished) has proved our assertion). If a £ C\ there exists

e € GF(p ) for which, in N1 ,

nc = ne , n E Sj ;

and using this and the projectivity of Ni one easily checks the

commutivity of the diagrams which ensure that Ni , as RyC^-module, is

projective.
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The last two paragraphs are now brought together. Let N (ail)

n ft
be homocyclic groups of exponent p , say with N = N /p N (a i 3) ;

p Ct Ot

E is the endomorphism ring, and A the automorphism group, of N

Define Ua g : Ea + Eg by

\x+p&N (e\i J = xe + p®N , x € N , e € E .

It is easy to see that y is an onto ring homomorphism such that
ctp

MaeMgY = \ y (a > B > y) , and that the restriction Va g of y ^ to Aa

as multiplicative homomorphism is onto A . Suppose now that K^ is a

subgroup of Aj such that Nl , as ^j^Xi-module, is irreducible and

principal indecomposable. If, as above, E = Endj, N and Ci is its
J. A ̂ X

multiplicative group then #i as ifjC^Xj-module is principal

indecomposable and hence there are subgroups C , K of A , which
a a a

centralize each other, such that V takes C Q isomorphically onto C\

and K isomorphically onto Xi . We may assume also that K v = Ko ,
01 CX Ctp p

C V . = C . In this set up we have

LEMMA 3.1. As R K -module N has the double oentralizer
o a a

property. Also if E = End^ N then every element e of E can be
a

written uniquely as

a-1 .
e = l_ pLai , aiiCau {0} .

Proof. The double centralizer property is proved first, by induction

on a ; for a = 1 it is true by (26.!*) in [g]. We show in fact that if

E, i E and £ centralizes C then % = £ r.k. for some r. d R and

ki * *a •

Notice that keru , = pa~ E and that EM , centralizes C ,
aot-1 r a aa-1 a-1

and so, by induction, there exists r'. i R , k'. € K so that
i* ct 1* ct
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(3.2) £ = I r'.k'. + pa~Xe

for some e € E . Since X : x + pN -*• p ~ x i s a group isomorphism of

il/j onto pa~ N and, from (3.2) , pa~1e Centralizes C , for a l l

e f C and a l l x € N we havea a

Hence ^ec^a±
 = ^ae^ i • Therefore e\i . centralizes Cj . As

ke ru a l = pEa there exis ts e' (. EQ , r7 f R^ and feV € X such that

e = I r^fe^ + pe' .

Combining this with (3.2) yields the desired result. The remainder of

Lemma 3.1 can be proved by entirely similar methods.

It is well-known that there exists a linear transformation 3i of

N-y such that 37 ^3i = e& (e i E\) : as Sj-space Nx is completely

reducible and, on each irreducible component of N\ , e and eP have

the same minimal polynomial and the matrix of each is similar to the

companion matrix of this minimum polynomial. More generally we have

LEMMA 3.3. There exists 6 e E such that
a a

The proof of t h i s wi l l follow from the next lemma and the fact that

kerv is a p-group (12.2.2 in [9] ) .

LEMMA 3.4. Two p'-elements of a finite group are conjugate if and

only if they are conjugate modulo a normal p-subgroup.

Proof. Suppose that X is a f in i t e group, Y i s a normal

p-subgroup of X and X\, X2 are conjugate modulo Y . I t suffices to

assume Y i s abelian. For each t ( Yh there exists y. € Y such that
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We show that for some t , y , d C , the centralizer of x2 in Y . For,

suppose t, u are such that y/y ( C ; then x^Xj € C and so

\u t, X\ ] € C . Now C has a complement jfj in Y by Lemma 2.1,

which admits x2 . Write u t = cy\ (e £ C, y\ € Y^) and then

whence y\ = 1 . Therefore iT1* € C . It follows that, if T is a

transversal of Y to C , {y, : t € W } is also a transversal of Y to

C , and hence for some t , y, centralizes x2 as we asserted above.

For this t , U*| = *^/" which, if n is the l.c.m. of the (p1-)

orders of X\, x2 , gives t/ = 1 whence y = 1 , completing the proof.

LEMMA 3.5. Two faithful principal indecomposable i? K-modules N

and P afford linearly isomorphic representations if and only if N /pN

and P /p?a afford (faithful) linearly isomorphic representations of

Proof. The 'only i f direction is easy, so suppose that N and P

afford representations T, U respectively and that the representations

T' , U' thereby induced on N IpN and P IpP are linearly isomorphic.

That is, with respect to suitably chosen bases, the matrix groups KT'

and KU' are equal. Hence there is an automorphism X of K such that

k\3" = W , k € K .

The module N /pN affording the representation AT' is therefore

isomorphic to P IpP . Hence by (51*.!1*) in [8], and the remarks at the

beginning of this section, N as module affording the representation XT

is isomorphic to P In particular, with respect to suitably chosen
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bases , the matrix groups KXT and KU are equal. Hence T, U are

l inea r ly isomorphic.

Suppose that F j , V2 are irreducible modules affording faithful

representations Ti, T2 of a group K . One can form the groups X\, X2

by spli t-extending Vi, V2 by K with actions T j , T2 respectively. I t

i s easy to check that T\ i s l inearly isomorphic to T2 if and only i f

X\ and X2 are isomorphic groups. In view of th i s we have the following

corollary to Lemma 3-5.

LEMMA 3.6. If K is an irreducible linear group acting on a space

N\ over i?i , the split-extension is a uniquely determined critical

group. If, moreover, N1 as R^K-module is principal indecomposable then

•to each a € X there exists a unique split-extension N K such that

N K/pN = NiK ; N K is critical. Furthermore if N is abelian of

exponent p and an extension NK exists such that NK/pN = N^K then N

is homocyclic and, indeed, principal indecomposable as R K-module, and

NK = N K .a

Proof. The existence of N K has already been shown, and the

criticality follows from (1.65) in [74] of Kovacs and Newman. That N is

homocyclic follows from the fact that x + pN «• pa~ x is a

X-homomorphism. The remainder will be proved by Lemma 3-5 when we show

that N is principal indecomposable. This follows easily from the

projectivity of N .

4. Structure of certain critical groups

Let G be a critical group the last non-trivial term of whose lower

nilpotent series, A say, is abelian. Then, by Theorem 3 in [70] of

Higman, A has a complement B in G . Since G is monolithic, A is

self-centralizing in G and, for some prime p , A is a p-group. We

will be interested in cases when B = H * K with H the maximal normal

p-subgroup of B and K a group whose faithful irreducible

representations over GF(p) are projective: whenever G is
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abelian-by-nilpotent of C S A A A (p \ m) , and G is not nilpotent,

this is easily seen to be the case (using Theorem 2.2 in the latter case).

In this section we describe the structure of A as B-module: in fact

we show that it suffices to obtain a description of Au and Av . Our
a A
n

aim is to construct another group (denoted later by G ) which generates

the same variety as G but which is easier to work with then G itself.

As B-module, then, A is faithful and monolithic and, by 51.37 in

[78], co-monolithic also; let A be the unique maximal submodule of

A . Write A* = pA + [A, B] so that A* 5 A . Choose

h.. € Z.(tf) - Z. AH) (l 5 i 5 a , 1 5 j 5 r(i) - fl has class a ,

say,] such that

AU) = [A, h1±, . . . ,

i s non-tr ivial for each i t { l , . . . , a} but that

\_A(i), Zi(fl)] = 1 , 1 5 i 5 c .

Let p be the exponent of A(c) . Then it is easy to check that the

mapping

6-1
P

is a non-zero B-homomorphism of A/A* . Now aA is in (A/A*)E, and is

therefore centralized by H ; hence K acts irreducibly on aA and, by

Lemma 2.1, faithfully also. But our assumptions on K mean that (.0A)j.

is injective so that

(A/A*)E, = OA @ U

where U admits K and therefore B since H acts trivially on

(A/A*)£, ; thus U = 0 and (/4/4*)C = OA . It follows that ker£ = AjA*

and that, as B-modules,

(U.I) A/AQ = OA .

We aim now to delineate the module structure of A commencing with
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the next lemma.

LEMMA 4.2. There exists a principal indecomposable submodule N of

Aj. such that N/pN = oA as RiK-modules and N generates A as

H-module.

Proof. Since (aA)v i s projective so i s lA/A
0)K ^Y C1*-!)- Hence

there exis ts a submodule C\ of Av so that
A.

Cl + Ao = A ' C l n Ao = PA •

But C-JpA = A/A so, for the same reason, there i s a submodule C2
 o f

C\ such that C2 + pA = Cj , C2 n pA = pC\ and C2/pCi = 4/J4 . In

t h i s way construct a descending sequence of submodules C. such that

C./pC._, = A/A . For some j we must have pC. = pC. . which means

tha t C-IpC • = A/A i s irreducible and the l a s t assertion of Lemma 3.5
3 0 0

then gives that C. i s a free R -module. Note that C• $ A for any

i . Put N = C. and then, since # admits K , N generates /I as

//-module, whence tf has exponent pa . This completes the proof of Lemma

U.2.

Let the ff of Lemma k.2 have /? -basis {n, , . . . , n } . Write A/.

for the ff-submodule of A generated by n. [ l J t 5 s ) • Using

von Dyck's theorem one checks that group isomorphisms 6. : M H •+M.H may
t- x 1-

be defined by

n.,6. = n. , h6 . = h , h i H .

1 1* "V Is

The mapping

s
(m, n) M- J r.(m6.) , m f Jf] , n £ N

where n = J r .n. , i s easi ly seen to be balanced. Hence there exis ts a

homomorphi sm T of M ® N onto A such that
1 Ka
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s
{rn ® n)x = J r. (m6.) , m i M, , n € N .

Moreover, if H x K acts on M ® N in the usual outer tensor product
1 ^a

fashion:

(m ® n) = mh ® n\ , m € Mx , n i N , hk d H x K ,

then T is an H x X-epimorphism. Define G to be the group obtained

a
by split-extending M ®_ ff (= 4 ) by H * K ; then T extends to

a

group epimorphsim T : G -*• G .

' Next write E = End^, N . We can extend the action of E to the
A

it

whole of A by identifying E with 1 ® E :

{m ® n)e = m ® ne , m € Ml , n £ N , e d E .

Then, by Lemma 3.1, kerT admits E . Consequently A may be regarded

as an ff-space. In this set up we have:

THEOREM 4.3. If M is the EH-subspace of A generated by n\

then, as E(H X K.)-modules,

A = M ®£, N .

Jt 7* + "I

Proof. Since each space p N/p N (0 5 i 5 a-l) is a vector space

over the f i e l d E/pE = ffj , N has an ff-basis {I , . . . , I } wi th

l\ = n\ , say. Then,

E{H x K)-homomorphism

M

1\ = n\ , say. Then, copying the construction of G and T , we find an

V : M ©_, N -•• A

onto A . We will show that v is one-to-one.

The construction of V gives first

(1*. k) n i N-pN , m € M and m ® n i kerv = m- = 0 ;

and second
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(It.5) o(M gL, N) = aM gL, N = OM gL, N/pN .
1

Since OM gL, N i s centralized by H i t follows from (k.k) and (1+.5) that

0 t \O(M gL, N) V 5 ZU#) = a/1 ;

hence a(M gL, tf) v = a/1 . Write D = kerv n O[M gL tf) . Then, regarding

o[td gL Zl/) as an E^-space (by Ct.5)) , and oA a l so , we find that the

co-dimension of D in a(M ©„ N) i s precisely dima4 = dimp N = t .

Suppose that aM contains elements m\, m2 which are ff-independent and

therefore #1-independent. Using (H.5)

dimCmj ® N/pN + m2 ® ̂ V/pff) = 2dimfl

whence, if D ? 0 ,

Z?! =.D n (mj ® i7/pff + m2 g) ff/pff) t 0 .

If d $ Di then, for sui table Xj, x2 6 iV/p# we have

d = mi ® Xi + m2 ® x2 ,

and (U.10 shows that the re la t ion \i : Xi >-*• x2 i s a mapping from

Xi = {xi I N/pN : d i Oj} to A:2 = {x2 € /IZ/pil? : d € O,} . Indeed since

D1 ?• 0 and tf/pW i s an irreducible fi^X-module, Xx = X2 = N/pN and

0 # y € Sj . Hence for some non-zero

and (U.U) implies mj + m2\l = 0 contrary to the independence of mj and

m2 . Therefore D = 0 and hence kerv = 0 . If the ^-dimension of N

i s one then clear ly kerv = 0 ; in any case v i s one-to-one and Theorem

U.3 i s proved.

The proof Just completed shows that aM i s a one dimensional

Z?i-space. Since OM\ S aM we have

COROLLARY 4.6. The dimension of aM\ as Ri-spaoe is at most the

dimension d of Ei over Ri .

Write A = (M gL E) gL N so that there i s an S-isomorphism

X : A •->•> A which has

https://doi.org/10.1017/S0004972700045901 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700045901


Product varieties 247

X : (mj © l) © n •+ mx © n , Wj € Mj , n (. N .

Moreover if we define the action of H x K on A in the natural way:

{(mi © 1) ® n)hk = {ml ® l) ®nk , mi (. Mx , n f N ,

then X is an H * K homomorphism; and if G is Obtained by extending

A by H x K in this action, X extends to a group isomorphism

X : G **> G . In this set up one easily checks, using Theorem U.3

LEMMA 4.7. There exists an EH-submodule L of Wn ®_ E suah
1 H

a

that kerXx = L ®_ N .

Next let 3 = 3 of Lemma 3.3 and let y : E ->• E be defined by

Y : en- e
e , e i E .

Then it is simple to check that

, 0 5 i 5 d-1 .

d-1
LEMMA 4.9. fi ( k e r r ^ = 0 .

•i=o

XProof. I t suffices to show that PI [L gL NjX^X = 0 which, by
i=0

(it.8), will follow if fl L(l ® Y ) = 0 . Write U = L n a(Ml ® ff) so
i=o

that we need only prove

(it.io)
d-1
n

i=o
= o .

Analogously to (U.U) and (i».5) we have:

(It .11) mt I Mi , e i E-pE and m

(>».12) a

e € L

(A/ €U B) = aW ® E .

The force of (h.1.2) is that to prove (U.10) we may assume that we are

working in a vector space over a field E\ , where y is now the Galois
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automorphism ex >* e\ of E\ . The following rather technical lemma will
prove (h.10).

LEMMA 4.13. Let V be a proper nan-zero submodule of aM ® E.

and I be maximal with respect to the property that, whenever S is a
linearly independent subset of oMi containing at most I - 1 elements,

(k.Xk) 0 = V n © t®Ei .
US

Then, if S' is a linearly independent subset of oMi containing I
e lements

0=VnVl®yn © t ® Ex .
US'

Proof. Observe first that the co-dimension of V in ati\ ® ffj is
at least • I - 1 and that , if S' is a linearly independent subset of
GM\ containing I elements,

0 * V(S') = V n © t ® Ei .
US'

We emulate the argument following (U.5). For all v € V(S') then,

v= I t®x
US' *

for some x € E . By virtue of (U.lU) for each t € 5' the

correspondence x.^-x, is one-to-one for each t' € 5' , and is indeed,
~c t

an Si-endomorphism of E\ . Consequently there exist elements S'(t) of

£j , linearly independent over i?i by (U.ll*), such that

(it.15) V(S') = ( I t®xS'{t) : x t EA .
HcS' >

Next define, for a linearly independent subset 5 of OMi containing
exactly I - 1 elements, and a basis B of OM containing 5 ,

Sb = S u {b} , b i J = B - S .

Then, using C+.15), the V{^A clearly generate their direct sum and each

v(S.) has Si-dimension 1 . Hence ©_ ^(S,) has co-dimension I - 1
b b b
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and therefore

(fc.16) v = e_ v(s ) •

in part icular V has co-dimension exactly I - 1 .

We now show that for a l l 5 and B as above

(it.17) V n Vls^l ® Y = 0 , <t> € 5 .

Suppose that w € f f o j and wl ® y 6 F . From (U.X5) and

w l ® Y = ( l t ® xSAt))l ® Y = I I t ® x . 5 .

for some x, x. € E . This implies at once that for j + b , x. = 0
t7 -L 3

since j ®x.S.{j) occurs once only on the right and not at all on the
3 3

left. Hence

I t® (xy)SAt)p = I t® xhSAt)
US, ° US,

b b

so that

(xy)SAt)P = xuSAt) , t € 5, .
D D D D

If t, t' are distinct elements of 5, (under the hypotheses |£, | i 2J

then xASAt)SAt) y - SAt')SAt') F\ = 0 from which x, t 0 implies
D [ D D D O } D

= 0 for a l l y i E-y . In other words

xb t 0 - SAt)SAt)~
P - SAt')SAf)~P = 0 ,

which implies S, (t' )~1S, (t) P = 5, (t1 J"1 ,̂ (t) , and this means that
^ D D ) 0 D

SAt'Y SAt) € R contrary to the independence of SAt'), SAt) over

R\ . We conclude that x, = 0 and therefore that U = 0 , proving (U.IT).

Since an arbitrary set S1 of I independent elements of aMj can

always be constructed as 5' = 5, for suitable 5 and B , (U.17) yields

https://doi.org/10.1017/S0004972700045901 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700045901


250 R.A. Bryce and John Cossey

(with Y replaced by Y~ )

V n VI ®y n @ t ® E = VI ® y n V{S') = [V n V(S' )l ® Y }l ® Y = 0
US' X

and the proof of Lemma 1+.13 is ccmplete.

Return to the proof of Lemma U.9. By (U.ll) U satisfies the

hypotheses of Lemma It. 13 with 1=2. Now U n Ul ® y has co-dimension

at most 2 since U, Ul ® y each have co-dimension 1 ; but (It.15)

shows that U n Ul ® Y has co-dimension at least 2 , and hence exactly

2 . An easy induction using Lemma 1».13 shows that

U n Ul ® Y n • • • n Ul ® y1 has co-dimension i + 1 in aWj ® #! and

therefore, by Corollary h.6, is zero for i = d . This proves C+.10) and

with it Lemma U.9.

Lemma k.9 provides a subdirect decomposition of G which we now

describe. First note that K centralizes E , and therefore, by Lemma

3.1, kerT admits K (0 i t 5 d-l) ; whence (kerx) admits K

(0 £ i £ d-l) . Consequently in G ,

(L ® N)X&lX~ = [LI ® y1) ® N , 0 £ i < d-l

admits HK . Write W(i) = (Wj ®E)/L1 ® y1 , (0 £ i 5 d-l) , so that

M(i) i s an Efl-module "Galois conjugate" to M . Then

G. = G/{L±® yV) ® N i s the group obtained by extending M{i) gL, N by

H * K in the outer-tensor product fashion, and

LEMMA 4.18. G i s isomorphia to a subdirect product of

Wote that G = G . Indeed under suitable res t r ic t ions each of

G , . . . , G , . i s isomorphic to G .

LEMMA 4.19. If the faithful irreducible representations of K over

GF(p ) form a single linear isomorphism class then each of G , . . . , G,
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is isomorphic to G .

Proof. If E is the ring in Lemma 3.1, taking N\ to be the

additive group of GF(p ) and K\ its multiplicative group, then Lemma

3.5 shows that the faithful indecomposable representations of K over E

are linearly isomorphic. In particular there exists t, centralizing E

such that K = K . Since (3£ has the same action on E as B does we

may, without loss of generality, assume K = K .

Now there exist ff-isomorphisms r). : M •* M(i) with the property:

(me)n^ = (mr\i)ey'
t , m $ M , e £ E , i d {0, ..., d-l} ,

and it is easy to check that there exist isomorphisms

9^ : M ®E N •* M(i) (xL, N with the property that

(m ® n)% . = rm\. ® n^ , m € M , n (. N , i d {0, ... , d-l} .

Moreover if a t M ®^ N , (0^)6^ = (aBi)
hk (h t H• , k t K) , and

hence the mapping 8. : G -*• G. defined by

(hka)Q. = hk& ad. , h € H , k I K , a i A

is an isamorphsim.

COROLLARY 4.20. Under the conditions of (4.19), varG = varG# .

Proof. Use Lemmas 4.19 and 4.18.

L.G. Kovacs has constructed for us a group K which has a faithful

irreducible representation whose Galois conjugates, regarded as GF(p )

representations, are not linearly isomorphic; indeed for this K one can

easily construct a critical group G such that G , ..., G , 1 are not

pair-wise isomorphic. Whether or not G and G nevertheless generate

the same variety in general we have been unable to determine.

Summarizing this section then, we have
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THEOREM 4.21. Let G be a non-nilpotent critical group the last

non-trivial term of whose lower nilpotent series, A say, is abelian. A

is a p-group, with a complement B in G . If B = H x K where H is

the largest normal p-subgroup of B and K is such that its faithful

irreducible representations over GF(p) are protective and form a single

linear isomorphism class, then

varG = varG

5-

The first four sections can now be used to answer the test questions

raised in the introduction. Much of the proof is technical in nature.

THEOREM 5.1. Every subvariety of V. = A A A {where p is a
- -p«=^T

prime not dividing m) is finitely based.

THEOREM 5.2. The lattice of subvarieties Â V) of i is

distributive.

THEOREM 5.3. The only just non-Cross subvariety of V. is A A .

The join irreducible subvarieties of V. can be described with the

apparatus we have developed, but in general this is tedious without being

especially illuminating. We shall content ourselves with the case when m

is a prime q . Even in this case a certain amount of preamble is

necessary - it will be needed in the proof of Theorem 5-1 also.

A bigroup is a group G together with an idempotent endomorphism of

G ; alternatively G is a triple (G, A, B) where A is a normal

subgroup of G and B a complement for A in G . Bigroups and

varieties of bigroups are discussed in [4, 5] and the reader is referred

there for more complete information.

Let F = {F, Alt Bx) and D = (D, A2, B2) be bigroups in which

Ax, A2 are abelian groups, that is Z-modules over the ring of integers

Z . Let F # D be the group obtained by split-extending A ®_ A by
1 L tL

Bx x B 2 with the usual outer-tensor product action:
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( O ! ® a 2 ) b i b 2 = a\l ® a f 2 , a. I A , b . Z B i = 1 , 2 .

I* l* t- t-

Notice that if G is a non-nilpotent critical group in V_ then, using

the notation of §4, G# = F # D where F - {.M\H, Mx, H) and
D = (NK, N, K) ; tensoring over R instead of Z makes no difference
since M, ®„ N = M. ®_ iV as flX-modules. If S is a variety of

a

bigroups denote by S the variety of groups generated by

{F ff D : F € S} .

We record without proof the following facts:-

Fj 5 F implies F1 § D 5 F # D ;

•£/ ? is a homomorphism of F t/zen the natural homomorphisms

Bi x B2 •* BiC
 x B2 «"<̂  ̂ T ® 7 -1O

 + ^ i ^ ® 7 ^o extend to a

homomorphism F # D •+• F5 # D ;

1~T F̂  # D is a subdireot product of ~[~T F- # D .

The next lemma follows easily from these three.

LEMMA 5.4. If S is generated by the set {F. : t f 1} tfcerc 5D

is generated by {F. # D : £ € 1} .

COROLLARY 5.5. (Sj v S 2 )
D = 5? v S° •

The Join irreducibles in A ( A A A ) are either locally nilpotent or

not; the former are described in [76] and the latter will be described in

terms of Join irredicuble subvarieties of the variety of bigroups

A ° A (for which see (U.3.15) of [5]) and irreducible linear groups in
~pa **?

A A :

THEOREM 5.6. The non-loaally nilpotent join-irreducible

subvarieties of A A A not in k AA are precisely those of the
&=q=p — a-i.—q=p

form S where S is a join-irreducible subvariety of A^ o A not in
pa T
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E o A and D = (0, A2, B2) has A2 of exponent p" and B i A A

acting faithfully and irredudbly on A2/pA2 .

Proof of Theorem 5.3. This result is covered by a more general

(unpublished) result of J.M. Brady: a soluble just non-Cross variety of

finite exponent, which is not A A or A A A , is contained in

A (N A B ) (p | n) . We include a proof of Theorem 5-3 since it comes

easily; it suffices to show that every subvariety l[ of V̂  not

containing A A is Cross. By Theorem 5 of Kovacs and Newman [76],

p-groups in V_ have bounded class; and, in particular, nilpotent

critical groups have bounded order (51-35 in [78]). If G is a

non-nilpotent critical group in IJ then 51-38 in [7 8] ensures that H

has bounded order (using the notation of §4). If J1 is the Sylow

p-subgroup of K then (oG)_, is a direct sum of regular representations

of T , by Theorem 2.2 and 65-16 in [8], and therefore varG contains a

group, isomorphic to C wrT , whose class is at least |r| . Hence |T|

is bounded, and Lemma 2-7 then shows that \K\ is bounded. Consequently

Theorem It.3 ensures that \G\ is bounded, thus showing that l[ contains

but finitely many critical groups and is Cross.

Proof of Theorem 5.2. If W. (i = 1, 2, 3) are subvarieties of V

we need to show that

(5.7) Wj A (Wj V W3) £ (Wj A W2) v (Wt A W3) ,

since the other inclusion is obvious. Let G be a critical group

belonging to the left-hand side of (5.7). By (1.12) and (l.lU) of Kovacs

and Newman [74] there exist subsets I. £ W. (i = 1, 2, 3) of critical
1* '' 'lr

groups whose monoliths are similar to aG such that

G € varEj A (varE2 v var£3) ;

and if $ - = {F(X) : X € £.} (i = 1, 2, 3) (where F(X) is the Fitting

subgroup of X] then, using (l.lU) in [74],

(5.8) F(G) f var$i A (var$2 v var<S>3) .

Of course if G is nilpotent then the members of each I. are nilpotent
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and, by Theorem h in [76],

G £ (varSx A varZ2) v (varEi v varE3) 2 (Wi A V^) v (Wj A W3)

as required; thus assume that G is not nilpotent. Put

F = [M\H, M\, H) in the notation of §4 and then it is clear that F, F(G)

generate the same variety (indeed the bigroups they carry generate the

same variety - of. (3.1.6) in [5]); also write F for the analogous

"bigroup corresponding to X £ I. (i = 1, 2, 3) ; and write

D = (NK, N, K) . Hence, if

S^ = {Fx : X € E^} , i = 1, 2, 3 ,

then it follows from (4.3.i*) in [5] and (5.8) that

F € var*! A (varH<2 V

But by (it.3-lU) in [5], A ( A o A ) is distributive and therefore

F £ (var^j A var^a) V (varVj A vary3) .

However Corollary 5.5 shows that

G§ = F # D € (varYj A var¥2)D v (var^j A var^a)0

< ((varVi)0 A (var4-2)
D) V ( ( v a r ^ ) 0 A

and (varH^) < W^ by Lemma 5.1». Finally, then,

C ( (¥, A|2) V (|i A W 3 ) .

Proof of Theorem 5.1. Since V̂  is finitely based (two applications

of Theorem 3.1 of Higman [7/] show this) it suffices to prove that h(V)

has descending chain condition. The following, easily proved, lemma will

be used.

LEMMA 5.9. A locally finite variety X has descending chain

condition on subvarieties if and only if to every set \G. : i (. I > of

non-isomorphic critical groups in 2L there exists i i I such that

(5-10) G. I var{ff. : j > i+l} .
v 3

It will be convenient to restate here some facts from earlier
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sections, in the process establishing some notation.

(5.11). If G € V, is critical and not nilpotent the Fitting

subgroup F (= AH) of G has a complement K (see §4).

(5.12). K = ST where S i A^ is the centralizer in K of cK and

T t A is a complement for S in K .

(5.13). By Lemma 2.7 S is a direct product of homocyclic subgroups

S. . ( l 2 j 5 r. , 1 5 i < r) which are normal in K and, as normal

subgroups of K ^ indecomposable. [Assume that expS. . = expS, 7 if and

only if i = k . ) TTze aS. . are precisely all the minimal normal

subgroups of K and aK is their direct product. Put
Si = T T { S i j : l S j « r { } (1 < i < r)

Now for some p € { l , ... , r} le t V l e a normal subgroup of K

maximal with respect to containing ^ - .^ . . . S and avoiding ^ .. . S

so that

" • ¥ 2 - f l p • C r ( 5 p + l ' - - 5

For i € ( l , . . . , p} and arbitrary j € { l , . . . , r.} l e t Af.. be a

normal subgroup of K maximal with respect to containing a l l 5, ? with

(Zc, 1) T (i, j) and avoiding 5 . . so that

:„ - ( rr ,
Put

r = K/W , A.. = x/̂ r.. , i s i s P , i < j s r

LEMMA 5.14. Suppose Z(K) = 1 . Then A^ . S A ^ (l < j 2 r )

A. [where A = A and AA ( r .

A. [where A. = A. and A. denotes the r.-fold
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direct power of A. there is an embedding u : K •*• Z such that

(oK)v = oZ .

Proof. Since Z(K) = 1 none of 5.. can be central, and each A..

is isomorphic to S. . split-extended by an automorphism of order p .

Consequently up_to isomorphism A., is independent of j . By (5.13)

W n fl X.. = 1 , the OS. . being the only minimal normal subgroups of

K . This completes the proof.

LEMMA 5.15. Suppose Z{K) = 1 . Put CQ = CT{s + 1 ••• sj and

\T : CQ\ = p . Then provided r. > p + S P (l 5 i £ p) 3 K contains a

subgroup ZQ = T x | | A® with aZ < oK .

Proof. Note first that the number of inequivalent non-trivial

irreducible representations of an elementary abelian group of order pu

is at most p - 1 . Hence, since the minimal normal subgroups OS. . of
^3

K afford inequivalent representations of T , by (5.13), a subgroup of

index p in T centralizes at most p - 1 of the OS. . and therefore

centralizes at most (p"-l) S. .'s . The proof depends on repeated use of

this fact.

Since rx 2: p + s p > p - 1 there exists j(l, l) f U , •.., rj}

such that

°X "

+1
But \T : Ci\ = p so that \T : CQ n C \ = p

 + 1 . Suppose inductively

that for some E,, r\ with 1 £ C - P and 0 < n < s we have chosen

subgroups C (of index p) of T , with 1 £ v 5 (C-l)s + n such that

i ) i f v = ( X - l ) s + u ( 1 5 X S C , O £ U £ n ) t h e n

cv = cr^-(xM)) for some
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ii) if Dv = PI C then \T : D | = p&+V .

For £ = 1 , n = 1 we have done this.

Now r » p 6 + S p = p[
fi+(5-l)8+n]+[(p-C+l)a-n] > p6+(C-Ds+n

Hence there exists j(£, n+l) € {l, ..., p } such that

Also ^(F-i)s+n+l h a s index p in 2" and therefore

as required. In case £ < p and r| = s - 1 the proof of the inductive

step is similar - we choose the next C from among the centralizers of

the

It may happen that D # 1 . If that is the case continue choosing

centralizers C^ , for v > ps , so that none contains the intersection of

all previous C's : this can be done since the intersection of the

centralizers of all 5.. is 1 (by (5.13)). Indeed if \C \ = p Y then

Y is the first value of v for which D = 1 . Put

i = n c .
v wtv w

It is a simple matter to compute that

J is a complement for C in T ;

and

for V > 0 , each I has order p and C is their direct

product.

Hence if

then clearly T*, A£ generate their direct product and, since r* = T ,
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A* = A_ , the proof of Lemma 5.15 is complete.

Suppose now that S = <G. : j € I > is a set of non-isomorphic

critical groups in X. • If infinitely many of them are nilpotent then

(5.10) is satisfied for S by Theorem h in [76]; hence we may suppose

("by taking an infinite subset of S instead if necessary) that all groups

in S are non—nilpotent. Further we may suppose that, in the notation

of (5.13), the quantities r, expS. (1 £ i 5 r) are independent of

G i S (again by replacing S by an infinite subset if necessary).

Choose p (. {l, ..., r} by

p+1 < i < r <=> {r. : G (. S] is bounded.

Then the groups T corresponding to G € S have bounded order and hence

we may suppose that F is (up to isomorphism) independent of G . By

(5.13) Z(K) are all cyclic, hence there are but finitely many choices

for Z(K) and so we may assume that for G f S , Z(K) are all

isomorphic. As a final simplification we may assume that the sequence of

p-tuples (r , ..., r ) is ordered by components in the natural ordering

of S .

With 5 whittled down this far we have

LEMMA 5.16. For each x € J there exists j{x) > x and

embeddings y , : K -*• K^ for I S j(x) such that

Proof. For G i S we may write

K = Z(K) x K

where K has trivial centre and satisfies the conditions (5.12), (5-13);

and Z{K) is cyclic, independent of G , and of course equal to some

S. . . By Lemmas 5.11* and 5.15 applied to the K's if we choose j = j(x)

so that
6+r.(G )p

rjG.) > p l * , 1 < i « p ,

then there is a monamorphism \i ~ 1 K -*• K- [Z 2 j{x)) , and this does
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what we want.

Finally consider the sequence in J defined by

H i ) = 1 , l(n) = jlHn-1)) , n i l * .

In t h e no ta t ion in t roduced a t the beginning of t h i s sec t ion i f G. i S

then G. = F. # D. . By (1+.2.29) i n [ 5 ] , and the analogue of Lemma 5.9

for b i v a r i e t i e s , t h e r e e x i s t s n i l such t h a t

FIM € s v a r { F Z U + i ) ' F z ( « + 2 ) ' • • • > •

Consequently there exists i {= l(n)) such that

(5.17) F. € ™ { F l ( i ) . Fi(i)+1. ...} .

Nov if (J ( {G7/..v, ^7/-\J.T» • • • 3" Lemma 5.16 shows that X has a
ls\ls ) U\1' ) "*" J.

subgroup K* = K. with

aK* <

Since N is principal indecomposable, #„,, has a component iV* which is

principal indecomposable. By Lenma 2.1 N* is faithful for K* and by

Theorem 2.2

N*K* = N.K. .

Hence for each G (. {G~ : I i j{i)} , G has a subgroup isomorphic to

F # D. . I t follows from (5.17) and Lemma 5.U t h a t

G- € var{G7 : I 2 j ' ( i ) } . By Lemma 5.9 the proof of Theorem 5.1 i s

complete.

Proof of Theorem 5.6. Suppose that U 5 V is join-irreducible and

not locally nilpotent. Since £ is generated by its critical groups it

is generated by a set S of non-nilpotent critical groups, and we may

further assume that for all G € S , exp4 is constant (in the notation

of §4): we may as well assume that exp.4 are all equal to p . W e now

show that the number of similarity classes of the aG {G 6 S) is finite

and therefore, of course, the groups of S may be assumed to belong to a
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single similarity class. The next lemma accomplishes this.

LEMMA 5.18. Let S' be a set of non-nilpotent critical groups in

V_ such that for all G 6 5' , expA = pa and, furthermore, the sequence

{\K\ : G t S'} is unbounded. Then varS' = V.

Proof. Let G be an arbitrary critical group in J_ . We show that

G is in varG for some G f S' , this being sufficient to prove the

lemma. It follows from Lemmas 5.1U and 5-15 (as in the proof of Lemma

5.l6) that for all suitably large K , K is isomorphic to a subgroup K

of K with

(5-19) OK 5 aK .

Moreover since the index of C-(K) in T is bounded in terms of K , we

may assume that

\cTU)\ = |sol •

Put H = Cj,(K) . Then fc^ is a direct sum of principal indecomposables

of HK over i?Q - call one A say. Now since A is monolithic and

co-monolithic and since K acts faithfully and irreducibly on aA (by

(5.19) and Lemma 2.l) we can use §4 to deduce that

a

where Mi is a principal indecomposable of H and N a principal

indecomposable of K (this follows since A/i is the regular of E ,

hence aWj is one dimensional trivial and so o(w ® w W = N whence

kerT = 0) . If F = (AH, 1, ~5) and D" = (M, F, H) then

AHK = 7 § D ;

and since F is clearly a homomorphic image of F , Gn (and therefore

G ) is a homomorphic image of 7 § D . This shows that G is in varG

for some G £ S' as required.

We may assume, therefore, that for some fixed D = (D, A2, B2) with

42 a faithful principal indecomposable R B -module and J, i A A ,
O c d —c^—p
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G € S = C1 = F I 0 , 3 F U oA .

Hence by Lemma 5-1+ if S = svar{F : G € S} ,

U = S D .

By Corollary 5.5 and ( l . lU) of [74], S is Join irreducible.

Conversely i f S i s join irreducible suppose

5D = Ui v g2 .

By (1.12) of [74] we may assume that each of tJj, U^ i s generated by

critical groups the similarity class of whose monoliths is determined by

D . That is we may assume ^1 , ̂ 2 generated by groups of the form F # D

(f € 4 ° Ap) » a n d n e n o e f o r suitable S. € A(A. o A ) ,

P

U. = S° , t = 1 , 2 .

Corollary 5.5 and (l.ll+) of [74] then shows that S = Si v S 2 whence

Sj i ^2 , say, anc

join-irreducible.

i ^ 2 i say, and finally U.i - £2 • ^ n other words S is
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