VOL. 3 (1970), 231-264.

Some product varieties of groups

R. A. Bryce and John Cossey

Abstract

We consider varieties $\underline{V}=\frac{A}{=} \underset{p}{A} M \xlongequal{A} p$ with m prime to p. We show that the subvariety lattice of V is distributive and has descending chain condition and that $\underset{\sim}{A} \underset{p}{A}$ is its only just non-Cross subvariety. When m is prime we determine the join-irreducible subvarieties of V. The method involves fairly detailed description of the structure of non-nilpotent critical groups in $\underset{\underline{V}}{ }$.

1. Introduction

The principal motivation behind many investigations in the theory of varieties of groups since its inception seems to have been a desire to decide whether or not every variety requires only finitely many laws to define it; and a large number of varieties do have this property (which is usuaily known as 'the finite basis property'). The papers [1], [3], [6], [11], [17], [21], for example, all contain finite basis theorems. There have been conjectures that every variety has the finite basis property and, more cautiously, that every soluble-of-finite-exponent variety does. Recently, however, two (unpublished) counter-examples to this have been produced: the first, by A.Yu. Ol'shanskii, is soluble of length 5 and exponent 120 and the second, by M.R. Vaughan-Lee, is soluble of length 4 and exponent 16 . One of the results proved here (Theorem 5.1) goes a small way towards closing the gap between these examples and known finitely based varieties of smaller soluble length.

Even before these examples of Ol'shanskii and Vaughan-Lee were known the range of questions considered, for locally finite varieties at any

Received 16 June 1970.
rate, had widened considerably as people found that, from methods developed to prove finite basis theorems, much more information could be obtained; see, for example, [1], [2], [4, 5], [7], [15], [16]. The test questions, on which one can determine the efficacy of one's methods for dealing with a given variety \underline{V} then, include those following.
a) Does $\underline{\underline{V}}$, and all its subvarieties, have the finite basis property?
b) Is the Zattice $\Lambda(\underline{\underline{V}})$ of subvarieties of $\underline{\underline{V}}$ distributive?

If the answer to (a) is 'yes' for $\underline{\underline{V}}$ then every subvariety of $\underline{\underline{V}}$ can be written as a finite join of (finitely) join-irreducible subvarieties.
c) What are the join-irreducible subvarieties of \underline{V} ?

If $\underline{\underline{V}}$ is not a Cross variety it has subvarieties which are just non-Cross (Kovács and Newman [16]).
d) What are the just non-Cross subvarieties of \underline{v} ?

This list is far from exhaustive, of course - we have not, for example, mentioned Graham Higman's interesting question about the orders of the free groups of $\underline{\underline{V}}$, (52 in [12]) - but it is with these questions in mind that the present paper has been written. The varieties $\underline{\underline{V}}$ with which we will be concerned are $\stackrel{A}{=} \underset{p}{A} \stackrel{A}{-m}$ where p is a prime not dividing m; we answer (a), (b) affirmatively and provide answers to (c), (d). The reader is referred to Hanna Neumann [18] for definitions and terminology about varieties of groups and to Curtis and Reiner [8] for representation theory.

The technique employed involves fairly detailed description of the structure of non-nilpotent critical groups in $\underline{\underline{V}}$, and may be regarded as a natural development of the methods of Chapter 3 in [5] (see also [4]): in particular the concepts of bigroup and variety of bigroups used there will be needed here. The structure theorems are proved in $\S 4$, while other preliminary results which will be needed in $\S 5$ are introduced in $\S 52,3$; $\S 2$ deals with representations of groups in $A \underset{=}{A} \stackrel{A}{P}$ over fields of characteristic p and $\$ 3$ with enough representation theory over the ring of integers modulo p^{α} for our present purposes.

A convention used needs comment. If A is an abelian normal subgroup of a group G we shall often regard A as a G-module and may, without comment, write A additively. The action of elements of G on A will be written $\alpha^{g}(a \in A, g \in G)$, but note that other linear transformations of A may be written as right multiplication; thus if e is an endormorphism of the module A we write $a e$ for the image of a under e.

2. Representations of $A_{n} A_{p}$ groups

For convenience we start by stating a well-known theorem in a form appropriate for our purposes (see Higman [10, Lemma]).

LEMMA 2.1. Let A be an abelian p-group, K a finite group of automorphisms of A and K_{1} a normal p^{\prime}-subgroup of K. If A_{0} is the subgroup of A whose elements are fixed by every element of K_{1} then A_{0} has a complement in A which admits K.

This section is devoted to proving the following theorem.
THEOREM 2.2. Let p be a prime and m a natural number prime to p, and let K in $A A_{m}^{A}$ be a finite group which has a faithful irreducible representation over a field E of characteristic p. All the faithful irreducible representation modules for K over E are principal indecomposables and the representations they afford form a single linear isomorphism class.

Proof. Start by assuming that E is algebraically closed and let M be a faithful co-monolithic module for K over E, with unique maximal submodule M_{0}, say. Write S for the normal Hall p^{\prime}-subgroup of K : notice that S is not 1 . By Maschke's Theorem there exists an irreducible submodule N of M_{S} outside M_{0}. Now N is one dimensional and, since S is normal in K, $N k$ is a submodule of M_{S} whenever $k \in K$. Hence if T is a transversal of K to S

$$
\begin{equation*}
M=\sum_{t \in T} N t \tag{2.3}
\end{equation*}
$$

Suppose $k \in K$ is such that $N \cong N k$. That is, there is a one-to-one linear transformation $\theta: N \rightarrow N k$ such that

$$
\begin{equation*}
(n s) \theta=(n \theta)_{s}, \quad s \in S, \quad n \in N . \tag{2.4}
\end{equation*}
$$

However s acts simply as a scalar multiplication, say $n s=n \alpha(s)$ where $\alpha(s) \in E$; so that if $n \theta=n^{\prime} k$, then $n \mapsto n^{\prime}$ is a linear transformation and
(2.5) $(n s)^{\prime}=(n \alpha(s))^{\prime}=n^{\prime} \alpha(s)=n^{\prime} s, n \in N, s \in S$.

We conclude from (2.4) and (2.5) that

$$
\left(n^{\prime} k\right) s=(n s)^{\prime} k=\left(n^{\prime} s\right) k, \quad n^{\prime} \in N, s \in S
$$

whence it follows that $[S, k] \leq \operatorname{ker} N$. Now S centralizes K^{\prime} and therefore $[S, k]$ is normal in K. Lemma 2.1, and the fact that M is faithful and indecomposable, ensures that $[S, k]=1$; but $c_{K}(S)=S$ or else K would have a non-trivial normal p-subgroup and could not have a faithful irreducible representation over E. Hence $k \in S$ and it follows from (2.3) that

$$
\begin{equation*}
M=\underset{t \in T}{\oplus} N t \tag{2.6}
\end{equation*}
$$

We have shown, therefore, that the dimension of M is $|K: S|$. A simple application of Lemma 2.1 and Maschke's Theorem shows that M / M_{0} is faithful and, being irreducible, is co-monolithic, so that

$$
\operatorname{dim} M=\operatorname{dim} M / M_{0} ;
$$

in other words $M_{0}=0$. The first statement of the theorem is now proved (for closed fields) by observing that a principal indecomposable for K over E is co-monolithic and that it is faithful if the co-monolith is faithful.

The restriction on the field can now be removed. If V is a faithful irreducible module for K over E, and E^{*} is the closure of E then, by (70.15) of Curtis and Reiner [8], $E^{*} \otimes_{E} V$ is completely reducible and each irreducible component is faithful, hence projective, by what has already been proved; and therefore $E^{*} \otimes_{E} V$ is projective. This in turn will imply that V is projective. For, if

is a diagram with exact row then there exists γ^{*} such that the diagram

commutes. If $v \in V$ and $(1 \otimes v) \gamma^{*}=\sum e_{i} \otimes v_{i}$ (where $\left\{1=e_{0}, e_{1}, \ldots\right\}$ is a basis for E^{*} over E) it is easily checked that $\gamma: v \mapsto v_{1}$ is an $E K$-homomorphism such that $\gamma \beta=\alpha$, as required. Finally then, V is a direct sum of principal indecomposables and is therefore itself a principal indecomposable.

To proceed further, more structure on K is required. The lemma that follows comes either directly from, or by routine modification of results of Kochendörffer [13] and Taunt [20].

LEMMA 2.7. S is a direct product of indecomposable normal homocylic subgroups $S_{i}(1 \leq i \leq r)$ of K. Moreover each σS_{i} is a minimal normal subgroup of K and $o K$ is their direct product, this being the unique decomposition of σK as a direct product of minimal normal subgroups of K.

In order to prove that the faithful irreducibles of K over E form a single linear isomorphism class it suffices, by Theorem 2.5 in [1], to assume that E is algebraically closed. If, then, M is a faithful irreducible module for K over E (2.6), and (44.1) in [8], ensures that

$$
\begin{equation*}
M \cong N^{K} \tag{2.8}
\end{equation*}
$$

where N is a one-dimensional submodule of M_{S}. The proof consists in choosing a basis for M and a set of generators for K, depending on M, and evaluating the matrices representing these generators; it will be obvious that the linear group they generate is independent of M.

In (2.6) T may be chosen as a complement for S and is to be fixed throughout. Also the subgroups $S_{i}(1 \leq i \leq r)$ in Lemma 2.7 are to be fixed. Regard σS_{i} and $S_{i} / \Phi\left(S_{i}\right)$ as T-modules over a field of prime order (NOTE: S_{i} has prime-power order); they are easily seen to be isomorphic and hence, by 12.2 .2 of [9], $\operatorname{ker\sigma } S_{i}=C_{T}\left(S_{i}\right)$. With at most one exception (by Lemma 2.7 at most one σS_{i} is central in K) $\left|T: C_{T}\left(S_{i}\right)\right|$ is therefore equal to $p ;$ choose a fixed $t_{i} \in T \backslash C_{T}\left(S_{i}\right)$. Next, given the faithful irreducible module M choose N so that (2.8) holds; let $L=\operatorname{ker} N$. Note that S / L is cyclic, hence $S_{i} / S_{i} \cap L$ are all cyclic and that, because of Lemmas 2.7 and 2.1,

$$
\begin{equation*}
\left|S_{i} / S_{i} \cap L\right|=\exp S_{i}, \quad|S / L|=\exp S, \quad 1 \leq i \leq r \tag{2.9}
\end{equation*}
$$

Choose an element $s \in S \backslash L$ whose order is $\exp S$.
The following lemma is vital.
LEMMA 2.10. Let V be a free module of rank ρ over the ring of integers moduzo q^{α} (q a prime), and let $V_{o}(\$ q V)$ be a free submodule of V of rank $\rho-1$. $H=\langle h\rangle$ is a q^{\prime}-cycle acting faithfully and indecomposably on V. There is a basis $\left\{v_{1}, \ldots, v_{\rho}\right\}$ of V such that $v_{i} \in V_{0}(1 \leq i \leq p-1)$ and

$$
\begin{equation*}
v_{i} h=v_{i+1}, \quad 1 \leq i \leq \rho-1 \tag{2.11}
\end{equation*}
$$

Moreover the matrices representing h with respect to all bases with the property (2.11) are the some.

Proof. No proper submodule of V, not in $q V$, admits h. It follows easily that if

$$
U_{i}=V_{0} \cap V_{0} h \cap \ldots \cap V_{0} h^{i-1}, 1 \leq i \leq \rho,
$$

then the rank of U_{i} is $\rho-i$. Choose $0 \neq v_{\rho-1} \in U_{\rho-1}$. Since $U_{\rho-1}=U_{\rho-2} \cap U_{\rho-2} h$ there exists $v_{\rho-2} \in U_{\rho-2}$ such that $v_{\rho-1}=v_{\rho-2} h$ and $v_{\rho-2} \notin U_{\rho-1}$. In a similar fashion choose $v_{\rho-3}, \ldots, v_{1}\left(\epsilon V_{0}\right)$
and define $v_{\rho}=v_{\rho-1} h$. Now $\left\{v_{1}, \ldots, v_{\rho-1}\right\}$ is a basis for V_{0} by construction and hence $v_{\rho} \nmid v_{0}$ so that $\left\{v_{1}, \ldots, v_{\rho}\right\}$ is a basis for V, and has the desired properties. Notice that the coefficients in the expression for $v_{\rho} h$ are coefficients of the minimum polynomial for h. This completes the proof of Lemma 2.10.

Choose a basis $\left\{v_{i 1}, \ldots, v_{i \rho(i)}\right\}$ for S_{i} respecting $S_{i} \cap L$ as in the lemma, with t_{i} playing the rôle of $h:$ for convenience set $s_{i}=v_{i \rho(i)}$. Then there exists an integer m_{i}, independent of L, such that

$$
s^{m_{i}} \equiv s_{i}^{u_{i}} \bmod L
$$

where $\left(u_{i}, \exp S_{i}\right)=1$. However $\left\{\begin{array}{c}v_{i}^{u} \\ i 1\end{array}, \ldots, v_{i p(i)}^{u_{i}}\right\}$ is still a basis for S_{i} with the properties of Lemma 2.10 , so, without loss of generality, (2.12)

$$
s^{m} \equiv s_{i} \bmod L
$$

Now s_{i} is a generator of S_{i} as T-module and the action of T on s_{i} depends only on that of t_{i}; specifically, to each $t \in T$ there exists an integer $\tau(i, t)$, independent of L by Lemma 2.10, such that

$$
s_{i}^{t} \equiv s_{i}^{\tau(i, t)} \bmod L
$$

Finally let $N=\operatorname{sp}\{n\}, n s=\alpha n(\alpha \in E)$, and $\underline{B}=\{n \otimes t: t \in T\}$ be our basis for M (from (2.8) this is possible). Note that

$$
(n \otimes t) s_{i}=n \otimes t s_{i}=n \otimes s_{i}^{t^{-1}} t=n s_{i}^{\tau\left(i, t^{-1}\right)} \otimes t=\alpha^{m_{i}^{\tau\left(i, t^{-1}\right)}}(n \otimes t)
$$

If U is the representation afforded by M then, with respect to B, $s_{i} U$ has diagonal matrix, and the diagonal entries are powers of α. Our choice of the quantities $m_{i}, \tau(i, t)$ was independent of M. Hence if U^{\prime} is a faithful irreducible representation of K and α^{\prime} is the analogue of α, then α^{\prime} is a power of α and so, with respect to a
suitable basis, $s_{i}^{\prime} U^{\prime}$ is a power of $s_{i} U$. Since the matrix of $t U$ with respect to $\underset{\sim}{B}$ is a permutation matrix for all $t \in T$ we see that the linear group $K U$ is independent of the faithful irreducible U.

3. Further preliminaries

Let p be a prime and R_{α} the ring of integers modulo p^{α}. We need some facts about representations over R_{α}, analogues of well known facts about representations over fields.

If K is a finite group the group ring $R_{\alpha} K$ has minimum condition on right ideals. Let $R_{\alpha} K=\bigoplus_{i=1}^{\rho} A_{i}$ be a decomposition of $R_{\alpha} K$ as a direct sum of indecomposable right ideals. Since $R_{\alpha} K / p R_{\alpha} K$ and $p^{\alpha-1} R_{\alpha} K$ are isomorphic vector spaces over R_{1} it follows in a familiar fashion that each A_{i} is a free R_{α}-module. By (54.11) in [8] each $A_{i} / p A_{i}$ is a principal indecomposable of $R_{1} K$.

Next suppose that N_{1} is an irreducible module for K over R_{1}, and write $E_{1}=\operatorname{End}_{K} N_{I}$, a finite field isomorphic to $G F\left(p^{d}\right)$, say. Let C_{1} be the multiplicative group of E_{1}; then N_{1} is a $C_{1} K$-module over R_{1} and we shall show that if N_{1} is projective as $R_{1} K$-module it is projective as $R_{1} C_{1} K$-module. Choose a fixed isomorphism $\varphi: G F\left\{p^{d}\right\} \rightarrow E_{1}$ thus turning N_{1} into a $G F\left(p^{d}\right) K$-module - call it \hat{N}_{1}. Now \hat{N}_{1} is projective since it occurs as a direct summand of $G F\left(p^{d}\right) \otimes_{R_{1}} N_{1}$, and N_{1} is projective (using somewhat more than 70.15 of $[8]$; L.G. Kovács (unpublished) has proved our assertion). If $c \in C_{1}$ there exists $e \in G F\left(p^{d}\right)$ for which, in \hat{N}_{1},

$$
n c=n e, \quad n \in N_{1} ;
$$

and using this and the projectivity of \hat{N}_{1} one easily checks the commutivity of the diagrams which ensure that N_{1}, as $R_{1} C_{1} K$-module, is projective.

The last two paragraphs are now brought together. Let $N_{\alpha}\left(\alpha \in I^{+}\right)$ be homocyclic groups of exponent p^{α}, say with $N_{\beta}=N_{\alpha} / p^{\beta} N_{\alpha}(\alpha \geq \beta)$; E_{α} is the endomorphism ring, and A_{α} the automorphism group, of N_{α}. Define $\mu_{\alpha \beta}: E_{\alpha} \rightarrow E_{\beta}$ by

$$
\left(x+p^{\beta_{N}}\right)\left(e \mu_{\alpha \beta}\right)=x e+p^{\beta} N_{\alpha}, \quad x \in N_{\alpha}, \quad e \in E_{\alpha} .
$$

It is easy to see that $\mu_{\alpha \beta}$ is an onto ring homomorphism such that $\mu_{\alpha \beta} \mu_{\beta \gamma}=\mu_{\alpha \gamma}(\alpha \geq \beta \geq \gamma)$, and that the restriction $\nu_{\alpha \beta}$ of $\mu_{\alpha \beta}$ to A_{α} as multiplicative homomorphism is onto A_{B}. Suppose now that K_{1} is a subgroup of A_{1} such that N_{1}, as $R_{1} K_{1}$-module, is irreducible and principal indecomposable. If, as above, $E_{1}=\operatorname{End}_{K_{1}} N_{1}$ and C_{1} is its multiplicative group then N_{1} as $R_{1} C_{1} K_{1}$-module is principal indecomposable and hence there are subgroups C_{α}, K_{α} of A_{α}, which centralize each other, such that $\nu_{\alpha l}$ takes C_{α} isomorphically onto C_{1} and K_{α} isomorphically onto K_{1}. We may assume also that $K_{\alpha} \nu_{\alpha \beta}=K_{\beta}$, $C_{\alpha}{ }_{\alpha \beta}=C_{\beta}$. In this set up we have

LEMMA 3.1. As $R_{\alpha} K_{\alpha}$-module N_{α} has the double centralizer property. Also if $E_{\alpha}=\operatorname{End}_{K_{\alpha}} N_{\alpha}$ then every element e of E_{α} can be written uniquely as

$$
e=\sum_{i=0}^{\alpha-1} p^{i} c_{i}, \quad c_{i} \in C_{\alpha} \cup\{0\}
$$

Proof. The double centralizer property is proved first, by induction on α; for $\alpha=1$ it is true by (26.4) in [8]. We show in fact that if $\xi \in E_{\alpha}$ and ξ centralizes C_{α} then $\xi=\sum r_{i} k_{i}$ for some $r_{i} \in R_{\alpha}$ and $k_{i} \in K_{\alpha}$.

Notice that $\operatorname{ker}_{\alpha \alpha-1}=p^{\alpha-1} E_{\alpha}$ and that $\xi \mu_{\alpha \alpha-1}$ centralizes $c_{\alpha-1}$ and so, by induction, there exists $r_{i}^{\prime} \in R_{\alpha}, k_{i}^{\prime} \in K_{\alpha}$ so that

$$
\begin{equation*}
\xi=\left\{r_{i}^{\prime} k_{i}^{\prime}+p^{\alpha-1} e\right. \tag{3.2}
\end{equation*}
$$

for some $e \in E_{\alpha}$. Since $\lambda: x+p N_{\alpha} \rightarrow p^{\alpha-1} x$ is a group isomorphism of N_{1} onto $p^{\alpha-1} N_{\alpha}$ and, from (3.2), $p^{\alpha-1} e$ centralizes C_{α}, for all $c \in C_{\alpha}$ and all $x \in N_{\alpha}$ we have

$$
\left(x+p N_{\alpha}\right)\left((e c) \mu_{\alpha 1}\right) \lambda=\left(x e c+p N_{\alpha}\right) \lambda=p^{\alpha-1}(x e c)
$$

$$
=x\left(p^{\alpha-1} e\right) c=x c\left(p^{\alpha-1} e\right)=\left(x+p N_{\alpha}\right)\left((c e) \mu_{\alpha 1}\right) \lambda .
$$

Hence $(e c) \mu_{\alpha 1}=(c e) \mu_{\alpha 1}$. Therefore $e \mu_{\alpha l}$ centralizes C_{l}. As $\operatorname{ker}_{\alpha} \mu_{\alpha}=p E_{\alpha}$ there exists $e^{\prime} \in E_{\alpha}, r_{i}^{\prime \prime} \in R_{\alpha}$ and $k_{i}^{\prime \prime} \in K_{\alpha}$ such that

$$
e=\sum r_{i}^{\prime \prime} k_{i}^{\prime \prime}+p e^{\prime} .
$$

Combining this with (3.2) yields the desired result. The remainder of Lemma 3.1 can be proved by entirely similar methods.

It is well-known that there exists a linear transformation β_{1} of N_{1} such that $\beta_{1}^{-1} e \beta_{1}=e^{p} \quad\left(e \in E_{1}\right)$: as E_{1}-space N_{1} is completely reducible and, on each irreducible component of N_{1}, e and e^{p} have the same minimal polynomial and the matrix of each is similar to the companion matrix of this minimum polynomial. More generally we have

LEMMA 3.3. There exists $\beta_{\alpha} \in E_{\alpha}$ such that

$$
\beta_{\alpha}^{-1} c \beta_{\alpha}=c^{p}, \quad c \in C_{\alpha} .
$$

The proof of this will follow from the next lemma and the fact that $\operatorname{ker}_{\alpha l}$ is a p-group (12.2.2 in [9]).

LEMMA 3.4. Two p^{\prime}-elements of a finite group are conjugate if and only if they are conjugate modulo a normal p-subgroup.

Proof. Suppose that X is a finite group, Y is a normal p-subgroup of X and x_{1}, x_{2} are conjugate modulo Y. It suffices to assume Y is abelian. For each $t \in Y$ there exists $y_{t} \in Y$ such that

$$
x_{1}^{t}=x_{2} y_{t} .
$$

We show that for some $t, y_{t} \in C$, the centralizer of x_{2} in Y. For, suppose t, u are such that $y_{t^{y}} u^{-1} \in C$; then $x_{1}^{t} x_{1}^{-u} \in C$ and so $\left[u^{-1} t, x_{1}^{-u}\right] \in C$. Now C has a complement Y_{1} in Y by Lemma 2.1, which admits x_{2}. Write $u^{-1} t=c y_{1} \quad\left(c \in C, y_{1} \in Y_{1}\right)$ and then

$$
\left[c y_{1}, x_{1}^{-u}\right]=\left[c y_{1}, y_{u}^{-1} x_{2}^{-1}\right]=\left[y_{1}, x_{2}^{-1}\right] \in Y_{1} \cap c=1,
$$

whence $y_{1}=1$. Therefore $u^{-1} t \in C$. It follows that, if T is a transversal of Y to $C,\left\{y_{t}: t \in h^{r}\right\}$ is also a transversal of y to C, and hence for some t, y_{t} centralizes x_{2} as we asserted above. For this $t,\left(x_{1}^{t}\right)^{n}=x_{2^{n}}^{n} t^{n}$ which, if n is the l.c.m. of the ($p^{\prime}-$) orders of x_{1}, x_{2}, gives $y_{t}^{n}=1$ whence $y_{t}=1$, completing the proof.

LEMVA 3.5. Two faithful principal indecomposable R_{α} K-modules N_{α} and P_{α} afford linearly isomorphic representations if and only if $N_{\alpha} / p N_{\alpha}$ and $P_{\alpha} / p P_{\alpha}$ afford (faithful) linearly isomorphic representations of $R_{1} K$.

Proof. The 'only if' direction is easy, so suppose that N_{α} and P_{α} afford representations T, U respectively and that the representations T^{\prime}, U^{\prime} thereby induced on $N_{\alpha} / p N_{\alpha}$ and $P_{\alpha} / p P_{\alpha}$ are linearly isomorphic. That is, with respect to suitably chosen bases, the matrix groups $K^{\prime} T^{\prime}$ and $K U^{\prime}$ are equal. Hence there is an automorphism λ of K such that

$$
k \lambda T^{\prime}=k U^{\prime}, \quad k \in K .
$$

The module $N_{\alpha} / P N_{\alpha}$ affording the representation λT^{\prime} is therefore isomorphic to $P_{\alpha} / P P_{\alpha}$. Hence by (54.14) in [8], and the remarks at the beginning of this section, N_{α} as module affording the representation λT is isomorphic to P_{α}. In particular, with respect to suitably chosen
bases, the matrix groups $K \lambda T$ and $K U$ are equal. Hence T, U are linearly isomorphic.

Suppose that V_{1}, V_{2} are irreducible modules affording faithful representations T_{1}, T_{2} of a group K. One can form the groups X_{1}, X_{2} by split-extending V_{1}, V_{2} by K with actions T_{1}, T_{2} respectively. It is easy to check that T_{1} is linearly isomorphic to T_{2} if and only if X_{1} and X_{2} are isomorphic groups. In view of this we have the following corollary to Lenma 3.5 .

LEMMA 3.6. If K is an irreducible linear group acting on a space N_{1} over R_{1}, the split-extension is a uniquely determined critical group. If, moreover, N_{1} as $R_{1} K$-module is principal indecomposable then to each $\alpha \in I^{+}$there exists a mique split-extension $N_{\alpha} K$ such that $N_{\alpha} K / p N_{\alpha} \cong N_{1} K ; N_{\alpha} K$ is critical. Furthermore if N is abelian of exponent p^{α} and an extension $N K$ exists such that $N K / p N \cong N_{1} K$ then N is homocyclic and, indeed, principal indecomposable as $R_{\alpha} K$-module, and $N K \cong N_{\alpha} K$.

Proof. The existence of $N_{\alpha} K$ has already been shown, and the criticality follows from (1.65) in [14] of Kovács and Newman. That N is homocyclic follows from the fact that $x+p N \rightarrow p^{\alpha-1} x$ is a K-homomorphism. The remainder will be proved by Lemma 3.5 when we show that N is principal indecomposable. This follows easily from the projectivity of N_{α}.

4. Structure of certain critical groups

Let G be a critical group the last non-trivial term of whose lower nilpotent series, A say, is abelian. Then, by Theorem 3 in [10] of Higman, A has a complement B in G. Since G is monolithic, A is self-centralizing in G and, for some prime p, A is a p-group. We will be interested in cases when $B=H \times K$ with H the maximal normal p-subgroup of B and K a group whose faithful irreducible representations over $G F(p)$ are projective: whenever G is
abelian-by-nilpotent of $G \in \underset{p}{A} \underset{\sim}{A} \underset{=}{A} p(p \nmid m)$, and G is not nilpotent, this is easily seen to be the case (using Theorem 2.2 in the latter case). In this section we describe the structure of A as B-module: in fact we show that it suffices to obtain a description of A_{H} and A_{K}. Our aim is to construct another group (denoted later by $G^{\#}$) which generates the same variety as G but which is easier to work with then G itself.

As B-module, then, A is faithful and monolithic and, by 51.37 in [18], co-monolithic also; let A_{0} be the unique maximal submodule of A. Write $A^{*}=p A+[A, H]$ so that $A^{*} \leq A_{0}$. Choose $h_{i j} \in Z_{i}(H)-Z_{i-1}(H) \quad(1 \leq i \leq c, 1 \leq j \leq r(i)-H$ has class c, say,) such that

$$
A(i)=\left[A, h_{11}, \ldots, h_{1 r(1)}, \ldots, h_{i 1}, \ldots, h_{i r(i)}\right]
$$

is non-trivial for each $i \in\{1, \ldots, c\}$ but that

$$
\left[A(i), Z_{i}(H)\right]=1, \quad 1 \leq i \leq c
$$

Let p^{δ} be the exponent of $A(c)$. Then it is easy to check that the mapping

$$
\xi: a+A^{*}\left[\left[a, h_{11}, \ldots, h_{1 r(1)}, \ldots, h_{c l}, \ldots, h_{c r}(c)\right]^{p^{\delta-1}}\right.
$$

is a non-zero B-homomorphism of A / A^{*}. Now σA is in $\left(A / A^{*}\right) \xi$ and is therefore centralized by H; hence K acts irreducibly on σA and, by Lemma 2.1, faithfully also. But our assumptions on K mean that $(\sigma A)_{K}$ is injective so that

$$
\left(A / A^{*}\right) \xi=\sigma A \oplus U
$$

where U admits K and therefore B since H acts trivially on $\left(A / A^{*}\right) \xi$; thus $U=0$ and $\left(A / A^{*}\right) \xi=\sigma A$. It follows that ker $\xi=A_{0} / A^{*}$ and that, as B-modules,

$$
\begin{equation*}
A / A_{0} \cong \sigma A \tag{4.1}
\end{equation*}
$$

We aim now to delineate the module structure of A commencing with
the next lemma.
LEMMA 4.2. There exists a principal indecomposable submoctule N of A_{K} such that $N / P^{N} \cong \sigma A$ as $R_{1} K$-modules and N generates A as H-module.

Proof. Since $(\sigma A)_{K}$ is projective so is $\left(A / A_{0}\right)_{K}$ by (4.1). Hence there exists a submodule C_{1} of A_{K} so that

$$
C_{1}+A_{0}=A, \quad C_{1} \cap A_{0}=p A
$$

But $C_{1} / p A \cong A / A_{0}$ so, for the same reason, there is a submodule C_{2} of C_{1} such that $C_{2}+p A=C_{1}, C_{2} \cap p A=p C_{1}$ and $C_{2} / p C_{1} \cong A / A_{0}$. In this way construct a descending sequence of submodules C_{i} such that $C_{i} / p C_{i-1} \cong A / A_{0}$. For some j we must have $p C_{j}=p C_{j-1}$ which means that $C_{j} / p C_{j} \cong A / A_{0}$ is irreducible and the last assertion of Lemma 3.5 then gives that C_{j} is a free R_{α}-module. Note that $C_{i} \neq A_{0}$ for any i. Put $N=C_{j}$ and then, since N admits K, N generates A as H-module, whence N has exponent p^{α}. This completes the proof of Lemma 4.2 .

Let the N of Lemma 4.2 have R_{α}-basis $\left\{n_{1}, \ldots, n_{s}\right\}$. Write M_{i} for the H-submodule of A generated by $n_{i}(l \leq i \leq s)$. Using von Dyck's theorem one checks that group isomorphisms $\delta_{i}: M_{1} H \rightarrow M_{i} H$ may be defined by

$$
n_{1} \delta_{i}=n_{i}, h \delta_{i}=h, h \in H
$$

The mapping

$$
(m, n) \mapsto \sum_{i=1}^{s} r_{i}\left(m \delta_{i}\right), \quad m \in M_{1}, \quad n \in N
$$

where $n=\sum r_{i} n_{i}$, is easily seen to be balanced. Hence there exists a homomorphism τ of $M_{1} \otimes_{R_{\alpha}} N$ onto A such that

$$
(m \otimes n) \tau=\sum_{i=1}^{s} r_{i}\left(m \delta_{i}\right), \quad m \in M_{1}, \quad n \in N
$$

Moreover, if $H \times K$ acts on $M_{1} \otimes_{R_{\alpha}} N$ in the usual outer tensor product fashion:

$$
(m \otimes n)^{h k}=m^{h} \otimes n^{k}, \quad m \in M_{1}, \quad n \in N ; \quad \hbar k \in H \times K
$$

then τ is an $H \times K$-epimorphism. Define $G^{\#}$ to be the group obtained by split-extending $M_{1} \otimes_{R_{\alpha}} N\left(=A^{\#}\right)$ by $H \times K ;$ then τ extends to a group epimorphsim $\tau: G^{\#}+G$.

Next write $E=\operatorname{End}_{K} N$. We can extend the action of E to the whole of $A^{\#}$ by identifying E with $\perp \otimes E$:

$$
(m \otimes n) e=m \otimes n e, \quad m \in M_{1}, \quad n \in N, \quad e \in E
$$

Then, by Lemma 3.1, kert admits E. Consequently A may be regarded as an E-space. In this set up we have:

THEOREM 4.3. If M is the EH-subspace of A generated by n_{1} then, as $E(H \times K)$-modules,

$$
A \cong M \otimes_{E} N
$$

Proof. Since each space $p^{i} N / p^{i+1} N \quad(0 \leq i \leq \alpha-1)$ is a vector space over the field $E / p E=E_{1}, N$ has on E-basis $\left\{\tau_{1}, \ldots, \tau_{t}\right\}$ with $Z_{1}=n_{1}$, say. Then, copying the construction of $G^{\#}$ and τ, we find an $E(H \times K)$-homomorphism

$$
v: M \otimes_{E} N \rightarrow A
$$

onto A. We will show that v is one-to-one.
The construction of v gives first

$$
\begin{equation*}
n \in N-p N, \quad m \in M \text { and } m \otimes n \in \operatorname{kerv} \Rightarrow m=0 \tag{4.4}
\end{equation*}
$$

and second

$$
\begin{equation*}
\sigma\left(M \otimes_{E} N\right)=\sigma M \otimes_{E} N \cong \sigma M \otimes_{E_{1}} N / p N \tag{4.5}
\end{equation*}
$$

Since $\sigma M \otimes_{E} N$ is centralized by H it follows from (4.4) and (4.5) that

$$
0 \neq\left(\sigma\left(M \otimes_{E} N\right)\right) \nu \leq Z(A H)=\sigma A ;
$$

hence $\left(\sigma\left(M \otimes_{E} N\right)\right) v=\sigma A$. Write $D=\operatorname{ker} v \cap \sigma\left(M \otimes_{E} N\right)$. Then, regarding $\sigma\left(M \otimes_{E} N\right)$ as an $E_{1}-$ space $(b y(4.5))$, and σA also, we find that the co-dimension of D in $\sigma\left(M \otimes_{E} N\right)$ is precisely $\operatorname{dim\sigma A}=\operatorname{dim}_{E} N=t$. Suppose that $O M$ contains elements m_{1}, m_{2} which are E-independent and therefore E_{1}-independent. Using (4.5)

$$
\operatorname{dim}\left(m_{1} \otimes N / p N+m_{2} \otimes N / p N\right)=2 \operatorname{dim} N
$$

whence, if $D \neq 0$,

$$
D_{1}=D \cap\left(m_{1} \otimes N / p N+m_{2} \otimes N / p N\right) \neq 0
$$

If $d \in D_{1}$ then, for suitable $x_{1}, x_{2} \in N / p N$ we have

$$
d=m_{1} \otimes x_{1}+m_{2} \otimes x_{2},
$$

and (4.4) shows that the relation $\mu: x_{1} \rightarrow x_{2}$ is a mapping from $X_{1}=\left\{x_{1} \in N / p N: d \in D_{1}\right\}$ to $X_{2}=\left\{x_{2} \in N / p N: d \in D_{1}\right\}$. Indeed since $D_{1} \neq 0$ and $N / p N$ is an irreducible $E_{1} K$-module, $X_{1}=X_{2}=N / p N$ and $0 \neq \mu \in E_{1}$. Hence for some non-zero $x_{1} \in N / p N$,

$$
\left(m_{1}+m_{2} \mu\right) \otimes x_{1} \in D_{1}
$$

and (4.4) implies $m_{1}+m_{2} \mu=0$ contrary to the independence of m_{1} and m_{2}. Therefore $D=0$ and hence kerv $=0$. If the E-dimension of N is one then clearly kerv $=0$; in any case v is one-to-one and Theorem 4.3 is proved.

The proof just completed shows that σM is a one dimensional E_{1}-space. Since $\sigma M_{1} \leq \sigma M$ we have

COROLLARY 4.6. The dimension of σM_{1} as R_{1}-space is at most the dimension d of E_{1} over R_{1}.

Write $\hat{A}=\left(M_{1} \otimes_{R_{\alpha}} E\right) \otimes_{E} N$ so that there is an E-isomorphism $\lambda: \hat{A} \mapsto A^{\#}$ which has

$$
\lambda:\left(m_{1} \otimes 1\right) \otimes n \mapsto m_{1} \otimes n, \quad m_{1} \in M_{1}, \quad n \in N .
$$

Moreover if we define the action of $H \times K$ on \hat{A} in the natural way:

$$
\left(\left(m_{1} \otimes 1\right) \otimes n\right)^{h k}=\left(m_{1}^{h} \otimes 1\right) \otimes n^{k}, m_{1} \in M_{1}, \quad n \in N
$$

then λ is an $H \times K$ homomorphism; and if \hat{G} is obtained by extending \hat{A} by $H \times K$ in this action, λ extends to a group isomorphism $\lambda: \hat{G} \mapsto G^{\#}$. In this set up one easily checks, using Theorem 4.3

LEMMA 4.7. There exists an EH-submodule L of $M_{1} \otimes_{R_{\alpha}} E$ such that $\operatorname{ker} \lambda \tau=L \otimes_{E} N$.

Next let $\beta=\beta_{\alpha}$ of Lemma 3.3 and let $\gamma: E \rightarrow E$ be defined by

$$
\gamma: e \mapsto e^{\beta}, \quad e \in E
$$

Then it is simple to check that

$$
\begin{equation*}
\lambda\left(1 \otimes \beta^{i}\right) \lambda^{-1}=\left(1 \otimes \gamma^{i}\right) \otimes \beta^{i}, \quad 0 \leq i \leq d-1 . \tag{4.8}
\end{equation*}
$$

LEMMA 4.9. $\bigcap_{i=0}^{d-1}(\operatorname{kert}) \beta^{i}=0$.
Proof. It suffices to show that $\prod_{i=0}^{d-1}\left(L \otimes_{E} N\right) \lambda \beta^{i} \lambda^{-1}=0 \quad$ which, by (4.8), will follow if $\prod_{i=0}^{d-1} L\left(1 \otimes \gamma^{i}\right)=0$. Write $U=L \cap \sigma\left(M_{1} \otimes E\right)$ so that we need only prove

$$
\begin{equation*}
\prod_{i=0}^{d-1} U\left(1 \otimes \gamma^{i}\right)=0 \tag{4.10}
\end{equation*}
$$

Analogously to (4.4) and (4.5) we have:
(4.11) $\quad m_{1} \in M_{1}, e \in E-p E$ and $m_{1} \otimes e \in L \Rightarrow m_{1}=0$;

$$
\begin{equation*}
\sigma\left(M_{1} \otimes_{R_{\alpha}} E\right) \cong \sigma M_{1} \otimes_{R_{1}} E_{1} \tag{4.12}
\end{equation*}
$$

The force of (4.12) is that to prove (4.10) we may assume that we are working in a vector space over a field E_{1}, where γ is now the Galois
automorphism $e_{1} \mapsto e_{1}^{p}$ of E_{1}. The following rather technical lemma will prove (4.10).

LEMMA 4.13. Let V be a proper non-zero submodule of $\sigma M_{1} \otimes_{R_{1}} E_{1}$ and l be maximal with respect to the property that, whenever S is a linearly independent subset of σM_{1} containing at most $I-1$ elements,

$$
\begin{equation*}
0=V \cap \underset{t \in S}{\oplus} t \otimes E_{1} \tag{4.14}
\end{equation*}
$$

Then, if S^{\prime} is a linearly independent subset of σM_{1} containing l elements

$$
0=V \cap V 1 \otimes \gamma \cap \oplus_{t \in S^{\prime}} t \otimes E_{1}
$$

Proof. Observe first that the co-dimension of V in $\sigma M_{1} \otimes E_{1}$ is at least $\cdot Z-1$ and that, if S^{\prime} is a linearly independent subset of σM_{1} containing Z elements,

$$
0 \neq V\left(S^{\prime}\right)=V \cap \bigoplus_{t \in S^{\prime}} t \otimes E_{1}
$$

We emulate the argument following (4.5). For all $v \in V\left(S^{\prime}\right)$ then,

$$
v=\sum_{t \in S^{\prime}} t \otimes x_{t}
$$

for some $x_{t} \in E_{1}$. By virtue of (4.14) for each $t \in S^{\prime}$ the correspondence $x_{t}{ }^{\leftrightarrow} x_{t^{\prime}}$ is one-to-one for each $t^{\prime} \epsilon S^{\prime}$, and is indeed, an E_{1}-endomorphism of E_{1}. Consequently there exist elements $S^{\prime}(t)$ of E_{1}, linearly independent over R_{1} by (4.14), such that

$$
\begin{equation*}
V\left(S^{\prime}\right)=\left\{\sum_{t \in S^{\prime}} t \otimes x S^{\prime}(t): x \in E_{1}\right\} \tag{4.15}
\end{equation*}
$$

Next define, for a linearly independent subset S of σM_{1} containing exactly \mathcal{Z} - 1 elements, and a basis B of σM containing S,

$$
S_{b}=S \cup\{b\}, \quad b \in \bar{S}=B-S
$$

Then, using (4.15), the $V\left(S_{b}\right)$ clearly generate their direct sum and each $V\left(S_{b}\right)$ has E_{1}-dimension 1 . Hence $\underset{b \in S}{\oplus} V\left(S_{b}\right)$ has co-dimension $Z-1$
and therefore

$$
\begin{equation*}
V=\underset{b \in \bar{S}}{\oplus} V\left(S_{b}\right) ; \tag{4.16}
\end{equation*}
$$

in particular V has co-dimension exactly $\mathcal{Z}-1$. We now show that for all S and B as above

$$
\begin{equation*}
V \cap V\left(S_{b}\right) \perp \otimes \gamma=0, \quad b \in \stackrel{\rightharpoonup}{S} \tag{4.17}
\end{equation*}
$$

Suppose that $\omega \in V\left(S_{b}\right)$ and $w \perp \otimes \gamma \in V . \quad$ From (4.15) and (4.16)

$$
w \perp \otimes \gamma=\left(\sum_{t \in S_{b}} t \otimes x S_{b}(t)\right) 1 \otimes \gamma=\sum_{j \in S} \sum_{t \in S_{j}} t \otimes x_{j} S_{j}(t)
$$

for some $x, x_{j} \in E_{1}$. This implies at once that for $j \neq b, x_{j}=0$ since $j \otimes x_{j} S_{j}(j)$ occurs once only on the right and not at all on the left. Hence

$$
\sum_{t \in S_{b}} t \otimes(x \gamma) S_{b}(t)^{p}=\sum_{t \in S_{b}} t \otimes x_{b} S_{b}(t)
$$

so that

$$
(x y) S_{b}(t)^{p}=x_{b} S_{b}(t), \quad t \in S_{b}
$$

If t, t^{\prime} are distinct elements of S_{b} (under the hypotheses $\left|S_{b}\right| \geq 2$) then $x_{b}\left\{S_{b}(t) S_{b}(t)^{-p}-S_{b}\left(t^{\prime}\right) S_{b}\left(t^{\prime}\right)^{-p}\right\}=0 \quad$ from which $\quad x_{b} \neq 0$ implies $y\left\{S_{b}(t) S_{b}(t)^{-p}-S_{b}\left(t^{\prime}\right) S_{b}\left(t^{\prime}\right)^{-p}\right\}=0$ for all $y \in E_{1}$. In other words

$$
x_{b} \neq 0 \Rightarrow S_{b}(t) S_{b}(t)^{-p}-S_{b}\left(t^{\prime}\right) S_{b}\left(t^{\prime}\right)^{-p}=0
$$

which implies $\left(S_{b}\left(t^{\prime}\right)^{-1} S_{b}(t)\right)^{p}=S_{b}\left(t^{\prime}\right)^{-1} S_{b}(t)$, and this means that $S_{b}\left(t^{\prime}\right)^{-1} S_{b}(t) \in R_{1}$ contrary to the independence of $S_{b}\left(t^{\prime}\right), S_{b}(t)$ over R_{1}. We conclude that $x_{b}=0$ and therefore that $w=0$, proving (4.17). Since an arbitrary set S^{\prime} of Z independent elements of σM_{1} can always be constructed as $S^{\prime}=S_{b}$ for suitable S and B, (4.17) yields
(with γ replaced by γ^{-1})

$$
V \cap V 1 \otimes \gamma \cap \underset{t \in S^{\prime}}{\oplus} t \otimes E_{1}=V 1 \otimes \gamma \cap V\left(S^{\prime}\right)=\left(V \cap V\left(S^{\prime}\right) 1 \otimes \gamma^{-1}\right) 1 \otimes \gamma=0
$$

and the proof of Lemma 4.13 is complete.
Return to the proof of Lerma 4.9. By (4.11) U satisfies the hypotheses of Lemma 4.13 with $Z=2$. Now $U \cap U l \otimes \gamma$ has co-dimension at most 2 since $U, U l \otimes \gamma$ each have co-dimension 1 ; but (4.15) shows that $U \cap U l \otimes \gamma$ has co-dimension at least 2 , and hence exactly 2 . An easy induction using Lemma 4.13 shows that
$U \cap U 1 \otimes Y \cap \ldots \cap U \mathcal{O} \otimes \gamma^{i}$ has co-dimension $i+1$ in $\sigma M_{1} \otimes E_{1}$ and therefore, by Corollary 4.6, is zero for $i=d$. This proves (4.10) and with it Lemma 4.9.

Lemma 4.9 provides a subdirect decomposition of $G^{\#}$ which we now describe. First note that $K^{\beta^{i}}$ centralizes E, and therefore, by Lemma 3.1, kert admits $K^{\beta^{i}}(0 \leq i \leq \alpha-1)$; whence $(\text { ker } \tau)^{\beta^{i}}$ admits K ($0 \leq i \leq d-1$). Consequently in \hat{G},

$$
(L \otimes N) \lambda \beta^{i} \lambda^{-1}=\left(L 1 \otimes \gamma^{i}\right) \otimes N, \quad 0 \leq i \leq d-1
$$

admits $H K$. Write $M(i)=\left(M_{1} \otimes E\right) / L 1 \otimes \gamma^{i},(0 \leq i \leq d-1)$, so that $M(i)$ is an $E H$-module "Galois conjugate" to M. Then $G_{i}=\hat{G} /\left(L 1 \otimes \gamma^{i}\right) \otimes N$ is the group obtained by extending $M(i) \otimes_{E} N$ by $H \times K$ in the outer-tensor product fashion, and

LEMMA 4.18. $\dot{G}^{\#}$ is iscmorphic to a subdirect product of G_{0}, \ldots, G_{d-1}.

Note that $G_{0} \cong G$. Indeed under suitable restrictions each of G_{0}, \ldots, G_{d-1} is isomorphic to G.

LEMMA 4.19. If the faithful irreducible representations of K over $G F\left(p^{d}\right)$ form a single linear isomorphism class then each of G_{0}, \ldots, G_{d-1}
is isomorphic to G.
Proof. If E_{α} is the ring in Lemma 3.1, taking N_{1} to be the additive group of $\mathrm{GF}\left(p^{d}\right)$ and K_{1} its multiplicative group, then Lemma 3.5 shows that the faithful indecomposable representations of K over E_{α} are linearly isomorphic. In particular there exists ζ centralizing E such that $K=K^{\beta \zeta}$. Since $\beta \zeta$ has the same action on E as β does we may, without loss of generality, assume $K=K^{\beta}$.

Now there exist H-isomorphisms $\eta_{i}: M \rightarrow M(i)$ with the property:

$$
(m e) n_{i}=\left(m n_{i}\right) e \gamma^{i}, m \in M, \quad e \in E, \quad i \in\{0, \ldots, d-1\}
$$

and it is easy to check that there exist isomorphisms $\theta_{i}: M \otimes_{E} N \rightarrow M(i) \otimes_{E} N$ with the property that

$$
(m \otimes n) \theta_{i}=m \eta_{i} \otimes n \beta^{i}, \quad m \in M, n \in N, i \in\{0, \ldots, d-1\}
$$

Moreover if $a \in M \otimes_{E} N,\left(a^{h k}\right) \theta_{i}=\left(a \theta_{i}\right)^{h k^{\beta^{i}}}(h \in H, k \in K)$, and hence the mapping $\theta_{i}: G \rightarrow G_{i}$ defined by

$$
(h k a) \theta_{i}=h k^{\beta^{i}} a \theta_{i}, \quad h \in H, \quad k \in K, \quad a \in A
$$

is an isomorphsim.
COROLLARY 4.20. Under the conditions of (4.19), $\operatorname{var} G=\operatorname{var} G^{\#}$.
Proof. Use Lemmas 4.19 and 4.18.
L.G. Kovács has constructed for us a group K which has a faithful irreducible representation whose Galois conjugates, regarded as $\operatorname{GF}\left(p^{d}\right)$ representations, are not linearly isomorphic; indeed for this K one can easily construct a critical group G such that G_{0}, \ldots, G_{d-1} are not pair-wise isomorphic. Whether or not G and $G^{\#}$ nevertheless generate the same variety in general we have been unable to determine.

Summarizing this section then, we have

THEOREM 4.21. Let G be a non-nilpotent critical group the last non-trivial term of whose lower nilpotent series, A say, is abelian. A is a p-group, with a cormplement B in G. If $B=H \times K$ where H is the largest normal p-subgroup of B and K is such that its faithful irreducible representations over $G F(p)$ are projective and form a single linear isomorphism class, then

$$
\operatorname{var} G=\operatorname{var} G^{\#} .
$$

The first four sections can now be used to answer the test questions raised in the introduction. Much of the proof is technical in nature.

THEOREM 5.1. Every subvariety of $\underline{\underline{V}}=\frac{\underline{A}_{p}}{A_{n}} \stackrel{A}{p}$ (where p is a prime not dividing m) is finitely based.

THEOREM 5.2. The Zattice of subvarieties $\Lambda(\underline{\underline{V}})$ of $\underline{\underline{\mathrm{V}}}$ is distributive.

THEOREM 5.3. The only just non-Cross subvariety of $\underline{\underline{V}}$ is ApAp.
The join irreducible subvarieties of $\underline{\underline{V}}$ can be described with the apparatus we have developed, but in general this is tedious without being especially illuminating. We shall content ourselves with the case when m is a prime q. Even in this case a certain amount of preamble is necessary - it will be needed in the proof of Theorem 5.1 also.

A bigroup is a group G together with an idempotent endomorphism of G; alternatively G is a triple (G, A, B) where A is a normal subgroup of G and B a complement for A in G. Bigroups and varieties of bigroups are discussed in $[4,5]$ and the reader is referred there for more complete information.

Let $\mathrm{F}=\left(F, A_{1}, B_{1}\right)$ and $\mathrm{D}=\left(D, A_{2}, B_{2}\right)$ be bigroups in which A_{1}, A_{2} are abelian groups, that is Z-modules over the ring of integers Z. Let $F \# D$ be the group obtained by split-extending $A_{1} \otimes_{2} A_{2}$ by $B_{1} \times B_{2}$ with the usual outer-tensor product action:

$$
\left(a_{1} \otimes a_{2}\right)^{b_{1} b_{2}}=a_{1}^{b_{1}} \otimes a_{2}^{b_{2}}, \quad a_{i} \in A_{i}, \quad b_{i} \in B_{i}, \quad i=1,2 .
$$

Notice that if G is a non-nilpotent critical group in V then, using the notation of $\S 4, G^{\#} \cong \mathrm{~F} \# \mathrm{D}$ where $\mathrm{F}=\left(M_{1} H, M_{1}, H\right)$ and $\mathrm{D}=(N K, N, K)$; tensoring over R_{α} instead of Z makes no difference since $M_{1} \otimes_{Z} N \cong M_{1} \otimes_{R_{\alpha}} N$ as $H K$-modules. If S is a variety of bigroups denote by S^{D} the variety of groups generated by

$$
\{F \# D: F \in S\} .
$$

We record without proof the following facts:-
$F_{1} \leq F$ implies $F_{1} \# D \leq F \# D$;
if ζ is a homomorphism of F then the natural homomorphisms $B_{1} \times B_{2} \rightarrow B_{1} \zeta \times B_{2}$ and $A_{1} \otimes_{2} A_{2} \rightarrow A_{1} \zeta \otimes_{2} A_{2}$ extend to a homomorphism F\#D +F \# D ;

$$
\left(\prod_{i} \mathrm{~F}_{i}\right) \text { \# D is a subdirect product of } \prod_{i} \mathrm{~F}_{i} \# \mathrm{D} .
$$

The next lemma follows easily from these three.
LEMMA 5.4. If S is generated by the set $\left\{F_{i}: i \in I\right\}$ then S^{D} is generated by $\left\{F_{i} \# D: i \in I\right\}$.

COROLLARY 5.5. $\left(S_{1} \vee S_{2}\right)^{D}=S_{1}^{D} \vee S_{2}^{D}$.
The join irreducibles in $\Lambda\left({\left.\underset{p}{A} \alpha^{A} q_{P}^{A}\right)}^{a}\right.$ are either locally nilpotent or not; the former are described in [16] and the latter will be described in terms of join irredicuble subvarieties of the variety of bigroups
$\underline{\underline{A}}_{p}{ }^{\circ} \stackrel{A}{A_{p}}$ (for which see (4.3.15) of [5]) and irreducible linear groups in ${ }_{\underline{A}}^{A_{q}}{ }_{p}$:

THEOREM 5.6. The non-locally nilpotent join-irreducible
 form S^{D} where S is a join-irreducible subvariety of $\underline{\underline{A}}_{p} \alpha^{\circ} \underline{\underline{A}}_{p}$ not in
$\underline{\underline{E}} \circ \underline{A}_{p}$ and $\mathrm{D}=\left(D, A_{2}, B_{2}\right)$ has A_{2} of exponent p^{α} and $B_{2} \in A_{q} A$ acting faithfully and irreducibly on $A_{2} / p A_{2}$.

Proof of Theorem 5.3. This result is covered by a more general (unpublished) result of J.M. Brady: a soluble just non-Cross variety of finite exponent, which is not $A A_{p}^{A}$ or $A A_{p}^{A} A$, is contained in $\stackrel{A}{A}_{p}\left(\underline{\underline{N}}_{c} \wedge \underline{B}_{n}\right)(p \mid n)$. We include a proof of Theorem 5.3 since it comes easily; it suffices to show that every subvariety $\underline{\underline{U}}$ of $\underline{\underline{v}}$ not containing $\underset{P}{A} A$ p-groups in $\underline{\underline{U}}$ have bounded class; and, in particular, nilpotent critical groups have bounded order (51.35 in [18]). If G is a non-nilpotent critical group in $\underline{\underline{U}}$ then 51.38 in [18] ensures that H has bounded order (using the notation of 54). If T is the Sylow p-subgroup of K then $(\sigma G)_{T}$ is a direct sum of regular representations of T, by Theorem 2.2 and 65.16 in [8], and therefore $\operatorname{var} G$ contains a group, isomorphic to $C_{p}{ }^{w r} T$, whose class is at least $|T|$. Hence $|T|$ is bounded, and Lemma 2.7 then shows that $|K|$ is bounded. Consequently Theorem 4.3 ensures that $|G|$ is bounded, thus showing that $\underline{\underline{U}}$ contains but finitely many critical groups and is Cross.

Proof of Theorem 5.2. If ${\underset{\underline{W}}{i}}(i=1,2,3)$ are subvarieties of $\underline{\underline{V}}$ we need to show that

$$
\begin{equation*}
\underline{\underline{W}}_{1} \wedge\left(\underline{\underline{W}}_{2} \vee \underline{\underline{W}}_{3}\right) \leq\left(\underline{\underline{W}}_{1} \wedge \underline{\underline{W}}_{2}\right) \vee\left(\underline{\underline{W}}_{1} \wedge \underline{\underline{W}}_{3}\right), \tag{5.7}
\end{equation*}
$$

since the other inclusion is obvious. Let G be a critical group belonging to the left-hand side of (5.7). By (1.12) and (1.14) of Kovács and Newman [14] there exist subsets $\Sigma_{i} \subseteq{\underset{\sigma}{i}}_{W}^{W}(i=1,2,3)$ of critical groups whose monoliths are similar to σG such that

$$
G \in \operatorname{var} \Sigma_{1} \wedge\left(\operatorname{var} \Sigma_{2} \vee \operatorname{var} \Sigma_{3}\right) ;
$$

and if $\Phi_{i}=\left\{F(X): X \in \Sigma_{i}\right\} \quad(i=1,2,3)$ (where $F(X)$ is the Fitting subgroup of X) then, using (1.14) in [14],

$$
\begin{equation*}
F(G) \in \operatorname{var} \Phi_{1} \wedge\left(\operatorname{var} \Phi_{2} \vee \operatorname{var} \Phi_{3}\right) \tag{5.8}
\end{equation*}
$$

of course if G is nilpotent then the members of each Σ_{i} are nilpotent
and, by Theorem 4 in [16],
$G \in\left(\operatorname{var} \Sigma_{1} \wedge \operatorname{var} \Sigma_{2}\right) \vee\left(\operatorname{var} \Sigma_{1} \vee \operatorname{var} \Sigma_{3}\right) \leq\left(\underline{\underline{W}}_{1} \wedge \underline{\underline{W}}_{2}\right) \vee\left(\underline{\underline{W}}_{1} \wedge \underline{\underline{W}}_{3}\right)$
as required; thus assume that G is not nilpotent. Put
$\mathrm{F}=\left(M_{1} H, M_{1}, H\right)$ in the notation of 54 and then it is clear that $F, F(G)$ generate the same variety (indeed the bigroups they carry generate the same variety - cf. (3.1.6) in [5]) ; also write F_{X} for the analogous bigroup corresponding to $x \in \Sigma_{i}(i=1,2,3)$; and write $D=(N K, N, K)$. Hence, if

$$
\Psi_{i}=\left\{F_{X}: X \in \Sigma_{i}\right\}, i=1,2,3,
$$

then it follows from (4.3.4) in [5] and (5.8) that

$$
F \in \operatorname{var} \Psi_{1} \wedge\left(\operatorname{var} \Psi_{2} \vee \operatorname{var} \Psi_{3}\right) .
$$

But by (4.3.14) in [5], $\Lambda\left({\underset{p}{A}}^{\alpha}{ }^{\circ} \underline{\underline{A}}_{p}\right)$ is distributive and therefore

$$
F \in\left(\operatorname{var} \Psi_{1} \wedge \operatorname{var} \Psi_{2}\right) \vee\left(\operatorname{var} \Psi_{1} \wedge \operatorname{var} \Psi_{3}\right) .
$$

However Corollary 5.5 shows that

$$
\begin{aligned}
& G^{\#} \cong F \# D \in\left(\operatorname{var} \Psi_{1} \wedge \operatorname{var} \Psi_{2}\right)^{D} \vee\left(\operatorname{var} \Psi_{1} \wedge \operatorname{var} \Psi_{3}\right)^{D} \\
& \leq\left(\left(\operatorname{var} \Psi_{1}\right)^{D} \wedge\left(\operatorname{var} \Psi_{2}\right)^{D}\right) \vee\left(\left(\operatorname{var} \Psi_{1}\right)^{D} \wedge\left(\operatorname{var} \Psi_{3}\right)^{D}\right) ;
\end{aligned}
$$

and $\left(\operatorname{var} \Psi_{i}\right)^{D} \leq \underline{\underline{W}}_{i}$ by Lemma 5.4. Finally, then,

$$
G \in\left(\underline{\underline{W}}_{1} \wedge \underline{\underline{W}}_{2}\right) \vee\left(\underline{\underline{W}}_{1} \wedge \underline{\underline{W}}_{3}\right) .
$$

Proof of Theorem 5.1. Since $\underline{\underline{V}}$ is finitely based (two applications of Theorem 3.1 of Higman [11] show this) it suffices to prove that $\Lambda(\underline{\underline{V}})$ has descending chain condition. The following, easily proved, lemma will be used.

LEMMA 5.9. A locally finite variety $\underline{\underline{X}}$ has descending chain condition on subvarieties if and only if to every set $\left\{G_{i}: i \in I^{+}\right\}$of non-isomorphic critical groups in $\underline{\underline{X}}$ there exists $i \in I^{+}$such that (5.10)

$$
G_{i} \in \operatorname{var}\left\{G_{j}: j \geq i+1\right\}
$$

It will be convenient to restate here some facts from earlier
sections, in the process establishing some notation.
(5.11). If $G \in \underline{\underline{V}}$ is critical and not nilpotent the Fitting subgroup $F(=A H)$ of G has a complement K (see §4).
(5.12). $K=S T$ where $S \in A_{A}$ is the centralizer in K of σK and $T \in A_{p}$ is a complement for S in K.
(5.13). By Lerma $2.7 S$ is a direct product of homocyclic subgroups $S_{i j}\left(1 \leq j \leq r_{i}, l \leq i \leq r\right)$ which are normal in K and, as normal subgroups of K, indecomposable. (Assume that $\operatorname{expS}_{i j}=\exp S_{k l}$ if and only if $i=k$.) The $\sigma S_{i j}$ are precisely all the minimal normal subgroups of K and σK is their direct product. Put $\left.S_{i}=\prod \prod S_{i j}: 1 \leq j \leq r_{i}\right\} \quad(1 \leq i \leq r)$.

Now for some $\rho \in\{1, \ldots, r\}$ let W be a normal subgroup of K maximal with respect to containing $S_{1} S_{2} \ldots S_{\rho}$ and avoiding $S_{\rho+1} \ldots S_{r}$ (so that

$$
\left.W=S_{1} S_{2} \ldots S_{\rho} \cdot C_{T}\left(S_{\rho+1} \ldots S_{r}\right)\right)
$$

For $i \in\{1, \ldots, \rho\}$ and arbitrary $j \in\left\{1, \ldots, r_{i}\right\}$ let $X_{i j}$ be a normal subgroup of K maximal with respect to containing all $S_{k l}$ with $(k, \eta) \dot{F}(i, j)$ and avoiding $S_{i j} \quad$ so that

$$
\left.x_{i j}=\left(\prod_{(k, \imath) \neq(i, j)}, S_{k Z}\right) \cdot C_{T}\left(S_{i j}\right)\right)
$$

Put

$$
\Gamma=K / W, \quad \Delta_{i j}=K / X_{i j}, \quad 1 \leq i \leq \rho, \quad 1 \leq j \leq r_{i}
$$

LEMMA 5.14. Suppose $Z(K)=1$. Then $\Delta_{i j} \cong \Delta_{i 1}(1 \leq j \leq r)$ and if $\Sigma=\Gamma \times \prod_{i=1}^{p} \Delta_{i}^{r_{i}} \quad\left(w h e r e \quad \Delta_{i}=\Delta_{i 1}\right.$ and $\Delta_{i}^{r_{i}}$ denotes the r_{i}-fold
direct power of Δ_{i}) there is an embedding $\mu: K \rightarrow \Sigma$ such that

$$
(\sigma K) \mu=\sigma \Sigma .
$$

Proof. Since $Z(K)=1$ none of $S_{i j}$ can be central, and each $\Delta_{i j}$ is isomorphic to $S_{i j}$ split-extended by an automorphism of order p. Consequently up to isomorphism $\Delta_{i j}$ is independent of j. By (5.13) $W \cap \cap_{i, j} X_{i j}=1$, the $\sigma S_{i j}$ being the only minimal normal subgroups of K. This completes the proof.

LEMMA 5.15. Suppose $Z(K)=1$. Put $C_{o}=C_{T}\left(S_{\rho+1} \ldots S_{r}\right)$ and $\left|T: C_{0}\right|=p^{\delta}$. Then provided $r_{i} \geq p^{\delta+s \rho}(1 \leq i \leq \rho), K$ contains a subgroup $\Sigma_{0} \cong \Gamma \times \prod_{i=1}^{\rho} \Delta_{i}^{s}$ with $\sigma \Sigma_{0} \leq \sigma K$.

Proof. Note first that the number of inequivalent non-trivial irreducible representations of an elementary abelian group of order p^{u} is at most $p^{u}-1$. Hence, since the minimal normal subgroups $\sigma S_{i j}$ of K afford inequivalent representations of T, by (5.13), a subgroup of index p^{u} in T centralizes at most $p^{u}-1$ of the $\sigma S_{i . j}$ and therefore centralizes at most $\left(p^{u}-1\right) \quad S_{i j}$'s. The proof depends on repeated use of this fact.

Since $r_{1} \geq p^{\delta+s \rho}>p^{\delta}-1$ there exists $j(1,1) \in\left\{1, \ldots, r_{1}\right\}$ such that

$$
c_{1}=C_{T}\left(S_{1 j(1,1)}\right) \neq c_{0} .
$$

But $\left|T: C_{1}\right|=p$ so that $\left|T: C_{0} \cap C_{1}\right|=p^{\delta+1}$. Suppose inductively that for some ξ, η with $l \leq \xi \leq \rho$ and $0 \leq \eta<s$ we have chosen subgroups C_{v} (of index p) of T, with $1 \leq v \leq(\xi-1) s+\eta$ such that
i) if $v=(\lambda-1) s+\mu \quad(1 \leq \lambda \leq \xi, 0 \leq \mu \leq n)$ then $c_{v}=C_{T}\left(s_{\lambda j(\lambda, \mu)}\right)$ for some $j(\lambda, \mu) \in\left\{1, \ldots, r_{\lambda}\right\}$;
ii) if $D_{v}=\bigcap_{w=0}^{v} C_{w}$ then $\left|T: D_{v}\right|=p^{\delta+v}$.

For $\xi=1, \eta=1$ we have done this.
Now $r_{\xi} \geq p^{\delta+s \rho}=p^{[\delta+(\xi-1) s+\eta]+[(\rho-\xi+1) s-\eta]}>p^{\delta+(\xi-1) s+\eta}-1$.
Hence there exists $j(\xi, \eta+1) \in\left\{1, \ldots, r_{\xi}\right\}$ such that

$$
c_{(\xi-1) s+\eta+1}=C_{T}\left(S_{\xi_{j}(\xi, \eta+1)}\right) \neq D_{(\xi-1)_{s+\eta}} .
$$

Also $C_{(\xi-1) s+n+1}$ has index p in T and therefore

$$
\left|T: D_{(\xi-1)_{s+n+1}}\right|=p^{\delta+(\xi-1) s+\eta+1}
$$

as required. In case $\xi<\rho$ and $\eta=s-1$ the proof of the inductive step is similar - we choose the next C from among the centralizers of the $S_{\xi+1 j}$.

It may happen that $D_{\rho_{S}} \neq 1$. If that is the case continue choosing centralizers C_{v}, for $v>\rho s$, so that none contains the intersection of all previous $C^{\prime} s:$ this can be done since the intersection of the centralizers of all $S_{i j}$ is 1 (by (5.13)). Indeed if $\left|C_{0}\right|=p^{\gamma}$ then γ is the first value of v for which $D_{v}=1$. Put

$$
I_{v}=\prod_{\omega \neq v} C_{w} .
$$

It is a simple matter to compute that

$$
I_{0} \text { is a complement for } C_{0} \text { in } T \text {; }
$$

and
for $v>0$, each I_{v} has order p and C_{0} is their direct product.

Hence if

$$
\Gamma^{*}=I_{0} S_{\rho+1} \ldots S_{r}, \Delta_{\xi \eta}^{*}=I_{v} S_{\xi j}(\xi, \eta), \quad 1 \leq v=\xi_{s}+\eta,
$$

then clearly $\Gamma^{*}, \Delta_{\xi}^{*} \eta$ generate their direct product and, since $\Gamma^{*} \tilde{\equiv} \Gamma$,
$\Delta_{\xi \eta}^{*} \cong \Delta_{\xi}$, the proof of Lemma 5.15 is complete.
Suppose now that $S=\left\{G_{j}: j \in I^{+}\right\}$is a set of non-isomorphic
critical groups in $\underline{\underline{V}}$. If infinitely many of them are nilpotent then (5.10) is satisfied for S by Theorem 4 in [16]; hence we may suppose (by taking an infinite subset of S instead if necessary) that all groups in S are non-nilpotent. Further we may suppose that, in the notation of (5.13), the quantities r, $\exp S_{i}(1 \leq i \leq r)$ are independent of $G \in S$ (again by replacing S by an infinite subset if necessary). Choose $\rho \in\{1, \ldots, r\}$ by

$$
\rho+1 \leq i \leq r \Leftrightarrow\left\{r_{i}: G \in S\right\} \text { is bounded. }
$$

Then the groups Γ corresponding to $G \in S$ have bounded order and hence we may suppose that Γ is (up to isomorphism) independent of G. By (5.13) $Z(K)$ are all cyclic, hence there are but finitely many choices for $Z(K)$ and so we may assume that for $G \in S, Z(K)$ are all isomorphic. As a final simplification we may assume that the sequence of ρ-tuples $\left(r_{1}, \ldots, r_{\rho}\right)$ is ordered by components in the natural ordering of S.

With S whittled down this far we have

LEMMA 5.16. For each $x \in I^{+}$there exists $j(x)>x$ and embeddings $\mu_{x \tau}: K_{x} \rightarrow K_{\imath}$ for $\tau \geq j(x)$ such that

$$
\left(\sigma K_{x}\right) \mu_{x \ell} \leq \sigma K_{Z}, \quad \tau \geq j(x) .
$$

Proof. For $G \in S$ we may write

$$
K=2(K) \times \hat{K}
$$

where \hat{K} has trivial centre and satisfies the conditions (5.12), (5.13); and $Z(K)$ is cyclic, independent of G, and of course equal to some $S_{i j}$. By Lemmas 5.14 and 5.15 applied to the \hat{K}^{\prime} s if we choose $j=j(x)$ so that

$$
r_{i}\left(G_{j}\right) \geq p^{\delta+r_{i}\left(G_{x}\right) \rho}, \quad 1 \leq i \leq \rho,
$$

then there is a monomorphism $\mu_{x l}: \hat{K}_{x} \rightarrow \hat{K}_{\mathcal{I}}(\imath \geq j(x))$, and this does
what we want.
Finally consider the sequence in I^{+}defined by

$$
Z(1)=1, \quad Z(n)=j(Z(n-1)), \quad n \in I^{+} .
$$

In the notation introduced at the beginning of this section if $G_{i} \in S$ then $G_{i} \cong F_{i} \# D_{i}$. By (4.2.29) in [5], and the analogue of Lemma 5.9 for bivarieties, there exists $n \in I^{+}$such that

$$
F_{Z(n)} \in \operatorname{svar}\left\{F_{Z(n+1)}, F_{Z(n+2)}, \ldots\right\}
$$

Consequently there exists $i \quad(=\eta(n))$ such that

$$
\begin{equation*}
F_{i} \in \operatorname{svar}\left\{F_{Z(i)}, F_{Z(i)+1}, \ldots\right\} \tag{5.17}
\end{equation*}
$$

Now if $G \in\left\{G_{Z(i)}, G_{Z(i)+1}, \ldots\right\}$ Lemma 5.16 shows that K has a subgroup $K^{*} \cong K_{i}$ with

$$
\sigma K^{*} \leq \sigma K
$$

Since N is principal indecomposable, $N_{K^{*}}$ has a component N^{*} which is principal indecomposable. By Lema $2.1 N^{*}$ is faithful for K^{*} and by Theorem 2.2

$$
N^{*} K^{*} \cong N_{i} K_{i}
$$

Hence for each $G \in\left\{G_{\mathcal{L}}: \mathcal{Z} \geq j(i)\right\}, G^{\#}$ has a subgroup isomorphic to $F \# D_{i}$. It follows from (5:17) and Lemma 5.4 that $G_{i} \in \operatorname{var}\left\{G_{Z}: Z \geq j(i)\right\}$. By Lemma 5.9 the proof of Theorem 5.1 is complete.

Proof of Theorem 5.6. Suppose that $\underline{\underline{U}} \leq \underline{\underline{V}}$ is join-irreducible and not locally nilpotent. Since $\underline{\underline{U}}$ is generated by its critical groups it is generated by a set S of non-nilpotent critical groups, and we may further assume that for all $G \in S$, expA is constant (in the notation of 54): we may as well assume that $\exp A$ are all equal to p^{α}. We now show that the number of similarity classes of the $\sigma G(G \in S)$ is finite and therefore, of course, the groups of S may be assumed to belong to a

single similarity class. The next lemma accomplishes this.

LEMMA 5.18. Let S^{\prime} be a set of non-nilpotent critical groups in V such that for $a l l G \in S^{\prime}, \exp A=p^{\alpha}$ and, furthermore, the sequence $\left\{|K|: G \in S^{\prime}\right\}$ is unbounded. Then varS' $=\underline{\underline{V}}$.

Proof. Let G_{0} be an arbitrary critical group in $\underline{\underline{V}}$. We show that G_{0} is in $\operatorname{var} G$ for some $G \in S^{+}$, this being sufficient to prove the lenma. It follows from Lemmas 5.14 and 5.15 (as in the proof of Lemma 5.16) that for all suitably large K, K_{0} is isomorphic to a subgroup \bar{K} of K with

$$
\begin{equation*}
\sigma \bar{K} \leq \sigma K \tag{5.19}
\end{equation*}
$$

Moreover since the index of $C_{T}(\bar{K})$ in T is bounded in terms of K_{0}, we may assume that

$$
\left|C_{T}(\bar{K})\right| \geq\left|H_{0}\right|
$$

Put $\bar{H}=C_{T}(\bar{K})$. Then $N \overline{H K}$ is a direct sum of principal indecomposables of $\overline{H K}$ over R_{α} - call one \bar{A} say. Now since \bar{A} is monolithic and co-monolithic and since \bar{K} acts faithfully and irreducibly on $\sigma \bar{A}$ (by (5.19) and Lemma 2.1) we can use $\S 4$ to deduce that

$$
\bar{A} \cong \bar{M}_{1} \otimes_{R_{\alpha}} \bar{N}
$$

where \bar{M}_{1} is a principal indecomposable of \bar{H} and \bar{N} a principal indecomposable of \bar{K} (this follows since \bar{M}_{1} is the regular of \vec{H}, hence $\sigma \bar{M}_{1}$ is one dimensional trivial and so $\sigma\left(M_{1} \otimes \bar{N}\right)_{K} \cong \bar{N}$ whence $\operatorname{kert}=0)$. If $\overline{\mathrm{F}}=(\overline{A H}, \bar{A}, \bar{H})$ and $\overline{\mathrm{D}}=(\overrightarrow{N K}, \vec{N}, \bar{K})$ then

$$
\overline{A H K} \cong \bar{F} \# \bar{D} ;
$$

and since F_{0} is clearly a homomorphic image of $\bar{F}, G_{0}^{\#}$ (and therefore G_{0}) is a homomorphic image of $\bar{F} \# \bar{D}$. This shows that G_{0} is in $\operatorname{var} G$ for some $G \in S^{\prime}$ as required.

We may assume, therefore, that for some fixed $D=\left(D, A_{2}, B_{2}\right)$ with A_{2} a faithful principal indecomposable $R_{\alpha} B_{2}$-module and $B_{2} \in \underset{q}{A} A$,

$$
G \in S \Rightarrow G^{\#} \cong F \# D, \exists F \in \underline{\underline{A}}_{p}{ }^{\circ} \circ \stackrel{A}{\underline{A}}
$$

Hence by Lemma 5.4 if $S=\operatorname{svar}\{F: G \in S\}$,

$$
\underset{=}{U}=S^{D}
$$

By Corollary 5.5 and (1.14) of [14], S is join irreducible.
Conversely if S is join irreducible suppose

$$
S^{D}=\underline{\underline{U}}_{1} \vee \underline{\underline{U}}_{2} .
$$

By (1.12) of [14] we may assume that each of $\underline{U}_{1}, \underline{\underline{U}}_{2}$ is generated by critical groups the similarity class of whose monoliths is determined by D. That is we may assume $\underline{\underline{U}}_{1}, \underline{\underline{U}}_{2}$ generated by groups of the form F \# D $\left(F \in \underline{\underline{A}}_{p}{ }^{\circ} \underline{\underline{A}}_{p}\right)$, and hence for suitable $S_{i} \in \Lambda\left(\underset{p}{A_{p}} \alpha \circ \underline{A_{p}}\right)$,

$$
\underline{\underline{U}}_{i}=S_{i}^{D}, \quad i=1,2
$$

Corollary 5.5 and (1.14) of [14] then shows that $S=S_{1} \vee S_{2}$ whence $S_{1} \geq S_{2}$, say, and finally $\underline{\underline{U}}_{1} \geq \underline{\underline{U}}_{2}$. In other words S^{D} is join-irreducible.

References

[1] J.M. Brady, R.A. Bryce and John Cossey, "On certain abelian-by-nilpotent varieties", BuZZ. Austral. Math. Soc. 1 (1969), 403-416.
[2] M.S. Brooks, "On varieties of metabelian groups of prime-power exponent", submitted to J. Austral. Math. Soc.
[3] Roger M. Bryant, "On some varieties of groups", BuLZ. London Math. Soc. 1 (1969), 60-64.
[4] R.A. Bryce, "Metabelian groups and varieties", BuZl. Austral. Math. Soc. 1 (1969), 15-25.
[5] R.A. Bryce, "Metabelian groups and varieties", Philos. Trans. Roy. Soc. London Ser. A 266 (1970), 281-355.
[6] D.E. Cohen, "On the laws of a metabelian variety", J. Algebra 5 (1967), 267-273.
[7] P.J. Cossey, "On varieties of A-groups", Ph.D. Thesis, Australian National University, Canberra, 1966.
[8] Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras (Interscience, New York, 1962).
[9] Marshall Hall, Jr, The theory of groups (Macmillan, New York, 1959).
[10] Graham Higman, "Complementation of abelian normal subgroups", Publ. Math. Debrecen 4 (1956), 455-458.
[11] Graham Higman, "The orders of relatively free groups", Proc. Internat. Conf. Theory of Groups, Austral. Nat. Univ., Canberra, 1965 (Gordon and Breach, New York, 1967).
[12] Graham Higman, "Some remarks on varieties of groups", Quart. J. Math. Oxford Ser. (2) 10 (1959), 165-178.
[13] Rudolf Kochendörffer, "Uber treue irreduzible Darstellungen endlicher Gruppen", Math. Nachr. 1 (1948), 25-39.
[14] L.G. Kovács and M.F. Newman, "On critical groups", J. Austral. Math. Soc. 6 (1966), 237-250.
[15] L.G. Kovács and M.F. Newman, "Just-non-Cross varieties", Proc. Internat. Conf. Theory of Groups, Austral. Nat. Univ., Canberra, 1965 (Gordon and Breach, New York, 1967).
[16] L.G. Kovács and M.F. Newman, "On non-Cross varieties of groups", J. Austral. Math. Soc. (to appear).
[17] R.C. Lyndon, "Two notes on nilpotent groups", Proc. Amer. Math. Soc. 3 (1952), 579-583.
[18] Hanna Neumann, Varieties of groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37, Springer-Verlag, Berlin, Heidelberg, New York, 1967).
[19] Sheila Oates and M.B. Powell, "Identical relations in finite groups", J. Algebra 1 (1964), 1l-39.
[20] D.R. Taunt, "On A-groups", Proc. Combridge Philos. Soc. 45 (1949), 24-42.
[21] M.R. Vaughan-Lee, "Abelian by nilpotent varieties", Quart. J. Math. Oxford Ser. (2) (to appear).

The Australian National University, Canberra, ACT.

