reading of the percentage humidity. I, I are pointers set at the
dry and wet bulb readings by means of pieces sliding on the rods
A, B and joined together by a link C, which actuates by a slot the
scale F (movable in the vertical) on which the percentage humidity
is read at the pointer D.

Let t_1, t_2 be the temperatures of the dry and wet bulbs respec-
tively, t_3 the dew point; let v_1, v_3 be the vapour tensions of saturated
air at t_1, t_3 and H the percentage humidity. Then the approximate
theory is as follows:

$$t_2 = t_1 - c(t_2 - t_1) \quad (c \text{ constant})$$

(According to Glaisher c varies with t_1; this is taken into account
by the inclination of the rods).

Experiment gives

$$v_1 = a10^{t_1} \quad \text{and} \quad v_3 = a10^{t_3}$$

also by definition

$$H = 100v_3/v_1$$

so that

$$H = 100 \cdot 10^{-c(t_2 - t_1)}$$

$$\log H = 2 - c(t_2 - t_1)$$

$$= 2 - HK.$$

This relation shows that the humidity scale is that of an
inverted slide rule.

WALTER JAMIESON.

Geometrical Illustrations of a Formula in the Differential Calculus.—In this note the formula

$$\frac{1}{PT} = \frac{d}{ds} (\log y)$$

is illustrated for a few curves.

For any curve

$$PT = ycosecPTN = y \frac{ds}{dy}$$

from which the above formula follows. Only two variables are
involved: the y axis may be excluded. Also the formula holds for
oblique axes.
1. Parabola $y^2 = 4ax$. (Fig. 1)

\[
\frac{2}{y} \frac{dy}{ds} = \frac{1}{x} \frac{dx}{ds}.
\]

\[
\therefore \quad \frac{2}{PT} = \frac{1}{PY}
\]

whence $TA = AN$.

Fig. 1

(197)
2. Hyperbola $xy = \text{const.}$ (Fig. 2)
\[
\frac{1}{x} \frac{dx}{ds} + \frac{1}{y} \frac{dy}{ds} = 0.
\]
\[\therefore \quad PT = -Pt.\]

3. Conic $\beta \gamma = ka^2$, having AB, AC tangents and BC chord of contact. (Fig. 3)
\[
\frac{1}{PM} + \frac{1}{PN} = \frac{2}{PL}
\]
\[
(MN, PL) = -1.
\]

4. Cubic Hyperbola $\alpha \beta \gamma = \alpha' \beta' \gamma'$ through $P(\alpha_1, \beta_1, \gamma_1)$. (Fig. 4)
\[-2PL = \text{harmonic mean between } PM, PN.\]

Draw AQ the fourth harmonic mean to AB, AP, AC and a parallel to BC at three times the distance P has to BC. The intersection U of these lines gives the tangent at P, for
\[PU = \text{harmonic mean of } PM, PN = -2PL\]

5. Similar results apply to curves $\alpha \gamma = k\beta \delta : OP^2 = kPU \cdot PU'$
(where O is a fixed point and PU, PU' are perpendiculars on fixed straight lines); $27ay^2 = 4x^2; (x + y + z)^3 = 6mxyz$, etc.

R. F. Davis.

Geometrical Proof of a Trigonometrical Identity.—
The following method of proof of the identity,
\[1 - \cos^2 A - \cos^2 B - \cos^2 C - 2\cos A\cos B\cos C = 0\]