reading of the percentage humidity. $\quad I, I$ are pointers set at the dry and wet bulb readings by means of pieces sliding on the rods A, B and joined together by a link C, which actuates by a slot the scale F (movable in the vertical) on which the percentage humidity is read at the pointer D.

Let t_{1}, t_{2} be the temperatures of the dry and wet bulbs respectively, t_{3} the dew point; let v_{1}, v_{3} be the vapour tensions of saturated air at t_{1}, t_{3} and H the percentage humidity. Then the approximate theory is as follows:

$$
t_{3}=t_{1}-c\left(t_{2}-t_{1}\right) \quad(c \text { constant })
$$

(According to Glaisher c varies with t_{1} : this is taken into account by the inclination of the rods).

Experiment gives

$$
v_{1}=a 10^{t_{1}} \text { and } v_{3}=a 10^{t_{3}}
$$

also by definition

$$
H=100 v_{3} / v_{1}
$$

so that

$$
\begin{aligned}
H & =100 \cdot 10^{-c\left(t_{2}-t_{1}\right)} \\
\log H & =2-c\left(t_{2}-t_{1}\right) \\
& =2-H K
\end{aligned}
$$

This relation shows that the humidity scale is that of an inverted slide rule.

Walter Jamieson.

Geometrical Illustrations of a Formula in the Differential Calculus.-In this note the formula

$$
\frac{1}{P T}=\frac{d}{d s}(\log y)
$$

is illustrated for a few curves.
For any curve

$$
P T=y \operatorname{cosec} P T N=y \frac{d s}{d y}
$$

from which the above formula follows. Only two variables are involved: the y axis may be excluded. Also the formula holds for oblique axes.
geometrical illustrations of a formula in the differential calculus

1. Parabola $y^{2}=4 a x$. (Fig. 1)

$$
\begin{aligned}
& \frac{2}{y} \frac{d y}{d s}=\frac{1}{x} \frac{d x}{d s} \\
\therefore \quad & \frac{2}{P T}=\frac{1}{P Y}
\end{aligned}
$$

whence $T A=A N$.

FIG. 1

FIG. 2

2. Hyperbola $x y=$ const. (Fig. 2)

$$
\begin{gathered}
\frac{1}{x} \frac{d x}{d s}+\frac{1}{y} \frac{d y}{d s}=0 . \\
\therefore \quad P T=-P t
\end{gathered}
$$

3. Conic $\beta \gamma=k \alpha^{2}$, having $A B, A C$ tangents and $B C$ chord of contact. (Fig. 3)

$$
\frac{1}{P M}+\frac{1}{P N}=\frac{2}{P L}
$$

hence

$$
(M N, P L)=-1
$$

4. Cubic Hyperbola $\alpha \beta \gamma=\alpha^{\prime} \beta^{\prime} \gamma^{\prime}$ through $P\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)$. (Fig. 4)

- $2 P L=$ harmonic mean between $P M, P N$.

Draw $A Q$ the fourth harmonic mean to $A B, A P, A C$ and a parallel to $B C$ at three times the distance P has to $B C$. The intersection U of these lines gives the tangent at P, for

$$
P U=\text { harmonic mean of } P M, P N=-2 P L
$$

5. Similar results apply to curves $\alpha \gamma=k \beta \delta: O P^{2}=k P U . P U^{\prime}$ (where O is a fixed point and $P U, P U^{\prime}$ are perpendiculars on fixed straight lines) ; $27 a y^{2}=4 x^{3} ;(x+y+z)^{3}=6 m x y z$, etc.

> R. F. Davis.

Geometrical Proof of a Trigonometrical Identity.-

The following method of proof of the identity,

$$
1-\cos ^{2} A-\cos ^{2} B-\cos ^{2} C-2 \cos A \cos B \cos C=0
$$

(198)

