SEMI-ABELIAN SURFACES AND INTEGRABLE SYSTEMS

IBRAHIMA FAYE
Laboratoire Emile Picard, UMR 5580, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse cedex 04, France
(faye@picard.ups-tlse.fr)

(Received 7 June 1999)

Abstract

We study some weight-homogeneous systems which are not algebraically completely integrable (ACI) in the sense of Adler and van Moerebeke, but whose invariant level surface completes into a semiabelian variety by adding a set of points (thus ACI in the sense of Mumford).

Keywords: integrable systems; semi-abelian surfaces; differential equations; asymptotic solutions; divisor of poles; weight-homogeneous systems
AMS 2000 Mathematics subject classification: Primary 37J35
Secondary 14H70; 37N05; 70E40

1. Introduction

A system of polynomial differential equations

$$
\begin{equation*}
\dot{z}=f(z), \quad z \in \mathbb{C}^{n} \tag{1.1}
\end{equation*}
$$

is called weight-homogeneous when there exist integers $\nu_{i} \in \mathbb{N}^{*}$ such that

$$
f_{i}\left(t^{\nu_{1}} z_{1}, \ldots, t^{\nu_{n}} z_{n}\right)=t^{\nu_{i}+1} f_{i}\left(z_{1}, \ldots, z_{n}\right)
$$

for all $t \in \mathbb{R}$. A polynomial constant of motion is weight-homogeneous of degree N whenever

$$
H\left(t^{\nu_{1}} z_{1}, \ldots, t^{\nu_{n}} z_{n}\right)=t^{N} H\left(z_{1}, \ldots, z_{n}\right)
$$

Consider the Hamiltonian vector field

$$
\dot{z}=f(z)=J \frac{\partial H}{\partial z}, \quad z \in \mathbb{R}^{n}
$$

$J=J(z)$ is a skew-symmetric matrix, for which the corresponding Poisson bracket

$$
\left\{H_{i}, H_{j}\right\}=\left\langle\frac{\partial H_{i}}{\partial z}, J \frac{\partial H_{j}}{\partial z}\right\rangle
$$

satisfies the Jacobi identity. Such a system is algebraically completely integrable (ACI) (in the sense of Adler and van Moerebeke) when J has polynomial entries and when the following two conditions are satisfied.
(i) Besides the polynomial Casimir functions H_{1}, \ldots, H_{k} (such that $J\left(\partial H_{i} / \partial z\right)=0$), the system possesses m (ν-homogeneous polynomial) constants of motion $H_{k+1}=$ H, \ldots, H_{k+m} in involution (i.e. $\left\{H_{i}, H_{j}\right\}=0$), which give rise to m commuting vector fields; for generic c_{i}, the level surfaces $\bigcap_{i=1}^{k+m}\left\{H_{i}=c_{i}, z \in \mathbb{R}^{n}\right\}$ are compact and connected and therefore real tori according to the classical Arnold-Liouville Theorem.
(ii) The level surfaces thought of as lying in $\mathbb{C}^{n}, \bigcap_{i=1}^{k+m}\left\{H_{i}(z)=c_{i}, z \in \mathbb{C}^{n}\right\}$, are related for generic $c \in \mathbb{C}^{k+m}$ to abelian varieties T^{m} as follows:

$$
A=T^{m} \backslash D
$$

where D is a divisor in T^{m}. The coordinates z_{i} are meromorphic functions on T^{m}, and D is the minimal divisor on T^{m}, where the variables z_{i} blow up. The Hamiltonian flows $\dot{z}=J\left(\partial H_{k+i} / \partial z\right), i=1, \ldots, m$, run with complex time, are straight-line motions on T^{m}.

In (ii) T^{m} could be replaced by a finite cover ramified along D. The sense of Mumford includes the case where T^{m} is an extension of an abelian variety by a multiplicative group $\left(\mathbb{C}^{*}\right)^{r}$, i.e. a semi-abelian variety. In the sequel, when referring to ACI, we will mean in the sense of Adler and van Moerebeke. Let d_{i} be the weight degree of H_{i} and $F_{i}:=H_{i}-c_{i} z_{0}^{d_{i}}$.
$\bar{A}=\cap\left\{F_{i}=0\right\}$ is the natural completion of A into the n-dimensional weighted projective space with weight $\nu=\left(\nu_{0}, \ldots, \nu_{n}\right), \mathbb{P}_{\nu}^{n}:=\mathbb{C}^{n+1} \backslash\{0\} / \mathbb{C}^{*}$, where \mathbb{C}^{*} acts as follows:

$$
t\left(z_{0}, \ldots, z_{n}\right)=\left(z_{0} t^{\nu_{0}}, \ldots, z_{n} t^{\nu_{n}}\right)
$$

$\bar{A}=A \cup A_{\infty}$, where A_{∞} is the added divisor at infinity; $A_{\infty}:=\bar{A} \cap\left\{z_{0}=0\right\}$.
Adler [1] and van Moerebeke [6] give a procedure which allows us, in some cases, to obtain a completion of A into an abelian variety (see [5] for an application to the system of Kowalewski's top). This procedure has several steps, including the following.
(1) Substitute the formal series

$$
z_{i}(t)=\frac{1}{t^{\nu_{i}}}\left(z_{i}^{(0)}+z_{i}^{(1)} t+z_{i}^{(2)} t^{2}+\cdots\right)
$$

with a complex time $t, i=1, \ldots, n$, in the differential equation (1.1). The leading term belongs to the locus

$$
\begin{equation*}
\bigcap_{i=1}^{k+m}\left\{\nu_{i} z_{i}^{0}+f_{i}\left(z^{0}\right)\right\} \tag{1.2}
\end{equation*}
$$

which decomposes into several components C_{α} (possibly of different dimensions). Let J be the Jacobian matrix of (1.2) evaluated at C_{α}. Only when the spectrum of J
contains $(n-1)$ non-negative integers can a formal solution exist which depends on $(n-1)$ free parameters. By the majorant method, this solution, called the principal solution, converges [2].
(2) For each component C_{α}, confine the associated series into $A:=\bigcap_{i=1}^{k+m}\left\{H_{i}=c_{i}\right\}$. This yields polynomial relations between the parameters. The parameters which are expressed in terms of the c_{i} are called trivial parameters and the others, effective parameters. The polynomial equations between the effective parameters define an affine variety of dimension $(m-k)$ called the Painlevé variety and denoted $D_{\alpha}^{(m-k)}$. Let $D:=\sum_{\alpha} D_{\alpha}^{(m-1)}$.
(3) Let L be the linear span of a set of polynomial functions $y_{0}(z), \ldots, y_{N}(z)$ having at worst a simple pole along all the generic expansions $z\left(t, p, D_{\alpha}\right), p \in D_{\alpha}$. Namely, $y_{i}\left(z\left(t, p, D_{\alpha}\right)\right)=t^{-1}\left(y_{i}^{(0)}(p)+y_{i}^{(1)}(p)+\cdots\right) \forall \alpha$, where $y_{i}^{(0)} \neq 0$ for some α.

Construct the spaces
$L^{(i)}=\left\{\right.$ polynomials $y=y\left(z_{1}, \ldots, z_{n}\right)$ of weighted degree less than

$$
\text { or equal to } i \text { with simple pole in } t\} /\left\{H_{j}(z)=c_{j}, j=1, \ldots, k+m\right\}
$$

and

$$
L^{(i)}=\left\{y_{0}=1, y_{1}, \ldots, y_{N_{i}}\right\}
$$

the latter being a basis. Then increase $i=1,2, \ldots$, until the first time the image $\Phi_{L^{(i)}}(D)$ in $\mathbb{P}^{N_{i}}$ satisfies the following requirements:
(i) $\operatorname{dim} \overline{\Phi_{L^{(i)}}(D)}=m-1 \forall \alpha$;
$\Phi_{L^{(i)}}(D)_{\mid}: A \rightarrow \Phi_{L^{(i)}}(A)$
(ii) is birational and holomorphic on A with $y \in \overline{\Phi_{L^{(i)}}(A)}$ and finite, implying that $y \in \Phi_{L^{(i)}}(A) ;$ and
(iii) $\operatorname{genus}\left(\overline{\Phi_{L^{(i)}}(D)}\right)=N_{i}+m$;
where

$$
\begin{aligned}
& \Phi_{L^{(i)}}: A \rightarrow \mathbb{P}^{N_{i}}: p \mapsto\left[y_{0}(z): \cdots: y_{N_{i}}(z)\right] \\
& \Phi_{L^{(i)}}: D_{\alpha} \rightarrow \mathbb{P}^{N_{i}}: p \mapsto \lim _{t \rightarrow 0} t\left[y_{0}(p): \cdots: y_{N_{i}}(p)\right]=\left[0: y_{1}^{(0)}: \cdots: y_{N_{i}}^{(0)}\right]
\end{aligned}
$$

If there exist i_{0} such that we obtain what is above, then note $N_{i_{0}}=N, L^{i_{0}}=L$ and $\tilde{D}=\Phi_{L}(D)$.
(i) and (ii) are almost automatic. Using Riemann-Roch and adjunction formulae [4], a divisor D on an abelian variety T^{m} satisfies $\chi(D)=\operatorname{dim} L(D)=g(D)-m+1$, where $\chi(D)$ is the Euler characteristic of D, and $g(D)$ the geometric genus of D (the dimension of the space of top holomorphic forms), and if T^{m} is embedded into \mathbb{P}^{N}, then $\operatorname{dim} L(D)=N+1$. Combining these two relations yields (iii).

In this paper, we will study some classical Hamiltonian systems coming from mechanics, and show that they are not ACI, because of condition (iii) above, which cannot be satisfied. But, although they are not ACI, these systems have invariant varieties which could be completed (by adding a set of points) into a commutative algebraic group which is a \mathbb{C}^{*} extension of an abelian curve and thus a semi-abelian surface.

2. Lagrange's top

Lagrange's top is given by the Hamiltonian vector field:

$$
X_{1}=\left\{\begin{array}{l}
\dot{z}_{1}=-z_{5}-m z_{2} z_{3}, \\
\dot{z}_{2}=z_{4}+m z_{1} z_{3}, \\
\dot{z}_{3}=0, \\
\dot{z}_{4}=z_{3} z_{5}-z_{2} z_{6}, \\
\dot{z}_{5}=z_{1} z_{6}-z_{4} z_{3}, \\
\dot{z}_{6}=z_{2} z_{4}-z_{1} z_{5},
\end{array}\right.
$$

with Hamiltonian $H_{1}=\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}+(m+1) z_{3}^{2}\right)-z_{6}$. It possesses the following three other first integrals:

$$
\begin{aligned}
& H_{2}=z_{1} z_{4}+z_{2} z_{5}+(m+1) z_{3} z_{6}, \\
& H_{3}=z_{3}, \\
& H_{4}=z_{4}^{2}+z_{5}^{2}+z_{6}^{2} .
\end{aligned}
$$

H_{2} and H_{4} are Casimir polynomials, and H_{3} generates a second vector field X_{2} :

$$
X_{2}=\left\{\begin{array}{l}
\dot{z}_{1}=z_{2}, \\
\dot{z}_{2}=-z_{1}, \\
\dot{z}_{3}=0, \\
\dot{z}_{4}=z_{5}, \\
\dot{z}_{5}=-z_{4}, \\
\dot{z}_{6}=0 .
\end{array}\right.
$$

X_{2} and X_{1} commute on the level surface $A:=\bigcap_{i=1}^{4}\left\{H_{i}=h_{i}\right\}$.
In [3] it is proved that this system linearizes on the generalized Jacobian of an elliptic curve, which is a \mathbb{C}^{*}-extension of the usual Jacobian. In this paper, we conduct its Painlevé analysis, and we apply the procedure cited above as much as possible.

2.1. Asymptotic expansions

Let $z_{i}, i=1, \ldots, 6$, have the following asymptotic expansion:

$$
\begin{equation*}
z_{i}(t)=\frac{1}{t^{\nu_{i}}}\left(z_{i}^{(0)}+z_{i}^{(1)} t+z_{i}^{(2)} t^{2}+\cdots\right), \quad i=1, \ldots, 6 . \tag{2.1}
\end{equation*}
$$

Substituting (2.1) in the differential equations of X_{1}, at the zeroth step, the coefficients of t^{-2} (for z_{1}, z_{2}, z_{3}) and t^{-3} (for z_{4}, z_{5}, z_{6}) yields the following system:

$$
\left.\begin{array}{r}
z_{1}-m z_{2} z_{3}-z_{5}=0 \\
z_{2}+m z_{1} z_{3}+z_{4}=0 \\
z_{3}=0 \\
2 z_{4}+z_{3} z_{5}-z_{2} z_{6}=0, \tag{L-0}\\
2 z_{5}+z_{1} z_{6}-z_{3} z_{4}=0 \\
2 z_{6}+z_{2} z_{4}-z_{1} z_{5}=0,
\end{array}\right\}
$$

for which we have the following four cases.
Case I: if $z_{1}=z_{2}=0$, then the solution of (L-0) is identically zero.

Case II: if $z_{1}=0, z_{2} \neq 0$, then $z^{(0)}=(0,-2 \epsilon, 0,2 \epsilon, 0,-2)$ with $\epsilon^{2}=-1$.

Case III: if $z_{2}=0, z_{1} \neq 0$, then $z^{(0)}=(2 \epsilon, 0,0,0,2 \epsilon,-2)$ with $\epsilon^{2}=-1$.

Case IV: if $z_{1} \neq 0, z_{2} \neq 0$, then $z^{(0)}=(\alpha,-\beta, 0, \beta, \alpha,-2)$, where α is a free parameter and β is related to α by $\alpha^{2}+\beta^{2}+4=0$.

Step by step we can find the solutions of the system (L-k) corresponding to $z^{(k)}$. We have the following linear algebra result after straightforward computations.

Lemma 2.1. In cases II, III and IV, (L-k) has one degree of freedom for $k=1,2,3,4$.

Since we are interested in the five-parameter Laurent solution, we only consider case IV. Let us denote the free parameters obtained at steps $1,2,3$ and 4 by γ, δ, η and τ, respectively. We get

$$
\begin{aligned}
z^{(1)}= & \left(\frac{\gamma \beta}{\alpha}, \gamma, \frac{2 \gamma}{\gamma(m+1)}, \frac{-2 m \gamma}{m-1}, \frac{2 m \beta \gamma}{\alpha(m-1)}, 0\right) \\
z^{(2)}= & \left(\frac{4 m \gamma^{2}+\delta \alpha^{2}(m-1)^{2}}{2 \alpha(m-1)^{2}},-\frac{\beta\left(4 m \gamma^{2}+\delta \alpha^{2}(m-1)^{2}\right)}{2 \alpha^{2}(m-1)^{2}}, 0\right. \\
& \left.\quad-\frac{\beta\left(4 m^{2} \gamma^{2}+\delta \alpha 2(m-1)^{2}\right)}{2 \alpha^{2}(m-1)^{2}},-\frac{4 m^{2} \gamma^{2}+\alpha^{2} \delta(m-1)^{2}}{2 \alpha(m-1)^{2}}, \delta\right), \\
z^{(3)}= & \left(\frac{\eta \beta}{\alpha}, \eta, 0,-\frac{2 \eta \alpha^{2}(m-1)^{3}+4 m^{2} \gamma^{3}+\gamma \delta \alpha^{2} m(m-1)^{2}}{\alpha^{2}(m-1)^{3}}\right. \\
& \left.\frac{\beta\left(-2 \eta \alpha^{2}(m-1)^{3}+4 m^{2} \gamma^{3}+\gamma \delta \alpha^{2} m(m-1)^{2}\right)}{\alpha^{3}(m-1)^{3}}, 0\right)
\end{aligned}
$$

$$
\begin{gathered}
z^{(4)}=\left(-\frac{\left.8 \gamma \eta \alpha^{2}+\alpha^{4}\left(\delta^{2}+2 \tau\right)\right)(m-1)^{4}+8 \delta \alpha^{2} \gamma^{2} m(m-1)^{2}+16 m^{2} \gamma^{4}}{8 \alpha^{3}(m-1)^{4}},\right. \\
\beta \frac{\left.8 \gamma \eta \alpha^{2}+\alpha^{4}\left(\delta^{2}+2 \tau\right)\right)(m-1)^{4}+8 \delta \alpha^{2} \gamma^{2} m(m-1)^{2}+16 m^{2} \gamma^{4}}{8 \alpha^{4}(m-1)^{4}}, 0, \\
\beta \frac{\left.8 \gamma \eta \alpha^{2}(m-1)^{3}(m-3)+3 \alpha^{4}\left(\delta^{2}+2 \tau\right)\right)(m-1)^{4}}{+24 \delta \alpha^{2} \gamma^{2} m(m-1)^{2}+48 m^{2} \gamma^{4}} \\
\beta \frac{8 \alpha^{4}(m-1)^{4}}{8}, \\
\frac{\left.8 \gamma \eta \alpha^{2}(m-1)^{3}(m-3)+3 \alpha^{4}\left(\delta^{2}+2 \tau\right)\right)(m-1)^{4}}{+24 \delta \alpha^{2} \gamma^{2} m(m-1)^{2}+48 m^{2} \gamma^{4}} \\
\left.\frac{8 \alpha^{3}(m-1)^{4}}{}, \tau\right) .
\end{gathered}
$$

Thus we have the following lemma.
Lemma 2.2. The system of differential equations of X_{1} possesses Laurent series which depend on five parameters (dim(phase space) - 1), with leading terms given by case $I V$ above.

2.2. Divisors of poles

We now search for the set of Laurent solutions which stay in a fixed affine invariant surface, related to specific values of $h_{1}, h_{2}, h_{3}, h_{4}$, i.e. the Laurent solutions $z(t)=$ $\left(z(t), z_{2}(t), \ldots, z_{6}(t)\right)$ such that $H_{k}(z(t))=h_{k}, k=1,2,3,4$.

Substituting the Laurent solutions into H_{k} yields the following relations:

$$
\begin{aligned}
& h_{3}=2 \frac{\gamma}{\alpha(m-1)} \\
& h_{1}=-3 \delta-2 \frac{m(m+1) \gamma^{2}}{\alpha^{2}(m-1)^{2}} \\
& h_{2}=-12 \frac{\eta}{\beta}+12 \frac{m \gamma \delta}{\alpha(m-1)}+8 \frac{m^{2} \gamma^{3}(m+3)}{\alpha^{3}(m+1)^{3}} \\
& h_{4}=-10 \tau+3 \delta^{2}+24 \frac{\gamma \eta(m+1)}{\alpha^{2}(m-1)^{2}}-16 \frac{m^{2}(m+1)(m+3) \gamma^{4}}{\alpha^{4}(m-1)^{4}}
\end{aligned}
$$

which show, respectively, that the parameters γ, δ, η and τ are trivial. The only relation between the remaining parameters is $\alpha^{2}+\beta^{2}+4=0$. So we obtain the following proposition.

Proposition 2.3. The divisor of poles of the functions $z_{j}, j=1,2, \ldots, 6$, is a genus 0 Riemann surface.

Now, we wish to obtain a smooth embedding of \bar{A} into \mathbb{P}^{N}, by the meromorphic functions of $L(k D)$, for some $k \geqslant 0$. If the surface A could be completed (by adding a set of points) into an abelian variety, such an embedding could exist with

$$
\begin{equation*}
\operatorname{genus}(D)=N+2 \tag{2.2}
\end{equation*}
$$

In our case, since D is of genus $0,(2.2)$ cannot be satisfied. This provides us with the following proposition.

Proposition 2.4. The system of Lagrange's top is not ACI.

2.3. Completion into a semi-abelian variety

The H_{i} are ν^{\prime}-homogeneous of degree d_{i} with $\nu^{\prime}=(1,1,1,2,2,2), d_{1}=2, d_{2}=3$, $d_{3}=1, d_{4}=4$,

$$
F_{i}:=H_{i}-c_{i} z_{0}^{d_{i}}, \quad \bar{A}:=\bigcap_{i=1}^{4}\left\{F_{i}=0\right\}
$$

\bar{A} is the completion of A in \mathbb{P}_{ν}^{6} with $\nu=(1,1,1,2,2,2), A_{\infty}=\bar{A} \cap\left\{z_{0}=0\right\}:=E$,

$$
E=\left\{\begin{aligned}
z_{0} & =0 \\
{\left[z_{0}: z_{1}: z_{2}: z_{3}: z_{4}: z_{5}: z_{6}\right] \in \mathbb{P}_{\nu}^{6}, } & -z_{6}+\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}+(m+1) z_{3}^{2}\right)
\end{aligned}\right) 0013 z_{1} z_{4}+z_{2} z_{5}=0,
$$

From the above equations, we obtain:

$$
\begin{aligned}
& z_{6}\left(z_{1}^{2} z_{6}+2 z_{5}^{2}\right)=0 \\
& z_{6}\left(z_{2}^{2} z_{6}+2 z_{4}^{2}\right)=0
\end{aligned}
$$

So $E=E_{1} \cup E_{2}$ with

$$
\begin{aligned}
z_{6} & =0 \\
z_{1}^{2}+z_{2}^{2} & =0 \\
z_{4}^{2}+z_{5}^{2} & =0 \\
z_{1} z_{4}+z_{2} z_{5} & =0
\end{aligned}
$$

for E_{1}, and

$$
\begin{aligned}
z_{1}^{2} z_{6}+2 z_{5}^{2} & =0, \\
z_{2}^{2} z_{6}+2 z_{4}^{2} & =0, \\
z_{1} z_{4}+z_{2} z_{5} & =0, \\
z_{6}-\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}\right) & =0,
\end{aligned}
$$

for $E_{2} . E_{1} \cap E_{2}=\left\{M_{1}, M_{2}\right\}$, with $M_{1}=[0: 1: \mathrm{i}: 0: 0: 0: 0], M_{2}=[0: 1:-\mathrm{i}: 0: 0:$ $0: 0], E_{1}=E_{1}^{\prime} \cup E_{1}^{\prime \prime}, E_{1}^{\prime}=\left\{M_{1}, M_{2}\right\} \cup K_{1}, E_{1}^{\prime \prime}=\left\{M_{1}, M_{2}\right\} \cup K_{2}$, where

$$
\begin{gathered}
K_{1}:=\left\{\begin{array}{l}
z_{2}=\mathrm{i} z_{1}, \\
z_{4}=-\mathrm{i} z_{5},
\end{array}\right. \\
K_{2}:=\left\{\begin{array}{l}
z_{2}=-\mathrm{i} z_{1}, \\
z_{4}=\mathrm{i} z_{5},
\end{array}\right. \\
E_{2}=G_{1} \cup G_{2},
\end{gathered}
$$

$$
\left.\begin{array}{l}
G_{1}=\left\{\left[0: z_{1}: z_{2}: 0: \mathrm{i} z_{2} \sqrt{z_{6} / 2}:-\mathrm{i} z_{1} \sqrt{z_{6} / 2}: z_{6}\right] \in \mathbb{P}_{\nu}^{6}, \quad z_{6}=\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}\right)\right\} \\
G_{2}=\left\{\left[0: z_{1}: z_{2}: 0:-\mathrm{i} z_{2} \sqrt{z_{6} / 2}: \mathrm{i} z_{1} \sqrt{z_{6} / 2}: z_{6}\right] \in \mathbb{P}_{\nu}^{6},\right.
\end{array} \quad z_{6}=\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}\right)\right\} .
$$

However, in \mathbb{P}_{ν}^{6} :

$$
\begin{aligned}
& {\left[0: z_{1}: z_{2}: 0: \mathrm{i} z_{2} \sqrt{z_{6} / 2}:-\mathrm{i} z_{1} \sqrt{z_{6} / 2}: z_{6}\right]} \\
& \\
& \quad=\left[0:-z_{1}:-z_{2}: 0: \mathrm{i} z_{2} \sqrt{z_{6} / 2}:-\mathrm{i} z_{1} \sqrt{z_{6} / 2}: z_{6}\right]
\end{aligned}
$$

and by replacing $\left(-z_{1},-z_{2}\right)$ by $\left(z_{1}, z_{2}\right)$, we get that $G_{1}=G_{2}=: D$.
So, A_{∞} has the following form:

Now let us look at components of A_{∞} on which we can extend the fields X_{1} and X_{2} so that they remain independent. All components of A_{∞} are integral curves for the linear field X_{2}. It suffices therefore to look at which of them are crossed by integral curves of X_{1}.
$\bar{D}=D \cup\left\{M_{1}, M_{2}\right\}$. By the majorant method, the series obtained converge in a neighbourhood of every point of D. For the other points of A_{∞} we see in charts:

$$
\text { if } p \in A_{\infty} \backslash D, \text { then }\left(z_{1}(p), z_{2}(p)\right) \neq(0,0)
$$

Suppose that $z_{1}(p) \neq 0$ and put $U_{1}:=\left\{z_{1} \neq 0\right\}$.
Remark 2.5. Beside P_{1} and P_{2}, all points of $A_{\infty} \backslash D$ are in this chart:

$$
v_{0}:=\frac{z_{0}}{z_{1}}, \quad v_{2}:=\frac{z_{2}}{z_{1}}, \quad v_{3}:=\frac{z_{3}}{z_{1}}, \quad v_{4}:=\frac{z_{4}}{z_{1}^{2}}, \quad v_{5}:=\frac{z_{5}}{z_{1}^{2}}, \quad v_{6}:=\frac{z_{6}}{z_{1}^{2}}
$$

Using the system of X_{1}, and then taking $z_{1}=1$, we obtain

$$
\begin{aligned}
& \dot{v}_{0}=v_{0}\left(v_{5}+m v_{2} v_{3}\right) \\
& \dot{v}_{2}=v_{4}+2 v_{2} v_{5}+m v_{3}\left(1+v_{2}^{2}\right) \\
& \dot{v}_{3}=v_{3}\left(v_{5}+m v_{2} v_{3}\right) \\
& \dot{v}_{4}=2 v_{4} v_{5}-v_{2} v_{6}+v_{3}\left(v_{5}+2 m v_{2} v_{4}\right) \\
& \dot{v}_{5}=v_{6}+2 v_{5}^{2}+v_{3}\left(2 m v_{2} v_{5}-v_{4}\right) \\
& \dot{v}_{6}=v_{2} v_{4}-v_{5}+2 v_{5} v_{6}+2 m v_{2} v_{3} v_{6}
\end{aligned}
$$

After the above coordinate changes, the equations which define \bar{A} become

$$
\begin{aligned}
\frac{1}{2}\left(1+v_{2}^{2}+(m+1) v_{3}^{2}\right)-v_{6}-c_{1} v_{0}^{2} & =0 \\
v_{4}+v_{2} v_{5}+(m+1) v_{3} v_{6}-c_{2} v_{0}^{3} & =0 \\
v_{3}-c_{3} v_{0} & =0 \\
v_{4}^{2}+v_{5}^{2}+v_{6}^{2}-c_{4} v_{0}^{3} & =0
\end{aligned}
$$

$$
v_{3}=c_{3} v_{0}, \quad v_{6}=a v_{0}^{2}+\frac{1}{2}\left(v_{2}^{2}+1\right)
$$

with $a=\frac{1}{2}\left((m+1) c_{3}^{2}-2 c_{1}\right)$.
We are reduced to the following system of three equations:

$$
\begin{aligned}
& \dot{v}_{0}=v_{0}\left(v_{5}+m c_{3} v_{0} v_{2}\right) \\
& \dot{v}_{2}=v_{0}\left(\alpha\left(1+v_{2}^{2}\right)+\frac{1}{2} v_{0}^{2}\right) \\
& \dot{v}_{5}=\frac{1}{2}\left(1+v_{2}^{2}\right)+\alpha v_{0}^{2}+2 v_{5}^{2}+c_{3} v_{0}\left[(2 m+1) v_{2} v_{5}+a v_{0}\left(1+v_{2}^{2}\right)-\frac{1}{2} v_{0}^{3}\right]
\end{aligned}
$$

on

$$
\begin{aligned}
\bar{A}=\left\{\left(v_{0}, v_{2}, v_{5}\right),(1+\right. & \left.v_{2}^{2}\right) v_{5}^{2}+2 v_{0} v_{2} v_{5}\left[a\left(1+v_{2}^{2}\right)-\frac{1}{2} v_{0}^{2}\right] \\
& \left.+v_{0}^{2}\left[a\left(1+v_{2}^{2}\right)-\frac{1}{2} v_{0}^{2}\right]^{2}+\left[\frac{1}{2}\left(1+v_{2}^{2}\right)+\alpha v_{0}^{2}\right]^{2}-c_{4} v_{0}^{3}=0\right\}
\end{aligned}
$$

$A_{\infty}=\bar{A} \cap\left\{v_{0}=0\right\} . K_{1}$ and K_{2} are given by $v_{0}=v_{2}-\mathrm{i}=0$ and $v_{0}=v_{2}+\mathrm{i}=0$, respectively. M_{1} corresponds to $v_{0}=v_{5}=v_{2}-\mathrm{i}=0$, and M_{2} to $v_{0}=v_{5}=v_{2}+\mathrm{i}=0$. For $v=\left(0, \mathrm{i}, v_{5}\right)$, the differential equation is holomorphic and vanishes only if $v_{5}=0$. Then for every point of $K_{1} \backslash M_{1}$, there exists a unique solution to the differential equation with initial conditions at the given point.

If $v_{0}=v_{2}-\mathrm{i}=0, v_{5}$ is a solution of $\dot{v}_{5}=2 v_{5}^{2} . v_{5}$ then gives $v_{5}=1 /(c t+d)$, where c and d are constants. $K_{1} \backslash M_{1}$ is an integral curve for X_{1}. It is also an integral curve for X_{2}, so the two fields are dependent on $K_{1} \backslash M_{1}$, and by continuity, they remain dependent at the point M_{1}. For P_{1}, we can do the same thing in the chart $U_{4}:=\left\{z_{4} \neq 0\right\}$, but, by the remark above, it is not necessary; by continuity, X_{1} and X_{2} remain dependent on K_{1}. On K_{2}, the conclusion is the same. We then obtain the following proposition.

Proposition 2.6. $A \cup D$ is a commutative algebraic group.
Proof. $\left\{y_{0}=1, y_{1}=z_{1}, y_{2}=z_{2}, y_{3}=z_{1}^{2}, y_{4}=z_{4}, y_{5}=z_{5}, y_{6}=z_{2}^{2}, y_{7}=z_{1} z_{2}\right\}$ is a basis of $L(2 D)$ (cf. (2.2)) and provides a smooth embedding into \mathbb{P}^{7}. The vector fields X_{1} and X_{2} extend holomorphically and remain independent on D. The associated flows ϕ_{1} and ϕ_{2} are complete on $A \cup D=\bar{A} \backslash\left\{K_{1}, K_{2}\right\}$. As in the demonstration of Liouville-Arnold theorem, let $p_{0} \in A \cup D$ be a point base and

$$
\begin{aligned}
\Gamma: \mathbb{C}^{2} & \rightarrow A \cup D \\
(s, t) & \mapsto \phi_{1}^{s}\left(\phi_{2}^{t}\left(p_{0}\right)\right)
\end{aligned}
$$

Define $\Lambda:=\left\{(s, t) \in \mathbb{C}^{2}, \Gamma(s, t)=p_{0}\right\} . A \cup D$ is biholomorphic to \mathbb{C}^{2} / Λ, so it is equipped with a commutative group structure. Moreover, Λ is defined by ϕ_{1} and ϕ_{2}, which are holomorphic on $A \cup D ; \mathbb{C}^{2} / \Lambda$ is then an analytic variety; $A \cup D$ is also an analytic one by the biholomorphism between them. Since the last one is projective (its image in \mathbb{P}^{7}), it is an algebraic variety by Chow's Theorem.

Proposition 2.7. $A \cup D$ is a \mathbb{C}^{*}-extension of an algebraic curve.
Lemma 2.8. Λ is a rank 3 lattice.

Proof. Λ is a lattice of \mathbb{C}^{2}, it is of rank non-superior to 4 . If $\operatorname{rank}(\Lambda)=4$, then by Liouville-Arnold theorem, $A \cup D$ would be compact. Let $\Lambda_{1}:=\left\{s \in \mathbb{C}, \phi_{1}^{s}\left(p_{0}\right)=p_{0}\right\}$ and $\Lambda_{2}:=\left\{t \in \mathbb{C}, \phi_{2}^{t}\left(p_{0}\right)=p_{0}\right\}$. The integral curves of the vector fields X_{1} and X_{2} are cyclic. We then get the following consequences:
(a) there exist $s_{0} \neq 0$ such that $\Lambda_{1} \simeq s_{0} \mathbb{Z}$ and $t_{0} \neq 0$ such that $\Lambda_{2} \simeq t_{0} \mathbb{Z}$;
(b) by changing the base point p_{0} if necessary, there exists $\left(s_{1}, t_{1}\right) \notin\left(s_{0} \mathbb{Z}, t_{0} \mathbb{Z}\right)$ such that $\phi_{1}^{s_{1}}\left(\phi_{2}^{t_{2}}\left(p_{0}\right)\right)=p_{0} . \Lambda$ is then of rank 3 and is generated by $\left\{\left(s_{0}, 0\right),\left(0, t_{0}\right),\left(s_{1}, t_{1}\right)\right\}$.

Proof of Proposition 2.7. Let $\Psi: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be the projection on the first variable. Ψ induces a morphism $\bar{\Psi}: \mathbb{C}^{2} / \Lambda \rightarrow \mathbb{C} / \Psi(\Lambda) . \Psi(\Lambda)$ is generated by s_{0}, s_{1}. So $\mathbb{C} / \Psi(\Lambda)$ is isomorphic to T^{2},
$\operatorname{Ker}(\bar{\Psi})=\left\{\overline{(s, t)} \in \mathbb{C}^{2} / \Lambda, s \in \Psi(\Lambda)\right\}=(\Psi(\Lambda) \times \mathbb{C}) / \Lambda \simeq\left(\mathbb{Z}^{2} \times \mathbb{C}\right) / \mathbb{Z}^{3} \simeq \mathbb{C} / \mathbb{Z} \simeq \mathbb{C}^{*}$.
We then have the following exact sequence:

$$
0 \xrightarrow{\exp } \mathbb{C}^{*} \rightarrow A \cup D \xrightarrow{\bar{\Psi}} T^{2} \rightarrow 0
$$

3. Kirchhoff's top

The system of Kirchhoff's top is given by

$$
X_{1}=\left\{\begin{array}{l}
\dot{z}_{1}=\left(a_{3}-a_{1}\right) z_{2} z_{3}+\left(c_{3}-c_{1}\right) z_{5} z_{6} \\
\dot{z}_{2}=\left(a_{1}-a_{3}\right) z_{1} z_{3}+\left(c_{1}-c_{3}\right) z_{4} z_{6} \\
\dot{z}_{3}=0 \\
\dot{z}_{4}=-a_{1} z_{2} z_{6}+a_{3} z_{3} z_{5} \\
\dot{z}_{5}=a_{1} z_{1} z_{6}-a_{3} z_{3} z_{4} \\
\dot{z}_{6}=-a_{1} z_{1} z_{5}+a_{1} z_{2} z_{4}
\end{array}\right.
$$

generated by the Hamiltonian

$$
H_{1}=\frac{1}{2}\left(a_{1}\left(z_{1}^{2}+z_{2}^{2}\right)+a_{3} z_{3}^{2}+c_{1}\left(z_{4}^{2}+z_{5}^{2}\right)+c_{3} z_{6}^{2}\right)
$$

It possesses the following three other first integrals:

$$
\begin{aligned}
& H_{2}=z_{1} z_{4}+z_{2} z_{5}+z_{3} z_{6} \\
& H_{3}=z_{3} \\
& H_{4}=z_{4}^{2}+z_{5}^{2}+z_{6}^{2}
\end{aligned}
$$

H_{2} and H_{4} are Casimir polynomials; H_{3} generates a second vector field X_{2} :

$$
X_{2}=\left\{\begin{array}{l}
\dot{z}_{1}=z_{2} \\
\dot{z}_{2}=-z_{1} \\
\dot{z}_{3}=0, \\
\dot{z}_{4}=z_{5} \\
\dot{z}_{5}=-z_{4} \\
\dot{z}_{6}=0
\end{array}\right.
$$

The H_{i} are homogeneous (without weights) of degree $d_{i}: d_{1}=d_{2}=d_{4}=2, d_{3}=1$; thus we complete the level surface in \mathbb{P}^{6}.

3.1. Asymptotic expansions

Let $z_{i}, i=1, \ldots, 6$, have the following asymptotic expansion:

$$
\begin{equation*}
z_{i}(t)=\frac{1}{t}\left(z_{i}^{(0)}+z_{i}^{(1)} t+z_{i}^{(2)} t^{2}+\cdots\right) \tag{3.1}
\end{equation*}
$$

Substituting (3.1) into the differential equations of X_{1}; at the zeroth step the coefficients of t^{-2} yield the system

$$
\left.\begin{array}{r}
z_{1}+\left(a_{3}-a_{1}\right) z_{2} z_{3}+\left(c_{3}-c_{1}\right) z_{5} z_{6}=0, \\
z_{2}+\left(a_{1}-a_{3}\right) z_{1} z_{3}+\left(c_{1}-c_{3}\right) z_{4} z_{6}=0, \\
z_{3}=0, \\
z_{4}-a_{1} z_{2} z_{6}+a_{3} 4 z_{3} z_{5}=0, \tag{K-0}\\
z_{5}+a_{1} z_{1} z_{6}-a_{3} z_{3} z_{4}=0, \\
z_{6}-a_{1} z_{1} z_{5}+a_{1} z_{2} z_{4}=0,
\end{array}\right\}
$$

which has the following three solutions.
Case I: $z_{6}=0$, then the solution is identically zero.
Case II: $z_{6} \neq 0$ and $z_{5}=0$, then $z^{(0)}=\left(0,\left(\epsilon / a_{1}\right), 0, x \epsilon, 0, x\right)$, where $\epsilon^{2}=-1, a_{1}\left(c_{3}-\right.$ $\left.c_{1}\right) x^{2}=1$.

Case III: $z_{6} \neq 0, z_{5} \neq 0$, then $z^{(0)}=\left(\alpha, \beta, 0, a_{1} x \beta,-a_{1} x \alpha, x\right)$, where x is as above and $1+a_{1}^{2}\left(\alpha^{2}+\beta^{2}\right)=0$.

Let (K-k) denote the system of equations corresponding to $z^{(k)}$. After computations we obtain the following lemma.

Lemma 3.1. In cases II and III, (K-k) has one degree of freedom for $k=1$ and three degrees of freedom for $k=2$.

Let γ be the free parameter obtained for $k=1$, and δ, η and τ the others obtained for $k=2$. In case III we get

$$
\begin{aligned}
& z^{(1)}=\left(-\frac{\left(c_{3}-c_{1}\right) \gamma x a_{3}}{a_{3}-a_{1}}, \frac{\left(c_{3}-c-1\right) \gamma x a_{3} \alpha}{\beta\left(a_{3}-a_{1}\right)},-\frac{\left(c_{3}-c_{1}\right) \gamma x}{\beta\left(a_{3}-a_{1}\right)}, \frac{\alpha \gamma}{\beta}, \gamma, 0\right) \\
& z^{(2)}=\left(\left(c_{3}-c_{1}\right)\left[x\left(\eta-a_{1} \alpha \tau\right)-\frac{a_{3} \alpha \gamma^{2}}{a_{1} \beta^{2}\left(a_{3}-a_{1}\right)}\right]\right. \\
&\left.\delta, 0,-a_{1}(\tau \beta+\delta x)-\frac{a_{3} x \gamma^{2}\left(c_{3}-c-1\right)}{\beta\left(a_{3}-a-1\right)}, \eta, \tau\right)
\end{aligned}
$$

This yields the following lemma.
Lemma 3.2. The system of differential equations of X_{1} possesses Laurent series, which depend on five parameters (dim(phase space) - 1), with leading terms given by case III above.

3.2. Divisor of poles

Confining the Laurent solutions to the invariant surface

$$
\bigcap_{i=1}^{4}\left\{H_{i}=h_{i}\right\},
$$

yields

$$
\begin{aligned}
& \gamma=h_{3} \\
& \delta=\frac{\left.\left(a_{1}-a_{3}\right)\left[\left(a_{1}^{2} \beta^{2}+1\right)\left(4 h_{1}-h_{4}\left(c_{1}+c_{3}\right)\right)+3 a_{1}^{3} x h_{2} \alpha \beta\left(c_{3}-c_{1}\right)\right]\left(3 a_{3}+a_{1}\right)\right)}{6 a_{1}\left(a_{1}-a_{3}\right) \alpha} \\
& \tau=\frac{\left(a_{1}-a_{3}\right)\left(a_{1}^{2} \beta^{2}+1\right)\left(2 c_{1} h_{4}-2 h_{1}-c_{3} h_{4}\right)-a_{1} h_{3}^{2}\left(c_{1}-c_{3}\right)}{6\left(c_{1}-c_{3}\right)\left(a_{1}-a_{3}\right) x\left(a_{1}^{2} \beta^{2}+1\right)} \\
& \eta=\frac{a_{1}\left[\left(a_{1}-a_{3}\right)\left(a_{1}^{2} \beta^{2}+1\right)\left(\left(2 h_{1}-2 h_{4} c_{3}+c_{1} h_{4}\right) \beta+3 a_{1} x \alpha h_{2}\left(c_{3}-c_{1}\right)\right)\right.}{\left.+h_{3}^{2} \beta\left(c_{3}-c_{1}\right)\left(2 a_{1}-3 a_{3}\right)-3 \alpha x c_{3} h_{2} a_{1} a_{3}\right]}
\end{aligned} .
$$

So these parameters $(\gamma, \eta, \delta$ and $\tau)$ are trivial. The relationship between the remaining parameters is the previous one: $1+a_{1}^{2}\left(\alpha^{2}+\beta^{2}\right)=0$. Moreover, the leading terms depend on x, which verifies that $a_{1}\left(c_{3}-c_{1}\right) x^{2}=1$, giving the following proposition.

Proposition 3.3. The divisors of poles of the functions $z_{j}, j=1, \ldots, 6$, are two isomorphic Riemann surfaces of genus 0 .

As in the case of Lagrange's top, since the divisors of poles are Riemann surfaces of genus 0 , we cannot satisfy requirement (2.2), giving the following proposition.

Proposition 3.4. The system of Kirchhoff's top is not ACI.

3.3. Completion

As in the case of Lagrange's top, we now wish to complete the invariant variety into a semi-abelian surface:

$$
A_{\infty}=\left\{\begin{array}{rr}
& \left(c_{3}-c_{1}\right) z_{6}^{2}+a_{1}\left(z_{1}^{2}+z_{2}^{2}\right) \\
z_{1} z_{2}+z_{2} z_{5} & =0 \\
z-3 & =0 \\
\left.z_{1} z_{4}: z_{2}: z_{3}: z_{4}: z_{5}: z_{6}\right] \in \mathbb{P}^{6}, & z_{4}^{2}+z_{5}^{2}+z_{6}^{2}=
\end{array}\right\} .
$$

From the above equations, we get

$$
\begin{aligned}
& z_{6}^{2}\left(z_{1}^{2}-\frac{c_{3}-c_{1}}{a_{1}} z_{5}^{2}\right)=0 \\
& z_{6}^{2}\left(z_{2}^{2}-\frac{c_{3}-c_{1}}{a_{1}} z_{4}^{2}\right)=0
\end{aligned}
$$

$M_{1}=[0: 1: \mathrm{i}: 0: 0: 0: 0]$ and $M_{2}=[0: 1:-\mathrm{i}: 0: 0: 0: 0] ; E:=A_{\infty}=E_{1} \cup E_{2}$, with $E_{1} \cap E_{2}=\left\{M_{1}, M_{2}\right\} . E_{1}$ has the same form as above:

$$
\begin{gathered}
E_{2}=S_{1} \cup S_{2}, \quad S_{1}=\left\{\left[0: z_{1}: z_{2}: 0: a_{1} z_{6} z_{2}:-a_{1} z_{6} z_{1}: \frac{1}{\sqrt{a_{1}\left(c_{3}-c_{1}\right)}}\right]\right\} \\
S_{2}=\left\{\left[0: z_{1}: z_{2}: 0:-a_{1} z_{6} z_{2}: a_{1} z_{6} z_{1}: \frac{1}{\sqrt{a_{1}\left(c_{3}-c_{1}\right)}}\right]\right\}, \quad S_{1} \cap S_{2}=\left\{M_{1}, M_{2}\right\} .
\end{gathered}
$$

A_{∞} has the following form:

$D_{i}:=S_{i} \backslash\left\{M_{1}, M_{2}\right\}, i=1,2$. In an analogous manner to the Lagrange's top, we obtain the following proposition.

Proposition 3.5. (i) $A \cup D_{1} \cup D_{2}$ is a commutative algebraic group. (ii) It is a \mathbb{C}^{*} extension of an abelian curve.

4. Euler-Poinsot's top

The system of Euler-Poinsot's top has the following form:

$$
\left.\begin{array}{l}
\dot{z}_{1}=\left(\lambda_{3}-\lambda_{2}\right) z_{2} z_{3}, \\
\dot{z}_{2}=\left(\lambda_{1}-\lambda_{3}\right) z_{1} z_{3}, \\
\dot{z}_{3}=\left(\lambda_{2}-\lambda_{1}\right) z_{1} z_{2}, \\
\dot{z}_{4}=\lambda_{3} z_{3} z_{5}-\lambda_{2} z_{2} z_{6}, \tag{4.1}\\
\dot{z}_{1}=\lambda_{1} z_{1} z_{6}-\lambda_{3} z_{3} z_{4}, \\
\dot{z}_{1}=\lambda_{2} z_{2} z_{4}-\lambda_{1} z_{1} z_{5} .
\end{array}\right\}
$$

The Hamiltonian function is $H_{1}=H=\frac{1}{2}\left(\lambda_{1} z_{1}^{2}+\lambda_{2} z_{2}^{2}+\lambda_{3} z_{3}^{2}\right)$. Besides the following Casimir functions $H_{3}=z_{4}^{2}+z_{5}^{2}+z_{6}^{2}$ and $H_{4}=z_{1} z_{4}+z_{2} z_{5}+z_{3} z_{6}$, the system possesses a fourth first integral $H_{2}=\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}+z_{3}^{2}\right) . H_{2}$ generates the following second vector field:

$$
\left.\begin{array}{l}
\dot{z}_{1}=0 \tag{4.2}\\
\dot{z}_{2}=0 \\
\dot{z}_{2}=0 \\
\dot{z}_{4}=z_{3} z_{5}-z_{2} z_{6}, \\
\dot{z}_{5}=z_{1} z_{6}-z_{3} z_{4}, \\
\dot{z}_{6}=z_{2} z_{4}-z_{1} z_{5} .
\end{array}\right\}
$$

4.1. Asymptotic expansions

As in the preceding cases, we substitute in the differential equation (4.1) $z_{i}(t)$ by asymptotic expansions $(1 / t)\left(z_{i}^{(0)}+z_{i}^{(1)} t+z_{i}^{(2)} t^{2}+\cdots\right)$. For $z^{(0)}$, we obtain the following system:

$$
\left.\begin{array}{r}
z_{1}+\left(\lambda_{3}-\lambda_{2}\right) z_{2} z_{3}=0, \\
z_{2}-\left(\lambda_{3}-\lambda_{1}\right) z_{1} z_{3}=0, \\
z_{1}+\left(\lambda_{2}-\lambda_{1}\right) z_{1} z_{2}=0, \\
z_{4}-\lambda_{2} z_{2} z_{6}+\lambda_{3} z_{3} z_{5}=0, \tag{EP-0}\\
z_{5}+\lambda_{1} z_{1} z_{6}-\lambda_{3} z_{3} z_{4}=0, \\
z_{6}-\lambda_{1} z_{1} z_{5}+\lambda_{2} z_{2} z_{4}=0 .
\end{array}\right\}
$$

Its non-trivial solution is

$$
z^{(0)}=\left(x, y,\left(\lambda_{1}-\lambda_{2}\right) x y,\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{2}-\lambda_{3}\right) x y \alpha, \alpha,\left(\lambda_{1}-\lambda_{2}\right) x y\right)
$$

with

$$
\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{3}-\lambda_{1}\right) x^{2}-1=0, \quad\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{2}-\lambda_{3}\right) y^{2}-1=0
$$

and α is a free parameter.
Let us denote by (EP-k) the differential equation obtained at step k. After computations, we get the following lemma.

Lemma 4.1. (EP-k) has one degree of freedom for $k=1$ and three degrees of freedom for $k=2$.

Denote by β the free parameter obtained at step 1 and by γ, δ and η the free parameters obtained at step 2. We obtain

$$
\begin{aligned}
& z^{(1)}=\left(0,0,0, \frac{\lambda_{1}}{\lambda_{2}}\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{2}-\lambda_{3}\right) x y \beta, \beta, \frac{\lambda_{3}}{\lambda_{2}}\left(\lambda_{1}-\lambda_{2}\right) x \beta\right), \\
& z^{(2)}=\left(\gamma, \delta,\left(\lambda_{2}-\lambda_{1}\right)(x \delta+y \gamma),\right. \\
& (y \eta-\alpha \delta)\left(\lambda_{3}^{2}\left(\lambda_{2}-\lambda_{1}\right)-\lambda_{2}^{2}\left(\lambda_{3}-\lambda_{1}\right)\right)+x y \alpha \gamma\left(\lambda_{3}^{2}\left(\lambda_{2}-\lambda_{1}\right)\right. \\
& \frac{\left.-\lambda_{1}^{3}\left(\lambda_{3}-\lambda_{2}\right)^{2}+\lambda_{2}^{2}\left(\lambda_{1}-\lambda_{3}\right)\left(\lambda_{1}\left(\lambda_{2}-\lambda_{3}\right)+\lambda_{3}\left(\lambda_{2}-\lambda_{1}\right)\right)\right)}{x\left(\lambda_{3}^{2}\left(\lambda_{2}-\lambda_{1}\right)+\lambda_{1}^{2}\left(\lambda_{3}-\lambda_{2}\right)\right)}, \\
& \eta\left(\lambda_{2} \lambda_{3}-\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}\right)+x \alpha \gamma\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{3}^{2}\left(\lambda_{1}-\lambda_{2}\right)+\lambda_{1}^{2}\left(\lambda_{2}-\lambda_{3}\right)\right) \\
& \left.\eta, \frac{\left.+2 y \alpha \delta \lambda_{2} \lambda_{3}\left(\lambda_{2}-\lambda_{3}\right)\left(\lambda_{2}-\lambda_{1}\right)\right)}{x\left(\lambda_{3}^{2}\left(\lambda_{2}-\lambda_{1}\right)+\lambda_{1}^{2}\left(\lambda_{3}-\lambda_{2}\right)\right)}\right) .
\end{aligned}
$$

As above we have the following lemma.

Lemma 4.2. The system of differential equations (4.1) possesses a Laurent series which depends on five parameters with leading terms given by $z^{(0)}$ above.

4.2. Divisor of poles

By confining the Laurent solutions into the invariant surface

$$
\bigcap_{i=1}^{4}\left\{H_{i}=h_{i}\right\}
$$

we obtain

$$
\begin{align*}
h_{1}= & \lambda_{1} x \gamma+\lambda_{2} y \delta-\lambda_{3} x y\left(\lambda_{2}-\lambda_{1}\right)^{2}(x \delta+y \gamma) \tag{4.3}\\
h_{2}= & x \gamma+y \delta-x y\left(\lambda_{2}-\lambda_{1}\right)^{2}(x \delta+y \gamma) \tag{4.4}\\
h_{3}= & -2 \alpha^{2}\left(\lambda_{2}-\lambda_{1}\right)^{2} x \gamma+2 \alpha \eta+\beta^{2} \\
& +2 y \alpha\left(\lambda_{3}-\lambda_{2}\right)\left(\lambda_{2}-\lambda_{1}\right)\left[x y \alpha \gamma\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{2}\right)+y \eta-\alpha \delta\right] \\
& -\frac{\beta^{2}\left[\lambda_{3}^{2}\left(\lambda_{2}-\lambda_{1}\right)+\lambda_{1}^{2}\left(\lambda_{3}-\lambda_{2}\right)\right]}{\lambda_{2}^{2}\left(\lambda_{3}-\lambda_{1}\right)} \\
& \quad-\frac{2 \alpha\left(\lambda_{2}-\lambda_{1}\right)\left[2 y \alpha \delta\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{2}-\lambda_{3}\right) \lambda_{2} \lambda_{3}+\eta\left(\lambda_{2} \lambda_{3}+\lambda_{1} \lambda_{3}-\lambda_{1} \lambda_{2}\right)\right]}{\lambda_{3}^{2}\left(\lambda_{2}-\lambda_{1}\right)+\lambda_{1}^{2}\left(\lambda_{3}-\lambda_{2}\right)} \tag{4.5}
\end{align*}
$$

$$
\begin{align*}
h_{4}= & x y \alpha \gamma\left[-2\left(\lambda_{2}-\lambda_{1}\right)^{2}+\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{2}\right)+\left(\lambda_{3}-\lambda_{2}\right)\right] \\
& +y \eta+\alpha \delta+\frac{\alpha \delta\left(\lambda_{2}-\lambda_{1}\right)}{\left.\lambda_{3}-\lambda_{1}\right)} \\
& \quad+\frac{y\left(\lambda_{1}-\lambda_{2}\right)\left[2 y \alpha \delta \lambda_{3} \lambda_{2}\left(\lambda_{2}-\lambda_{1}\right)\left(\lambda_{2}-\lambda_{3}\right)+\eta\left(\lambda_{3} \lambda_{2}+\lambda_{1} \lambda_{3}-\lambda_{1} \lambda_{2}\right)\right]}{+(y \eta-\alpha \delta)\left[\lambda_{3}^{2}\left(\lambda_{2}-\lambda_{1}\right)+\lambda_{2}^{2}\left(\lambda_{1}-\lambda_{3}\right)\right]}
\end{aligned} \quad . \quad . \begin{aligned}
& \lambda_{3}^{2}\left(\lambda_{2}-\lambda_{1}\right)+\lambda_{1}^{2}\left(\lambda_{3}-\lambda_{2}\right)
\end{align*} .
$$

Equations (4.3) and (4.4) show that γ and δ are trivial. Using (4.5) and (4.6), we eliminate η and find a relation between α and β which has the following form

$$
\begin{equation*}
c_{1} \alpha^{2}-h_{4} \alpha+\left(c_{2} \beta^{2}+c_{3}\right)=0 \tag{4.7}
\end{equation*}
$$

where $c_{i}, i=1,2,3$, are functions of $\lambda_{j}, j=1,2,3,4, x$ and y. Equation (4.7) defines a genus 0 Riemann surface. Recall that we had

$$
\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{3}-\lambda_{1}\right) x^{2}-1=0, \quad\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{2}-\lambda_{3}\right) y^{2}-1=0
$$

So we obtain the following proposition.
Proposition 4.3. The divisors of poles of the functions $z_{j}, j=1, \ldots, 6$, are four Riemann surfaces of genus 0 .

As above, we have the following proposition.
Proposition 4.4. The system of Euler-Poinsot's top is not ACI.

4.3. Completion

Using the same preceding notation, A_{∞} is given here by

$$
\begin{aligned}
\lambda_{1} z_{1}^{2}+\lambda_{2} z_{2}^{2}+\lambda_{3} z_{3}^{2} & =0 \\
z_{1}^{2}+z_{2}^{2}+z_{3}^{2} & =0 \\
z_{4}^{2}+z_{5}^{2}+z_{6}^{2} & =0 \\
z_{1} z_{4}+z_{2} z_{5}+z_{3} z_{6} & =0
\end{aligned}
$$

The first two equations give

$$
\begin{aligned}
z_{2}^{2} & =-\frac{\lambda_{1}-\lambda_{3}}{\lambda_{2}-\lambda_{3}} z_{1}^{2} \\
z_{3}^{2} & =-\frac{\lambda_{2}-\lambda_{1}}{\lambda_{2}-\lambda_{3}} z_{1}^{2}
\end{aligned}
$$

Then the fourth becomes $z_{1}\left(z_{4}+\zeta z_{5}+\xi z_{6}\right)=0$, where

$$
\begin{aligned}
\zeta^{2} & =\frac{\lambda_{1}-\lambda_{3}}{\lambda_{2}-\lambda_{3}} \\
\xi^{2} & =-\frac{\lambda_{2}-\lambda_{1}}{\lambda_{2}-\lambda_{3}}
\end{aligned}
$$

If $z_{1}=0$, then $z_{2}=z_{3}=0$ and $z_{4}^{2}+z_{5}^{2}+z_{6}^{2}=0$. Note $C:=\left\{\left[0: 0: 0: 0: z_{4}: z_{5}: z_{6}\right] \in\right.$ $\left.\mathbb{P}^{6}, z_{4}^{2}+z_{5}^{2}+z_{6}^{2}=0\right\}$. If $z_{1} \neq 0$, then $z_{4}=-\left(\zeta z_{5}+\xi z_{6}\right)$, and the third equation becomes $\left(1+\zeta^{2}\right) z_{5}^{2}+\left(1+\xi^{2}\right) z_{6}^{2}+2 \zeta \xi z_{5} z_{6}=0$. Dividing by $1+\zeta^{2}$ yields $z_{5}^{2}+2 \chi z_{5} z_{6}+\chi^{2} z_{6}^{2}=0$, so $z_{5}=\chi z_{6}$ and $z_{4}=(\zeta \chi-\xi) z_{6}$ with

$$
\chi^{2}=\frac{\lambda_{1}-\lambda_{3}}{\lambda_{1}-\lambda_{2}}
$$

Note $S_{i}:=\left\{\left[0: z_{1}: \zeta z_{1}: \xi z_{1}:(\zeta \chi-\xi) z_{6}:-\chi z_{6}: z_{6}\right] \in \mathbb{P}^{6}\right\}, i=1,2,3,4$, corresponding to the different values of $(\zeta, \xi) ; A_{\infty}=C \cup\left(\cup_{i=1}^{4} S_{i}\right)$.

Remark 4.5. The Jacobian matrix associated to the system of A_{∞} is

$$
\left(\begin{array}{cccccc}
\lambda_{1} z_{1} & \lambda_{2} z_{2} & \lambda_{3} z_{3} & 0 & 0 & 0 \\
z_{1} & z_{2} & z_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & z_{4} & z_{5} & z_{6} \\
z_{4} & z_{5} & z_{6} & z_{1} & z_{2} & z_{3}
\end{array}\right)
$$

So the singular locus of A_{∞} is $C \cup[0: 1: \zeta: \xi: 0: 0: 0]$.
Applying the method above, we obtain the following proposition.

Proposition 4.6.

(i) $A \cup\left(\cup_{i=1}^{4} S_{i}\right)$ is a commutative algebraic group.
(ii) It is a \mathbb{C}^{*}-extension of an abelian curve.

Acknowledgements. I thank Professor Lubomir Gavrilov for suggesting the problem and for his guidance.

References

1. M. Adler, Some geometrical techniques in integrable systems, Proc. Symp. Pure Math. 49 (1989), 69-86.
2. M. Adler and P. van Moerebeke, The complex geometry of the Kowalewski-Painlevé analysis, Inv. Math. 97 (1989), 3-51.
3. L. Gavrilov and A. Zhivkov, The complex geometry of Lagrange's top, Publication du Laboratoire de Mathématiques Emile Picard, no. 61, Université Paul Sabatier (1995).
4. P. Griffiths and J. Harris, Principles of algebraic geometry (Wiley, 1978).
5. A. Lesfari, Abelian surfaces and Kowalewski's top, Ann. Sci. ENS (4) 21 (1988), 193223.
6. P. van Moerebeke, Introduction to algebraic integrable systems and their Painlevé analysis, Proc. Symp. Pure Math. 49 (1989), 107-131.
