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In this note we propose an effective method based on the computation of a Grobner basis of a left ideal to
calculate the Gelfand-Kirillov dimension of modules.
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Introduction

Computation of the Gelfand-Kirillov dimension of modules over a noetherian ring
is a hard problem. In this note we propose an effective method based on the
computation of a Grobner (or standard) basis of a left ideal. To simplify the exposition
we assume that the noetherian ring R has a filtration (Rm)m€N such that the associated
graded ring gr(R) is an affine commutative domain and the filtration is standard. A
ring of this kind is essentially a quotient ring of an enveloping algebra t/(g) of a finite
dimensional Lie algebra g. Therefore we use £/(g) as frame to develop the theory.

The main result is given in Theorem 2.5. In it we describe an algorithm to give a
standard basis of a left ideal J of l/(g). The algorithm follows that given by Buchberger
[2] in the case of a commutative polynomial ring over a field. As a byproduct of the
method developed we give some criteria to compute the Gelfand-Kirillov dimension of
M = U(g)/J (i.e. the degree of the Hilbert-Samuel polynomial) and the Bernstein
number a(GK(M)\) where a is the leading coefficient of the afore-mentioned
polynomial.

1. Almost commutative algebras

In the study of non commutative rings, a fundamental tool has been to find
associated commutative rings and translate properties from the commutative case to
the non commutative one. Let us focus on the Weyl algebra and the universal
enveloping algebra of a finite dimensional Lie algebra. In these cases the non
commutative ring R has an (increasing) filtration (Km)meN such that the graded
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associated ring is commutative, even more, is an affine commutative algebra. If we
analyse the ring R we see that the filtration has the following properties:

• Ro = k.
• R, generates R a s a k-algebra and dimk(/?,) < +00.
• Rm = R™ for any m.
• The ring gr(R) is commutative.

Our purpose is study such filtered algebras which will be called, after Duflo, almost
commutative algebras, see [10, p. 299] for a precise definition.

Duflo proves that these algebras may be described exactly as homomorphic images
of t/(g), where g is a finite dimensional Lie k-algebra [6].

1.1. Let M be a finitely generated left R-module with a finite dimensional standard
filtration (Mm)m6N, see [8]. Following [10, p. 302], we consider the Hilbert-Samuel
polynomial relative to this filtration

p"M
s(m) := dimk(Mm) for m » 0.

The degree of the Hilbert-Samuel polynomial p^s is independent of the finite
dimensional filtration on M ([8, p. 91]) and it is equal to GK{M), the Gelfand-Kirillov
dimension of M. On the other hand, the leading coefficient of p^s does depend on the
standard filtration considered on R [8, p. 92]. Let a be the leading coefficient of pJJs.
The integer eM := a • GK(M)\ is called the multiplicity or the Bernstein number of M.

For completeness let us recall a link between Krull dimension and Gelfand-Kirillov
dimension. Thus we have that if M is a finitely generated R-module (with a finite
dimensional filtration), then GK(M) = Kdimgr(R)(gr(M)).

2. The division theorem

As in the above section let R be an almost commutative algebra with standard
filtration (Rm)meN. In order to study (left) ideals in R, using the Duflo theorem, we can
build a finite dimensional Lie algebra g such that R = U(g)/L with L a two-sided ideal
in t/(g). Then, if / is a left ideal of R there exists a left ideal J of U(g) such that
/ ^ J/L. Therefore for studying left ideals on R it is enough to study left ideals of the
enveloping algebra of a finitely dimensional Lie algebra.

Throughout this paper g will be a finite dimensional Lie algebra with basis
{x,,. . . ,*„}. Using the Poincare-Birkhoff-Witt theorem a basis of U := U(g), as a
k-vector space, is given by the set {x*1 .. . x*" : (a, , . . . , a j € N"}. For each element
P e U we may write P, uniquely, as a finite sum P = $2aeN» p^X2, where pa e k and X'
means x*' . . . x;J". The set of a such that p, ^ 0 is called the Newton diagram of P and
is denoted by A/"(P). Using the standard filtration (l/m)meN on t/(g), the associated
graded ring is isomorphic to the polynomial ring in n indeterminates. For any element
P e U, we define the principal symbol of P (and we denote a(P)) as the coset
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a(P) = P + t/m_, where Pe t/m\l/m_,. It is clear that cr(P) is a homogeneous poly-
nomial.

As in the case of a commutative polynomial ring, the above situation allows us to
treat monomials in U as points in N" and use combinatory methods in the study of
(left) ideals on U.

2.1. Good compatible orders
Let < be a total order on N", compatible with the addition, satisfying 0 < a for

any 0 ^ a e N". It is clear that if < satisfies the above properties then it is a good order
on N" (i.e. any non empty subset A c N" has a first element). Using this total order,
we will define the principal exponent and monomial of an element of U.

Definition 2.1. Let P e U be a non zero element. The principal exponent of P is
defined as the greatest element of 7V(cr(P)) with respect to the order <, it is denoted by
pe(P), where Af(a(P)) is defined analogously to 7V(P). If a is the principal exponent
of P then p^X* is defined as the principal monomial of P and it is denoted by pm(P).

It is clear that pm(P • Q) = pm(P) • pm(g). If J is a left ideal of U we define PE(J)
the set {pe(P): P e J). Therefore from the definition we have PE(J) + N" = PE(J), and
so PE(J) is an ideal in N".

2.2. Standard bases and the division theorem

Definition 2.2. Let J be a left ideal of U. A finite subset {P,, ..., P,} c J is a
standard basis of J if

By Dickson's lemma, see [5], PE(J) is a finitely generated ideal, i.e. there exists
{a1 a1} C PE(J) such that

PE(J) - |J(«' + N").

As a consequence, if we take for any index i an element P, in J such that pe(P,) = a',
the set {P , , . . . , P,} is a standard basis of J.

At this moment an algorithm to build a standard basis may be developed.
Let (a 1 , . . . , a1) e (N")5, we consider the associated partition of N" defined by

• A, = a1 + Nn

• A, = («' + N")\(4<lAy)
• A = N"\(UJ_,A,)
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Theorem 2.3. (Division Theorem). Let (i>,,..., Ps) e IIs with P, / 0 and let
{A,,..., As, A] the partition associated to (pe(P,),..., pe(P,)). Then, for each P in U there
exists a unique (Q,, . . . , Qs, R) e Us+> satisfying:

(1) P = E,QiPi + R-
(2) pe(P.) + Af(Q,) C A, and peC&P,) < pe(P)for i=l,...,s.
(3) Af(R) C A and pe(R) < pe(P).

Proof. First we prove the existence by induction on pe(P). We may suppose
P ^ 0. First we assume P is a constant. If there exists i such that pe(P,) = (0, . . . , 0)
then we may write P = (1/P,)P • P,. If, for all i, P, is not a constant then N(P) c A and
the division is given by P = £ , 0 • Pi + p- 0 ° t n e other hand, if P is not constant, we
may assume that P is a monomial i.e. pm(P) = P. If there exists / such that pe(P) e A,
then pm(P) = pm(M • P,) where M is a monomial. We may write P1 = P - M • P,.
By construction, we have pe(P') < pe(P). Hence, by induction, we may write
P' = E&Pj + K' a n d f m a l ly P = E>*i$Pi + (M + Q'i)Pi + R'. By the contrary, if
pe(P) e A then P = £,• 0 • P. + P- This proves the existence.

For the uniqueness, let P = £ , Q,P, + R = £,. QJP, + R' satisfy conditions (2) and
(3) in the theorem. We have £,(Q, ~ Q'i)Pi +±R -R') = 0 and pe((Q, - Q;)P,) 6 A,,
pe(R — R') e A; on the other hand, {A, As, A} is a partition, hence R = R' and for
any i we have g, = Q,. •

Remark. This theorem was first proved by Castro [3, 4] for the Weyl algebra and
by Apel and Lassner [1] for (7(g).

Corollary 2.4. Any standard basis of a left ideal J of U is a system of generators
ofj.

Proof. Let {Plt...,Pt) be a standard basis of J. We use the notation of
the theorem. Then for any P e J we may write, by the Division Theorem,
P = £ \ g,P, + R, with Af(R) C A. Hence ReJ and pe(R) e PE(J) = U,A,, which is a
contradiction unless R = 0. •

2.3. The construction of standard bases
In this section, starting from a system of generators we will build a standard basis

of a left ideal J of U.
For any pair (P, Q) of elements in U, let T be the monic least common multiple

of pm(P) and pm(g). We define the semisyzygy of (P, Q) as the element
S(P> Q) — MP-NQ, where M and N are monomials such that pm(M • pm(P)) =
pm(N • pm(Q)) = T. The following theorem is due to Buchberger [2] in the case of a
commutative polynomial ring.

Theorem 2.5. Let T = {P, , . . . , P,} be a system of generators of J. If the remainder
of the division of any semisyzygy S(P,, P,) by (P , , . . . , Ps) is zero, then T is a standard
basis of J.
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Proof. We follow [9, pp. 47-48]. It is enough to prove the inclusion
PE(J) c U,(pe(P,) + N") = A. Let P = £ , Q,P, be an element in J. Let y' = pe(Q,P,) and
y the supremum of all y'. Let { i 0 , . . . , /,} the set of indexes i such that y' = y. If t = 0
then y = pe(P) = pe(2,0) -1- pe(P,0) e A. On the other hand, suppose t > 0. Denote
pe(P,) = a' and pe(g,) = /?'". Let S = S(Pio, P,,) = MioPio - MhPh be the corresponding
semisyzygy. Let us denote by T the principal exponent of /.c.m.(pm(P,0), pmtP,,)). Then
there exists 3 e N" such that y = T + 5. If ^ = pe(M,-.) then x = fj.'0 + a'0 = /*'' + a1' and
we have the following relation: /?'' + a1' = y = \i' + a1' + 5. From this we obtain
P'I = n'i +8. As a consequence there exists a monomial D in U such that
Pm(6i,) = DMt+ other terms of lower degree. Put Ht. — pm(2,;) — DM{.. Thus we have
the following identity

Qi0Pi0 = pm(Q,0)P,0 + ( a . - pm(G,0))P,,
= DMi0Pi0 + Hi0Pi0 + (Q,o - pmCe^^P,,,.

On the other hand we have S = 5(P,0, P,,) = £ \ S,P, with pe(S,P,) < pe(S) by the Division
Theorem, 2.3, also, by construction, we have pe(S) < T. We proceed as follows:

;¥>"o

= DMi0Pi0 + Hi0Pi0 + {Qi0 - pm(e,0))P,0

= DM,P, + DS + Hi0Pi0 + «2,0 - pm(e,0))P10 +

= DM,/ , , + ^ DSfi + Hi0Pi0 + (Qlo - pm«2,0))P,
i

= (DSi0 + Hi0 + (Qi0 - pm(e,0)))P,0 + (DShDMh + Qh)Ph

Let us call

) 1 l l

• Qj = QJ + DSJ for j?io,i,.
Hence we have a new expression for P, P = J^ QjPj. Let us compute, for all j ,
the principal exponent of QjP,. If ; = i0 the principal exponent must be obtained
from the product DShP,0, but it is bounded by 3 + pe(S,0P,0) < <5 + pe(S) < 5 + x = y.
If j = i, the principal exponent of Q^P,, is bounded by max<{pe(DS,1Pi|), pe(DMflP,^),
pe(e,,/>,,)} <y . Finally, it is clear that pe(g;P,) = pe(g;P, + £>S,Py) < y. Now, by
induction on y and t we finish the proof. •

Let T — {Pu ..., P,} be a system of generators of J. We say that T has an extension
if there exists a semisyzygy S(Pit Pj) with non zero remainder RtJ with respect to
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(P, P,). The system Tx = T U {R^} is called an extension of T. From the noetherian
condition of N" we can find for any system of generators T of J an extension
f = TT = {P,,..., Ps, PJ+ , Ps+r] such that T has no extension. Hence, by Theorem
2.5, T is a standard basis of J.

3. Applications

In this section we apply the construction of a standard basis of the ideal J to
compute the Hilbert-Samuel polynomial of the left [/-module M = U/J. We denote by
(Mm)meN the induced filtration on M, i.e., Mm = (Um + J)/J.

For m e N we denote by PE(J)m the set (a e PE(J) : |a| < m).

Proposition 3.1. With the above notation, we have dimk(Mm) = cardinal(N"\PE(J)m).

Proof. By the division theorem, a k-basis for (Um + J)/J is given by the set
{X* + J : a £ PE(J), |a| < m). •

Starting from a system of generators of J we may compute a standard basis
{P,,..., Ps} of J. From this standard basis we may compute the set PE(J) and for every
m e N the cardinal of N"\P£(J)m. Now, using E. R. Kolchin [7, p. 49], we may
compute the Hilbert-Samuel polynomial of PE(J) which coincides with p^f by the
above proposition. It is an easy exercise to prove that the degree of p^s, which
coincides with GK(M), may be computed as the greatest dimension of the coordinate
varieties contained in N"\P£(J), where a coordinate variety is a variety with equation
*.•,=••• = H = °-

In the same way that the dimension is calculated, the reader could compute the
multiplicity (or the Bernstein number) of M (see 1.1), by following the next algorithm.
Let W be a coordinate variety of maximal dimension contained in N"\P£(J) with
equation x(l = • • • = x,r — 0. Let {j ,]„_,} the complement of {i,,..., ir} in {1 , . . . , n).
By the maximality of W the set

{0 e N" :/?,,=••• = /?,._ = 0, 08 + W) C (N"\P£(J))}

is finite. If we call ew its cardinal, the multiplicity of M is exactly the sum of the ew

for all the coordinate varieties W of maximal dimension contained in N"\P£(J) [3, 5].
Finally we remark that the results contained in this note may be extended to

calculate the Gelfand-Kirillov dimension of a finitely generated [/(g)-module given by
a finite presentation. To do this it is necessary to prove a division theorem for the free
module Um.
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